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DNA point accumulation in nanoscale topography (DNA-PAINT) is an easy-to-
implement approach for localization-based super-resolution imaging. Conventional
DNA-PAINT imaging typically requires tens of thousands of frames of raw data to
reconstruct one super-resolution image, which prevents its potential application for live
imaging. Here, we introduce a new DNA-PAINT labeling method that allows for imaging
of microtubules with both DNA-PAINT and widefield illumination. We develop a U-Net-
based neural network, namely, U-PAINT to accelerate DNA-PAINT imaging from a
widefield fluorescent image and a sparse single-molecule localization image.
Compared with the conventional method, U-PAINT only requires one-tenth of the
original raw data, which permits fast imaging and reconstruction of super-resolution
microtubules and can be adopted to analyze other SMLM datasets. We anticipate that
this machine learning method enables faster and even live-cell DNA-PAINT imaging in
the future.
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INTRODUCTION

Super-resolution microscopy allows for optical imaging beyond Abbe’s diffraction limit, enabling the
visualization of subcellular structures up to the molecular scale. Super-resolution approaches can be
roughly divided into two types, illumination pattern-based microscopy and single-molecule
localization microscopy (SMLM) (Schnitzbauer et al., 2017). DNA point accumulation in
nanoscale topography (DNA-PAINT) is a promising SMLM method. It requires transient
binding of short dye-labeled oligonucleotides to their complementary target strands, which
creates the necessary “blinking” to enable stochastic super-resolution imaging of nanoscale
structures (Guo et al., 2019; Huang et al., 2020). Different from other SMLM (e.g. PALM and
STORM) techniques, the pool of fluorophores for DNA-PAINT could be continuously replenished
from the imaging buffer, thus eliminating the concerns over photo-budget. Previous work has shown
that DNA-PAINT could achieve a 5 nm localization accuracy with bright fluorescence and longer
imaging time (Liu et al., 2019). Therefore, conventional DNA-PAINT requires a large scale of raw
data, typically more than 10,000 images, to reconstruct one super-resolution image (Clowsley et al.,
2020), which prevents it from being applied to subcellular structure imaging in live cells
(Schlichthaerle et al., 2017; Brockman et al., 2020).
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Machine learning is a data-oriented method, which can
perform complicated tasks by employing artificial neural
networks. Machine learning has been applied to increase
magnification and resolution in fluorescence microscopy
(Wang et al., 2019). A method called ANNA-PALM was
demonstrated to only use 1% of raw data to reconstruct one
super-resolution image by applying machine learning methods
(Ouyang et al., 2018). Localization tasks can be accelerated, and
the accuracy can be improved by convolutional neural network
(CNN) (Nehme et al., 2018; Cardoen et al., 2020), which is the
most commonly used artificial neural network. Machine learning
is a potential approach to accelerate DNA-PAINT imaging.

To accelerate DNA-PAINT imaging, we developed U-Net-
assisted DNA-PAINT (U-PAINT) based on CNN. We have
achieved fast super-resolution imaging of microtubule by
applying U-PAINT. This strategy uses one-tenth of frames
and independent localizations to reconstruct a super-resolution
image without trading off spatial resolution.

MATERIALS AND METHODS

Sample Preparation
COS-7 cells and HeLa cells were cultured in high glucose Dulbecco’s
modified Eagle’s medium (DMEM) (Cytiva, SH30243.01B),
supplemented with 10% fetal bovine serum (HyClone, SV30087)
and 1% penicillin–streptomycin (Beyotime, C0222) at 37°C in a
humidified 5% CO2 incubator. Cells were grown on a 35-mm glass-
bottom dish (Cellvis, D35-20-1-N) for immunostaining experiments.

The detailed procedures for immunofluorescence cell staining
were as follows. The cells were first incubated in a pre-fixation buffer
(0.4% glutaraldehyde and 0.25% Triton X-100 in PBS) for 90 s at
37°C and then fixed with a fixation buffer (3% glutaraldehyde and
0.25% Triton X-100 in PBS) at room temperature. Fixatives were
quenched with newly dissolved 1mg/ml NaBH4 in PBS for 30 min.
After washing three times with PBS, the cells were incubated in a
blocking buffer (5% BSA and 0.25% Triton X-100 in PBS) for 2 h,
rinsed three times, and then incubated with a mouse monoclonal
antibody to beta-tubulin (Abcam, ab231082) at a concentration of 1:
500 overnight at 4°C. The cells were then incubated with a biotin-
labeled goat anti-mouse IgG secondary antibody (Abcam, ab6788) at
a concentration of 1:500 for 2 h at room temperature and
subsequently incubated with Alexa Fluor 488 conjugated
streptavidin (Invitrogen, S32354) at a concentration of 1:1,000 for
15 min at room temperature. After washing three times with PBS,
the cells were incubated with biotin-conjugated docking strands
(biotin-TTATACATCTATACATCTA) at a concentration of 1 μM
for 15min at room temperature protected from light. Finally, the
cells were preserved for imaging in PBS at 4°C.

DNA-PAINT Imaging
The imaging buffer consists of 0.5 nM Cy3B-conjugated imager
strands (TAGATGTAT-Cy3B), 50 mM MgCl2, and 50mM NaCl.
An Olympus IX83 microscope was used and set to a TIRF mode
with a penetration depth of 200 nm. For widefield imaging, 488-nm
laser (5 mW) was used for illumination. Widefield images were
acquired under the control of Cellsense software with an exposure

time of 100ms. For DNA-PAINT imaging of the same region, 561-
nm laser (100 mW) was used for illumination. A total of 30,000
TIRFM images were acquired with an exposure time of 100ms.

DNA-PAINT Image Reconstruction
DNA-PAINT images were reconstructed with Picasso software
developed by the Jungmann Lab (Schnitzbauer et al., 2017).
Minimal net gradient was set manually to avoid background
fluorescence from being localized. After localization, the
maximum likelihood estimation was applied for fitting and then
fitted localizations with an ellipticity greater than 0.6 were removed.
The rest data were rendered into 16 time-scaled 8-bit png files whose
pixel size was 8 × 8 nm after a redundant cross-correlation drift
correction (RCC). To obtain 16-bit images as the output of
reconstruction, R package EBImage (Pau et al., 2010) was used.
Reconstructions with 1,000 and 3,000 raw images were performed
using R. The R script can be found in the GitHub repository (https://
github.com/ccchin999/PAINT-learning).

Real Microtubule Dataset Preparation
Reconstructed DNA-PAINT images from 30,000 raw frames (ground
truth), 1,000 frames, or 3,000 frames (input) were cut by 256 × 256
pixel grids. The cropped images were filtered according to a
comparison of mean intensity values of themselves and the whole
image. Those with lowmean values were excluded to guarantee image
quality. And then, widefield images were cut and selected accordingly.
We obtained about 1,300 sets of cropped images for data training and
an additional 36 ones as the testing dataset. Each set consists of
widefield images, reconstructed DNA-PAINT images from 1,000,
3,000, and 30,000 raw images. Reconstructed DNA-PAINT images
from 30,000 raw images were treated as the ground truth. Those
images were normalized to the maximum intensity of the
corresponding uncut images.

PALM image data were downloaded from the ANNA-PALM
GitHub repository (Ouyang et al., 2018). PALM data of 60,000
frames was rendered to an image with the same resolution of
DNA-PAINT images. The image was then cut by 256 × 256 pixel
grids. PALM data of randomly selected 6,000 frames was
processed as stated above. The corresponding widefield image
was scaled to the same size and cut by 256 × 256 pixel grids. The
images with a low mean intensity were removed. We chose 90
pairs of PALM images as testing datasets.

Simulated Microtubule Datasets
Themicrotubular structures were stimulated using the random-walk
simulation as previously published (Weigert et al., 2018). In the first
frame, approximately 10 starting points of trajectories were selected
randomly on the boundary of the image. In each frame,
microtubules moved a fixed length (about a half-pixel to make
trajectories continuous and smooth) toward the center, with the
displacement between the nearby positions according to the normal
distribution.We simulated 500 frames for one set of images to make
sure most microtubule trajectories were across the entire image,
which resembles the real data. For ground truth, all these frames
were overlaid to one image, which was rescaled, blurred with a
Gaussian kernel with a standard deviation of 1.25 pixels, and then
cropped into 256-pixel-width squares. For widefield images, 256-
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pixel-width ground-truth images were blurred with a Gaussian
kernel with a standard deviation of 20 pixels, resized to 32-pixel-
length squares, and scaled to the same size as original ground-truth
images. For sparse localization images, 10% frames were randomly
selected and overlaid to one image, rescaled, Gaussian-blurred, and
cropped, as stated above. The R script for microtubule simulation
can be found at the GitHub repository (https://github.com/
ccchin999/PAINT-learning).

Model Training
We adopted the Python package U-Net as previously reported (Jin
et al., 2020) and with similar computation platform (Intel Core i9-
10900KF CPU and NVIDIA GeForce RTX 3080 GPU). We trained
three different models, U-PAINT (3,000), U-PAINT (WF), and
U-PAINT (WF+3,000). They share similar network architectures,
with the only difference being input channel numbers. The
U-PAINT (3,000) model was trained from reconstructed DNA-
PAINT images with sparse localization (3,000 raw images). The
U-PAINT (WF) model was trained with widefield images, whereas
the U-PAINT (WF+3,000) was trained with both sparse localization
images and the corresponding widefield image. The reconstructed
DNA-PAINT images with 30,000 raw images were used as the
ground truth. Each model was trained for 2,000 epochs, which cost
approximately 10–15 h. Additionally, we trained U-PAINT (3,000)

and U-PAINT (WF+3,000) for 2,000 more epochs with simulated
microtubule data and 500 epochs using real data. The additional
training spent about 40 h.

Model Performance Quantification
The peak signal-to-noise ratio (PSNR), root-mean-square
error (RMSE), and structural similarity image measurement
(SSIM) were used to evaluate the performance of trained
models. All values come from the differences between the
output (OP) and ground truth (GT) of the testing datasets.
The intensity of images was mapped to the interval [0, 255].
PSNR, RMSE, and SSIM were calculated using the following
functions, where cov(GT, OP) is referred to as the covariance
of GT and OP, sd function is the represented standard
deviation, and c1, c2 are the small positive constants.

RMSE �
�����������������
mean((GT − OP)2)√

PSNR �
⎧⎪⎪⎨⎪⎪⎩

100 , whenRMSE � 0

20lg( 255
RMSE

) , whenRMSE> 0

SSIM � [2mean(GT)mean(OP) + c1][cov(GT, OP) + c2][mean(GT)2 +mean(OP)2 + c1][sd(GT)2 + sd(OP)2 + c2]

FIGURE 1 | Development of the improved DNA-PAINT labeling method. (A)Overview of the improved DNA-PAINT system. Labeling strategy for DNA-PAINT using
antibodies, fluorescent dye-conjugated streptavidin, docking strands, and complementary imager strands. (B)Overlay of a widefieldmicrotubule image (top right) with its
DNA-PAINT reconstruction image (bottom left). (C) (F) (I)Widefield images of the boxed regions 1, 2, 3 from (B) (D) (G) (J) DNA-PAINT reconstructions (n = 30,000) of
the same boxed regions 1, 2, 3 from (B) (E) Sparse localization image (n = 3,000) of (D) (H) Normalized intensity plot of regions from F, (G) (K) Normalized intensity
plot of regions from I, (J). Black dashed curves fromwidefield images; gray solid curves from DNA-PAINT reconstructions (n = 30,000). Scale bar: 1,000 nm (B), 200 nm
(J). Machine learning approach for the DNA-PAINT image reconstruction.
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RESULTS AND DISCUSSION

Improved DNA-PAINT Labeling Method
To acquire super-resolution DNA-PAINT images together with
widefield images of the same endogenous structures, we
developed an improved DNA-PAINT labeling method. This
DNA-PAINT system, as illustrated in Figure 1A, uses
immunostaining approaches with an Alexa Fluor 488 conjugated
streptavidin- and biotin-modified docking strand to target a
subcellular structure of interest. The imager strand conjugated to
the Cy3B dye can diffuse freely in the imaging buffer. Owing to their
complementary sequence, blinking occurs during the transient
binding events of imager strands and docking strands. All
materials mentioned above have been optimized by commercial
companies, and immunostaining is easy to achieve.

With this improved DNA-PAINT system, we carried out
widefield and DNA-PAINT imaging of the endogenous
microtubules in COS-7 cells (Figure 1B). Comparison of the
widefield images and DNA-PAINT images revealed that DNA-
PAINT images were consistent with widefield images but with
much better spatial resolution. Zoom-in views (Figures
1C,D,F,G,I,J) of three areas confirmed the high resolution of
DNA-PAINT images. Quantification of the reconstructed DNA-
PAINT image demonstrated that a spatial resolution of 40 nm
could be achieved on microtubules (Figures 1H,K). Thus, by
using this improved DNA-PAINT system, we could
simultaneously obtain the diffraction-limited widefield images

and super-resolution DNA-PAINT images of the endogenous
microtubules in cells.

Originally designed for biomedical segmentation, U-Net has
proven to be a useful machine learning network architecture and
is widely applied to image restoration, classification, and
quantification (Ronneberger et al., 2015; Falk et al., 2019; Byra
et al., 2020; Clowsley et al., 2020; Yan et al., 2022). To reconstruct
a super-resolution image with the resolution similar to a standard
DNA-PAINT image but with a much smaller number of blinking
points (less raw data), the machine learning method U-PAINT
derived from U-Net is developed. U-PAINT contains a total of 10
layers, including four downsampling convolutional layers, four
upsampling convolutional layers, an input layer, and an output
layer. A slightly more than 31 million parameters are modified
through backpropagation algorithms and stochastic gradient
descent. As shown in Figure 2, super-resolution images of
microtubules (N frames) are obtained by the conventional DNA-
PAINT imaging and are processed with Picasso software (Figures
1D,G,J). The widefield images of the same structure can be acquired
through imaging the dye Alexa Fluor 488 labeled on streptavidin.
Sparse DNA-PAINT images are yielded by using a much smaller
number of DNA-PAINT frames (n frames, n << N) from the same
localization (Figure 1E). Once trained, U-PAINT can be applied to
new sparse DNA-PAINT images obtained from image sequences of
anothermicrotubule sample with only a few frames in amuch shorter
time, which can contribute to the reconstruction of high-quality
super-resolution images, with or without widefield images.

FIGURE 2 | Overview of U-PAINT. Training images are localized and rendered from long sequences of single-molecule image frames or widefield images. Sparse
localization images from the first n frames and widefield images are set as inputs of U-PAINT, while dense localization images of N frames (N >> n) are outputs. Simulated
microtubule data enhance U-PAINT training.
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We simulated more than 3,000 artificial microtubule images to
satisfy U-PAINT’s demand of a larger training dataset. A random
walk-based simulation example is listed in Figure 3C. The widefield
image (Figure 3A) was rendered by blurring with a Gaussian kernel
of a 20-pixel standard deviation. The sparse localization image
(Figure 3B) was generated with only 1 in 10 of the randomly
chosen simulation localizations. Those artificial microtubules are
more controllable in both continuity and density. However,
microtubules are hollow cylinders with ~26 nm diameter, which is
not considered in our simulation. As a result, our simulated
microtubules are thinner than real microtubules (Figure 3D). This
noticeable difference actually affects our U-PAINT models. After
training with artificial microtubule datasets, our models could not
restore real microtubules correctly. Thus, we retrained the model for
500 epochs with real microtubule training datasets.

We tested our U-PAINT (3,000) model on simulation data with
different frame numbers from 100 to 20,000 (Figures 3E–G). The
parameters PSNR, RMSE, and SSIM are quantitatively measured.
Higher PSNR implies stronger signals and lesser noise being
identified as part of the microtubules. Lower RMSE suggests more

precise reconstruction. SSIM lies between 0 and 1 and reaches 1 when
reconstruction images are the same as ground truth. The performance
of U-PAINT is greatly enhanced with an increased frame number.
However, when the frame number is larger than 5,000, U-PAINT
(3,000) becomes unable to increase image quality for DNA-PAINT.

We tested U-PAINT on immunostained microtubules. DNA-
PAINT images with the corresponding widefield images were
obtained during a 50-min-long imaging (N = 30,000; Δt = 100-ms
exposure time) (Figures 4A,D). The sparseDNA-PAINT images were
obtained from only 5- or 2-min imaging (n = 3,000 or 1,000) (Figures
4B,C). Although microtubule filaments can already be seen in sparse
DNA-PAINT images, structural details below the diffraction limit are
hard to discern, making it difficult to identify features such as filament
crossings (Figures 4B,C).Wefirst tried to reconstruct super-resolution
images from widefield images. Our results show that a few structures
are restored (Figure 4H; UPW-R refers to U-PAINT (WF) trained
with only real data), which means that precise restoration requires
super-resolution localization images. Then, we attempted to restore
images from sparsely localized images. After training with ~1,300
sparse-and-dense image pairs of real microtubules, U-PAINT

FIGURE 3 | Simulation of microtubules and their reconstruction quality. (A)Widefield image of simulated microtubules. (B) Sparse localized DNA-PAINT image (n =
3,000) of simulated microtubules. (C) Dense localized DNA-PAINT image (n = 30,000) of simulated microtubules. (D) Dense localized DNA-PAINT image (n = 30,000) of
real microtubules. (E) PSNR of U-PAINT (3,000) reconstruction results and DNA-PAINT results with different frame numbers. (F) RMSE of U-PAINT (3,000)
reconstruction results and DNA-PAINT results with different frame numbers. (G) SSIM of U-PAINT (3,000) reconstruction results and DNA-PAINT results with
different frame numbers. PSNR, RMSE, and SSIM aremeasured compared with results and ground truth. Red lines with triangle points: performance of U-PAINT (3,000);
black lines with circle points: performance of conventional DNA-PAINT. Dots are averages from 36 simulations; error bars show s.d. Scale bar: 200 nm. U-PAINT
reconstruction of endogenous microtubules.
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FIGURE 4 | U-PAINT reconstruction of microtubules. (A) DNA-PAINT reconstruction images with n = 30,000 raw data. (B) DNA-PAINT reconstruction
image with n = 3,000 raw data. (C) DNA-PAINT reconstruction image with n = 1,000 raw data. (D) Widefield image. (E) Real data-based U-PAINT (WF+3,000)
reconstruction image with B and D as inputs. (F) Real data-based U-PAINT (3,000) reconstruction image with B as input. (G) Real data-based U-PAINT (1,000)
reconstruction image with C as input. (H) Real data-based U-PAINT reconstruction image with (D) (I) Simulated and real data-based U-PAINT (WF+3,000)
reconstruction image with B and D as inputs. (J) Simulated and real data-based U-PAINT (3,000) reconstruction image with B as input. (K) Simulated and real
data-based U-PAINT (WF+3,000) reconstruction image with C and D as inputs. (L) Merged image of A (red) and I (green). (M) PSNR of U-PAINT models. (N)
RMSE of U-PAINT models. (O) SSIM of U-PAINT models. Red bars refer to better U-PAINT models; bars are average values from testing dataset; error bars
show s.d.; UP3k-R: U-PAINT (3,000) model trained with only real data; UP3k-S: U-PAINT (3,000) model trained with real and simulated data; UP3km-S:
U-PAINT (3,000) model trained with real and simulated data, and the input was a sparse DNA-PAINT image localized from 1,000 frames of raw data; UPW3k-R:

(Continued )
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FIGURE 5 | Quantification of the performance of U-PAINT models and ANNA-PALM (AP). The performance of U-PAINT models and AP in DNA-PAINT
reconstruction as analyzed by PSNR (A), RMSE (B), and SSIM (C). (D) A representative image of sparse-localized PALM as reconstructed by the traditional method. The
accelerated reconstruction images by ANNA-PALM (E) and U-PAINT (F) and the ground-truth image (G). The performance of U-PAINT models and AP in PALM
reconstruction as analyzed by PSNR (H), RMSE (I), and SSIM (J). Red bars refer to U-PAINT models; bars are average values; error bars show s.d.; ** represents
p < 0.01 and *** represents p < 0.001, as tested by two independent sample t-test. AP: ANNA-PALM pre-trained model with a sparse localization image as input; UP3k-
S: U-PAINT (3,000) model trained with real and simulated data; APW: ANNA-PALM pre-trained model with a sparse localization image and a widefield image as inputs;
UPW3k-S: U-PAINT (WF+3,000) model trained with real and simulated data. Scale bar: 200 nm.

FIGURE 4 | U-PAINT (WF+3,000) model trained with only real data; UPW3k-S: U-PAINT (WF+3,000) model trained with real and simulated data; UPW3km-S:
U-PAINT (WF+3,000) model trained with real and simulated data, and the inputs are a widefield image and a sparse DNA-PAINT image localized from 1,000
frames of raw data. *** represents p < 0.001 as tested by two independent sample t-test; scale bar: 200 nm. Comparison between ANNA-PALM and U-PAINTs.

Frontiers in Chemistry | www.frontiersin.org May 2022 | Volume 10 | Article 8647017

Zhu et al. Machine Learning Accelerated DNA-PAINT

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


completed the detailed structures of input sparse DNA-PAINT images
(Figure 4F; UP3k-R represents U-PAINT (3,000) model trained with
only real data). However, the result is not perfect enough as artifacts
cover signals to some extent and reconstructed microtubules are
fragmented.

We further tested whether addingmatched widefield images with
DNA-PAINT images could promote reconstruction quality. Our
results show that adding widefield images brings more continuity
and instability. In some cases, widefield images make restored
structures more precise and continuous (Figure 4E; UPW3k-R
represents U-PAINT (WF+3,000) model trained with only real
data), while more severe artifacts were induced otherwise. We
continued testing whether the addition of simulated data in the
training period could improve reconstruction quality. For U-PAINT
(WF+3,000), instability from widefield images is inhibited and
progress of continuity can be noticed (UPW3k-R and UPW3k-S
in Figures 4M–O; UPW3k-R refers to the U-PAINT (WF+3,000)
model trained with only real data and UPW3k-S refers to the
U-PAINT (WF+3,000) model trained with real and simulated
data). Most structures are restored by U-PAINT (WF+3,000)
trained with both real and artificial microtubule data (Figures
4I,L). In addition, we also noticed a slight enhancement for the
performance of U-PAINT (3,000) when trained with both real and
simulated data (Figures 4F,J; UP3k-S refers to U-PAINT (3,000)
trained with real and simulated data).

Then, we tested whether the reconstruction quality could remain
for U-PAINT after decreasing the number of input sparse-localized
DNA-PAINT frames (n) to 1,000, where the image acquisition time
was cut down to only 100 s. Although microtubule filaments appear
completely discrete, most structural details below the optical
diffraction limit are restored (Figures 4G,K; UP3km-S represents
theU-PAINT (3,000)model trained with simulated data and real data
and inputs are a sparse DNA-PAINT image localized from 1,000
frames of rawdata;UPW3km-S represents theU-PAINT (WF+3,000)
model trained with simulated data and real data and inputs are a
widefield image and a sparseDNA-PAINT image localized from1,000
frames of raw data). For U-PAINT (WF+3,000), only a slight decrease
in performance is noticed (UPW3k-S and UPW3km-S of Figures
4M–O). However, the performance of U-PAINT (3,000) is reduced
significantly (UP3k-S and UP3km-S of Figures 4M–O).

Using testing datasets as input, we obtained 36 output images.
The quantitative values of PSNR, RMSE, and SSIM between
output and ground truth were calculated and plotted (Figures
4M–O). By the addition of the simulated microtubule data, the
U-PAINT (WF+3,000) model is improved, while the U-PAINT
(3,000) model has no significant enhancement. When we reduce
the input frame number to 1,000, the output quality of U-PAINT
(WF+3,000) remains at a relatively high level, while the quality of
U-PAINT (3,000) decreases remarkably. Collectively, these
results demonstrate the advantage of using both widefield and
super-resolution DNA-PAINT images and the importance of
including both real data and simulated data in model training.

PALM is another SMLM that shares the same reconstruction
algorithm with DNA-PAINT. Here, we applied the deep-learning
based ANNA-PALM models (AP) (Ouyang et al., 2018) and
compared its performance with our established U-PAINT models.
The results show that U-PAINT has higher restoration quality (AP

and UP3k-S in Figures 5A,B; AP represents ANNA-PALM).
Although ANNA-PALM brings better precision of output image
quality when both widefield images and sparsely localized images
are used as inputs (APW and UPW3k-S in Figure 5C; APW refers to
ANNA-PALM with an extra widefield image as input), it restores
fewer signals (APW and UPW3k-S in Figure 5A). Thus, we conclude
thatU-PAINT ismore suitable forDNA-PAINT imaging acceleration.

Similarly, we also tested whether our developed U-PAINT
models can be used to accelerate PALM imaging (Figures 5D–G).
The original PALM images were from the ANNA-PALMGitHub
repository (Ouyang et al., 2018). Our result shows that U-PAINT
without inputting widefield images is able to accelerate PALM
imaging, although its performance quantification indicators are
not as excellent as ANNA-PALM (Figures 5H,I,J). However, the
restored image of ANNA-PALM shows abnormal artifacts
(Figure 5E), which makes the ANNA-PALM reconstruction
output unauthentic. Taken together, our U-PAINT model is
practical to accelerate SMLM other than DNA-PAINT.

CONCLUSION

We introduced a new DNA-PAINT labeling method that allows for
imaging of cellular structures with both DNA-PAINT and widefield
illumination.We proposed machine learning-based U-PAINTmodel
that manages to reduce the demanded number of raw images for the
DNA-PAINT reconstruction of microtubules to less than 10% of the
conventionalmethod but still achieving comparable spatial resolution.
By co-training with simulated microtubule datasets, we showed that
the performance of the U-PAINT model can be further elevated. In
addition, our method can be easily transferred to process other types
of SMLM, such as PALM, and enables the acceleration of SMLM
imaging. Therefore, we anticipate that live-cell DNA-PAINT imaging
can be potentially realized for some specific subcellular structures in
the future.
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