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Abstract: Cellular mRNAs in plants and animals have a 5′-cap structure that is accepted as the
recognition point to initiate translation by ribosomes. Consequently, it was long assumed that the
translation initiation apparatus was built solely for a cap-dependent (CD) mechanism. Exceptions that
emerged invoke structural damage (proteolytic cleavage) to eukaryotic initiation factor 4 (eIF4) factors
that disable cap recognition. The residual eIF4 complex is thought to be crippled, but capable of
cap-independent (CI) translation to recruit viral or death-associated mRNAs begrudgingly when
cells are in great distress. However, situations where CI translation coexists with CD translation
are now known. In such cases, CI translation is still a minor mechanism in the major background
of CD synthesis. In this review, I propose that germ cells do not fit this mold. Using observations
from various animal models of oogenesis and spermatogenesis, I suggest that CI translation is a
robust partner to CD translation to carry out the translational control that is so prevalent in germ cell
development. Evidence suggests that CI translation provides surveillance of germ cell homeostasis,
while CD translation governs the regulated protein synthesis that ushers these meiotic cells through
the remarkable steps in sperm/oocyte differentiation.

Keywords: protein synthesis; eIF4 factors; RNA-binding proteins; maternal/paternal mRNAs;
meiosis; gametogenesis; apoptosis; caspase; picornavirus

1. Introduction

Translation initiation independent of the mRNA cap recognition is a mechanism now broadly
accepted in mammalian cells [1]. However, when it was discovered over three decades ago,
only invasive RNA viruses were thought to use this unusual mechanism to recruit ribosomes [2].
Picornaviruses in particular encode internal ribosome entry sites (IRESes) that act much like prokaryotic
Shine Dalgarno sequences to provide viral RNAs an advantage over cellular mRNAs [3]. They exercise
that advantage often by cleaving the eIF4G subunit of the host cell’s mRNA cap-binding complex [4,5].
In characterizing virus-infected cells, it was found that selected cellular mRNAs could also use
cap-independent (CI) initiation, but these were thought to be anomalies. Cap-dependent (CD) initiation
was presumed to suffice for “normal” cellular mRNAs, all of which had received a 7-methylguanosine
(m7G) cap structure co-transcriptionally in the nucleus before export [6–9]. It is now recognized
that the cellular context in which CI initiation occurs is not limited to virus-infected cells [1,2,10–13].
There are other contexts in which CI translation becomes a substantial protein synthetic mechanism
in cells, notably apoptosis. For that reason, CD and CI translation mechanisms were viewed as
separate traits of “happy” vs. “suicidal” cells, respectively [1,14–16]. Apoptosis unleashes endogenous
caspase-3 that specifically cleaves eIF4GI and eIF4GII to render translation CI [13,17–21]. As a result,
growth/differentiation-promoting CD translation is lost, and the remaining CI activity favors apoptotic
mRNAs like Apaf-1, Bcl-2 and XIAP [20,22]. Evidence now suggests that CD and CI translation
naturally co-exist in essentially all eukaryotic cells [23,24]. We do not yet know if germ cells invoke
a regional distribution of CD vs. CI synthesis, but a balance between them may guide physiological
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processes required for attaining proper cell fates. Developmental apoptosis (often called “physiological
apoptosis”) is one such process. It plays a vital role in sculpting embryonic cell lineages, maturing
reproductive organs, and the homeostatic survival of the germline itself (reviewed in [25,26]).

Quite a number of cellular mRNAs, which are m7G-capped for stability, translate in a largely
cap-independent fashion when the conditions present themselves [27]. Such mRNAs remain
actively translating on polyribosomes in poliovirus-infected cells [28]. The identities of endogenous
mRNAs that can use the CI translation mechanism also indicate CI translation has broader use
than cellular crises. Some cellular mRNAs have demonstrable IRESes and encode proteins like the
chaperone BiP [29,30], growth hormone FGF-2 [31,32], angiogenic factor VEGF [31,33], proto-oncogene
c-Myc [34], pro-apoptotic Apaf-1 [35,36], anti-apoptotic Bcl-2 [37]. As more cellular CI mRNAs are
discovered, it is becoming clear that many have functions unrelated to apoptosis or viral infection [38].
Their involvement in growth, signaling or stress-recovery suggests that cells “play both sides” of
the cell death game using CI translation [13,16,23,29,32,38–41]. An ongoing controversy surrounds
whether all these mRNAs contain canonical IRES elements because their initiation potential is not
as strong as their viral counterparts [27,42]. More curious are the mRNAs with short 5′ untranslated
regions (UTRs) or unusual 3′ sequence elements called cap-independent translational enhancers
(CITEs) that do not undergo internal ribosome entry, but also derived no benefit from mRNA cap
recognition [14,43–45]. These are truly “cap-independent” (CI), but their initiation elements contain
no recognizable IRES sequence. Often their CI translation is not based on RNA sequence at all, but
rather nucleoside base modifications. By way of example, hsp-70 mRNA uses 6-methyladenosine
(m6A) residues to promote initiation by direct binding to eIF3 [46]. Since eIF3 is preloaded on 40S
subunits, m6A-mediated initiation likely bypasses eIF4E and eIF4G altogether. Other modes of CI
translation also do not require the IRES trans-acting factors (ITAFs) in the initiation complex that
viral and apoptotic IRESes generally require [47,48]. It now seems clear that multiple routes to the
ribosome are being discovered. The identities of mRNAs facile with each molecular mechanism are
being compiled. But sorting out the identities and elements of CD and CI mRNAs does not get us
closer to understanding how cells actually use the various modes of initiating translation.

Some hope may lay in the potential to characterize the CD and CI translation initiation complexes
themselves. We now recognize that all eukaryotic cells make at least two forms of eukaryotic
initiation factor 4G (eIF4G), one that recognizes the cap through eIF4E and another that circumvents
cap-recognition and binds mRNAs directly [20,34,49,50]. Mammal genomes encode two long isoform
genes (4GL: eIF4GI and eIF4GII), and one short form (4GS: p97/DAP5/NAT1); the latter lacks the
binding site for eIF4E [20,34]. Cells artificially depleted of CD complexes (by disrupting 4GL) still
initiate some portion of cellular protein synthesis [28,51–53]. The short eIF4G assembled into a
CI complex is competent to recruit ribosomes to mRNAs, whether capped or uncapped [4,5,34,54].
Despite some remaining murkiness regarding which mRNAs use CI initiation and which use CD
initiation [27], the availability of core complexes catalyzing both CD and CI initiation activities
in somatic cells is widely accepted (Figure 1) [55,56]. But do these complexes have consequences
in development?
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Figure 1. mRNA translational repression and CD and CI translation initiation complexes (A) RBP
complexes bind sequence recognition motifs (white box) in the 3′ UTR mRNAs and often include
an eIF4E-binding protein (4EBP). Protein-protein interactions within 4EBP-eIF4E-mRNA form stable
mRNP complexes (purple) that inhibit the recruitment of eIF4E-bound mRNA to eIF4G (orange) and
the ribosome. (B) Model of cap-dependent (CD) translation initiation utilizing the cap-binding protein
eIF4E (blue). CD mRNAs are recruited to the 40S ribosomal subunit by binding of eIF4E to eIF4G and
PABP. (C) Model of cap-independent (CI) translation. A short or cleaved form of eIF4G lacking an
eIF4E-binding domain is still capable of recruiting mRNA to the 40S subunit by forming a CI complex
with other eIFs directly on the mRNA.

2. Sorting Roles for CD and CI Translation in Differentiating Meiotic Cells

2.1. Translational Control in Development Has Focused on Repression

More than other cell types, germ cells (and embryos they produce) regulate the synthesis of
new proteins (and thus cell fate) by mRNA translational control. Best described is the regulation
by specific RNA-binding proteins (RBPs) that exert translational repression at the 3′ untranslated
region (3′ UTR) and/or changes in mRNA poly(A) length [57–59]. However, mRNA regulation cannot
be fully understood by repression alone [60]. Translation factors eIF4E and eIF4G must therefore
work in concert with RBPs to regulate de-repression and de novo recruitment of ribosomes (Figure 1).
The mechanisms of positive translational control in development remain poorly understood, though
recruitment is arguably the important step in getting a protein made.

Unlike somatic cells that are susceptible to RNA viruses, germ cells have few endemic pathogens
that might disrupt translation mechanisms. Thus, there was never a reason to question the prevalence
of CD translation in these unusual cells. Yet, germ cells are known to use robust mRNA translational
control to modulate gene expression. There is a prominent role for both mRNA poly(A) tail length and
m7G cap-recognition in both the repression and activation mechanisms on controlled mRNAs [61–63].
One well-studied mechanism involves mRNAs repressed via a 3′ UTR-bound RBP (e.g., CPEB) that
also sequesters eIF4E from eIF4G (Figure 1A). Elegant studies link the repressed CPEB-eIF4E mRNP to
its hormone-induced activation. The recruitment involves coincident dissolution of the sequestered
complex, cytoplasmic poly(A) elongation, and enhancement of eIF4E-eIF4G-PABP interactions to
bring bound mRNAs to ribosomes [61]. Inverse regulation of ribosomal protein mRNAs occurs in the
same cells upon their deadenylation [64,65]. Together these findings cement the notion previously
demonstrated in vitro that mRNA caps and poly(A) tails act synergistically in translational control [66].
eIF4G coordinates eIF4E and PABP to promote the assembly of a “closed loop” circular mRNP that
initiates translation (Figure 1B) [67]. Circularization also facilitates the recycling and re-initiation of
post-termination ribosomes via ABCE1, thus increasing the mRNA’s translational efficiency [55,56,68].
Based on mounting examples of 3′ UTR-bound translational repressors in development, it seemed for
a time that mRNP release, caps and poly(A) tails might tell us all we needed to know about translation
in germ cells [61,63,69,70].

2.2. Germ Cell Translation Does Not Follow the Rules; the Prevalence of CI Translation in Frog Oocytes

In an effort to study the significance of CD translation and the m7G mRNA cap in vivo, we and
other labs employed a very versatile germ cell, the meiotically arrested stage VI oocyte from the
frog, Xenopus laevis (Figure 2) [71]. Isolated oocytes are as robust as rabbit reticulocyte lysates for
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protein synthesis, and can sustain translation initiation over a much longer time [72,73]. But unlike
the reticulocyte, oocytes are largely resistant to competitive inhibition by the cap analog m7GTP [74].
To address the possibility that vertebrate oocytes have substantial CI activity, we assayed how much of
endogenous mRNA translation was resistant to eIF4G cleavage by Coxsackievirus 2A protease [75].
This picornaviral protease specifically cleaves the hinge region of both eIF4GI and eIF4GII (4GL),
as well as PABP, and abolishes CD translation [5,49,76,77]. Almost 70% of synthesis from ongoing
initiation events remains active over hours, despite complete cleavage of eIF4G (Figure 2B). Removal of
the cap-associated N-terminal domain (“cpN”, Figure 2) produces a residual eIF4G “core” (like 4GS)
that no longer associates with eIF4E and the mRNA cap, but still faithfully assembles an initiation
complex and recruits ribosomes to CI mRNA [78]. In the “CI-induced” oocytes, most endogenous
housekeeping mRNAs, including actin, translate unabatedly for hours, sustained by demonstrable
re-initiation events [75]. Globin mRNA (highly cap-dependent) injected into the same oocytes, loses
its translational capacity in direct correlation with the loss of 4GL (Figure 2B). This provided an
interesting opportunity to address the developmental translational control event described above that
occurs at oocyte meiotic maturation. Do the regulated mRNAs become recruited to ribosomes upon
cytoplasmic poly(A) elongation in response to meiotic cell cycle progression (G2/M) [79,80] use CD or
CI initiation? The subsequent study showed that intact 4GL (and hence, CD initiation) is essential for
entry of these cell-cycle regulated mRNAs into polyribosomes [81]. Cleavage of oocyte 4GL prevents
the translational recruitment of c-mos and cyclin B1 mRNAs, even though their poly(A) tails become
elongated (even hyper-adenylated). Furthermore, the meiotic cell cycle arrest caused by abolishing
CD initiation is not due to inhibition of protein synthesis per se because co-injection of an MPF
extract (crude cyclin B/CDK2) restores cell cycle progression [81]. Conversely, others observed that
intact oocyte eIF4G efficiently recruits IRES-containing mRNAs like EMCV and poliovirus transcripts,
demonstrating that CD and CI initiation activities coexist in these germ cells (and presumably those
of all species with like translational control) [82,83]. Importantly, EMCV mRNA is not enhanced by
cleavage of 4GL, whereas polio mRNA is enhanced by 4GL cleavage and mammalian ITAFs. Thus,
sequence specificity also exists for CI mRNA translation in germ cells. Clearly there is a breadth of
CD and CI activities that points to separate protein synthetic roles. Germ cells appear to maintain
versatility in mRNA recruitment mechanisms to prepare them for the differentiation challenges ahead.

It was recognized early that both 4GL (cap-associating) and N-terminally truncated
4GL (non-cap-associating) can catalyze CI translation, and that the latter mimics 4GS [78].
Naturally occurring 4GL and 4GS forms are found in all multicellular eukaryotes [3,56,84–86].
Oocytes are large cells arrested in the cell cycle, and much of their preparation for protein synthesis
hints at the cell’s future. They position mRNAs and translation apparatus in place for the rapid
differentiation of early blastomeres in the cleaving embryo [87]. Substantial CI translation has
been observed in germ cells/embryos in addition to frogs; animals as diverse as worms, flies, and
humans [23,50,75,88,89], and even in plants [41]. The universality of germline CI translation suggests
it is an integral theme programmed into this specialized, immortal cell lineage; germline. We postulate
that broad translational versatility allows a subset of native germ cell mRNAs (both regulated and
house-keeping) to utilize a mode of CI, and perhaps even IRES-mediated, translation. Importantly,
such mRNAs are regulated by recruitment events that are distinct from CD mRNAs, which rely on
eIF4E-linked repression/de-repression and poly(A) elongation [61,81,90–95]. By coordinating 3′ UTR
repression (see Section 2.1), CD translation, and CI translation separately, an egg may set up localized
synthesis of proteins for the subsequent differentiation steps in early embryo blastomeres [87].
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Figure 2. Progressive cleavage of Xenopus oocyte eIF4G in vivo efficiently blocks CD translation but
allows 70% of protein synthesis to continue as CI translation. (A) A schematic of the experimental
design. A suboptimal dose of recombinant coxsackievirus protease 2A (CV2A) was co-injected with
purified beta globin mRNA. Oocyte eIF4G was cleaved progressively over 9 h, and 1 h pulses of
[35S]methionine were administered for metabolic labeling of globin synthesis and total residual protein
synthesis at each timepoint. (B) Western blotting for eIF4G1 to follow progressive cleavage to disrupt the
CD form and produce the CI-only form (cpN) (C) Diminished beta globin translation (CD translation;
red) correlates closely with eIF4G cleavage (green), while the protein synthetic rate (black) is largely
refractory to loss of both. Co-injection of edeine (inhibits initiation events) suppressed 90% of synthesis
(not shown), demonstrating that CI synthesis represents new initiation events. (Reproduced from
Keiper and Rhoads, Nucl Acids Res [75] with permission from Oxford University Press).

2.3. A Use for CI Translation in Germ Cell Homeostasis; Evidence from Worm Oocytes

In the nematode worm C. elegans, the pathways for apoptosis [96], germ cell development [97]
and mRNA translational control [58,69] are each well understood. The confluence of these three fields
has been highlighted to explore the control of apoptosis in gamete development. What has been
learned is that apoptotic mechanisms are used as modes of homeostatic control. These mechanisms
govern which germ cells survive as well as provide a means to mature the surviving gametes.
Apoptosis balances mitotic proliferation with the biosynthetic capacity of the gonad to produce
potent and viable gametes [26,98,99]. Physiological germ cell apoptosis in worms removes nearly half
of cell population during oogenesis (Figure 3; [98]). In so doing, dying cells provide their sibling germ
cells with cellular components for survival, functionally similar to nurse cells from insect germaria
and Sertoli or cumulus/granulosa cells in the vertebrate testis or ovary, respectively [25].

Not unexpectedly, mRNA translational control is a contributor to apoptosis which ensures
homeostatic balance of the germ cell population. The activities of numerous RBPs are essential to stave
off germ cell apoptosis. Some are involved in mRNA repression, like CPEB and PUF-8, or resident
in mRNA storehouses, like P granule proteins PGL-1 and PGL-3 [100–103]. Still others play roles in
mRNA stability like the helicase complex CGH-1/CAR-1, which localizes to both P granules and P
bodies [104–106]. Even the translation initiation factors themselves are intricately involved in the germ
cell decision to survive rather than apoptose. Our studies point to a balance of CD and CI mechanisms
to balance survival with cell death. Here the utilization of both short and long native isoforms of
eIF4G is again at work. Interestingly, C. elegans encodes just one eIF4G gene, ifg-1, from which to
make 4GL and 4GS. We discovered that worms transcribe two major mRNAs from the ifg-1 gene that
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independently encode a p170 isoform (4GL) that contains the N-terminal domain that binds each of five
worm eIF4Es (IFEs 1-5), and a p130 (4GS) that lacks the eIF4E-binding domain [84]. Selective depletion
of 4GL by RNAi against p170 mRNA induces CI conditions and dramatically expands germ cell
apoptosis with little effect on somatic growth [84]. Apoptotic cells assemble Apaf-1 (CED-4) into
apoptosomes and the doomed oocytes are engulfed by the gonad sheath, exactly like native events
(Figure 3). More importantly, the translational efficiency of the Bcl-2 and BiP mRNAs is modestly
enhanced under 4GL-depleted conditions in vivo, while that of most other mRNAs was reduced [23].

By contrast, inhibition of all translation initiation would be expected to prevent both growth
and development. Indeed, depletion of both 4GS and 4GL by RNAi stunts somatic growth and
arrests larval development, precisely mimicking the arrest observed in an ifg-1 null mutant strain [84].
The disparity of these RNAi phenotypes made clear that a CD:CI imbalance, and not diminished
protein synthesis per se, induces germ cell apoptosis. In situ metabolic labeling showed equivalent
total protein synthesis activity in control and 4GL-depleted gonads that was uniform across surviving
and apoptosing sibling germ cells (unpublished data). This observation, too, may suggest that neither
the CD nor CI mechanism limits overall protein synthesis, but each works instead with subsets of
mRNAs. Moreover, mutations in the worm Apaf-1 (ced-4) or caspase (ced-3) genes fully blocked the
CI-induced germ cell apoptosis [89]. Therefore, the balance of CD:CI translation acts as an upstream
signal in the canonical cell death pathway rather than a downstream consequence of the dying process.
The pathway also incorporates a means of positive feedback for apoptosis, once begun. The CED-3
caspase was shown to proteolytically cleave 4GL (p170) in vitro and in vivo [89] in identical fashion to
mammalian eIF4G [17–19]. The implication is that selected germ cells respond to unbalanced CD:CI
translation in a way that changes their survival capacity relative to their siblings (Figure 3). Since
C. elegans germ cells share cytoplasm through syncytial connections, it remains to be determined
how CI translation is locally maintained in only those cells destined to die (black circles). However,
this must also be the case for other translational control events that act locally at mitotic and meiotic
transitions in early germ cell development [58].
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Figure 3. Alternate or overlapping use of CD (green wedges) and CI (red wedges) translation
mechanisms in developing C. elegans oocytes and sperm. The wedges represent predominant, rather
than exclusive translation mechanisms used in each germ cell transition, and are approximated from
observed mutant and RNAi phenotypes of eIF4E (-1, -2 and -3) and eIF4G isoforms. A series of
anecdotal studies from various animal germ cell models suggest that germ cells alter the balance
of CD:CI translation at various times, or in various populations, to promote differentiation fates
(e.g., maturation, sex-determination, apoptosis, etc.; see Sections 2.1–2.4) The balance is held by
active fractions of eIF4GL vs. eIF4GS. Within the CD translation mode, 4GL has multiple options
of eIF4E forms to bind, and each specifies a further select subset of mRNAs to recruit (Section 2.5).
4GS presumably recruits CI mRNAs directly. Black circles indicate a subset of germ cells selected for
physiological apoptosis.
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The balance between survival and apoptosis is also linked to the MAPK pathway [100,107], which
is coincidentally also important for mRNA translational de-repression [69]. mRNA repression by RBPs
like Nanos must be maintained for oocyte survival. Disruption of Nanos binding to mRNA targets also
expands germ cell apoptosis, and likewise requires signaling through Apaf-1 [102]. Nanos regulation
was first discovered in fruit flies [70,108,109] and is also observed in vertebrates [110]. Unlike the
regulation by CPEB described in Section 2.1, Nanos and Pumillio regulate mRNAs independently of
poly(A) modifications [111]. mRNA regulation by Nanos can occur via CD translation [110] or via CI
translation, if the mRNAs contains an IRES [88]. Thus, depending on the type of mRNA repressed by
a 3′ UTR-binding RBP, it is possible for either CD or CI initiation mechanisms to mediate their positive
activation. The variety of both negative and positive modes represent layers of potential regulation
options and challenge our fundamental understanding of mRNA translation initiation as it occurs in
germ cells.

2.4. Germ Cells also Use CI Translation of “Death-Promoting” mRNAs to Differentiate

Given what is known about CI translational control, the underlying mechanism appears to
be available, but not prominent, in somatic cells. We suggest that CI translation activity is more
pronounced in germ cells. Maintaining a CD:CI balance that is closer to some critical threshold allows
germ cells to use the “cell death”-like tendencies in two ways. The first is to govern homeostatic
selection within the germ cell population to survive overt physiological apoptosis. The second is
perhaps less obvious. There is significant use of apoptotic-like activities in spermatogenesis and
oogenesis that are required, not for cell death, but for their normal maturation to gametes. The exercise
of “apoptotic-like” destructive activities are critical for maturation of the surviving germ cells that
differentiate. Spermatogenesis takes particularly broad advantage of these intracellular “culling”
activities without killing the host cell.

Non-lethal use of death-promoting proteins is vital for reproductive strategies in many species.
As anecdotal examples, apoptosis-unrelated roles for endonuclease G, Bcl-X and its family members,
and numerous caspase-associated proteins are part of adaptive responses that take place during
the dramatic differentiation of gametes [112]. Expression of multiple caspases and the FADD
death-receptor is essential for Drosophila spermatogenesis [113]. Apaf-1 protein is also highly expressed
in spermatogenesis and is required for cell individualization in worms, flies and mice [114–116].
In somatic cells Apaf-1 functions in a non-apoptotic role in the DNA damage checkpoint [117], so it
may similarly oversee the correct resolution of meiotic recombination and DNA crossovers in germ
cells. The mRNA translational control observed during apoptosis may have corresponding non-lethal
uses in gamete maturation. In addition to eIF4G isoform switching (described in Section 2.5 below),
other translation-related factors aid germ cells and embryos in sustaining appreciable CI activity. Y-box
proteins are abundant RBPs in germ cells that stabilize mRNPs required later for oocyte and sperm
viability [118]. Interestingly, maternal Y-box proteins that persist in embryos following fertilization
have been shown to enhance the CI translation of snail mRNA [119]. Snail has important roles in
subsequent mouse epithelial differentiation. For reasons yet unknown, the translational apparatus is
set up to allow substantial flexibility between CD and CI translation along the germ cell to gastrula axis.

2.5. Even CD Translation in Germ Cells Comes in Multiple Flavors

Both eIF4E and eIF4G, which cooperate in CD translation, have been implicated in various
cell fate decisions and even oncogenesis [120–123]. Animal and plant studies show that germ
cell and embryonic fates are greatly affected by the eIF4 factor complexes unique to those
cells [41,60,62,92,94,114,124–134]. Factors eIF4E is highly conserved across species (yeast to human)
and is universally represented by multiple isoforms. For example, three eIF4E proteins have been
characterized in mammals, five in C. elegans, three in Xenopus, three in plants, three in zebrafish, and
eight in Drosophila [92,130,133,135–138]. Germ cells in these species express multiple eIF4Es that are
unique to, or predominate in, only those cells.
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The employment of genetics with biochemistry has helped to identify unique roles for eIF4E
and eIF4G isoforms in reproduction. Both fly and mouse spermatocytes express sperm-specific
eIF4Gs that have specialized roles [85,86,124,139]. The eIF4G homologues Off-schedule (eIF4G2) and
Repro8 (eIF4G3) are regulators of meiotic progression and differentiation. Drosophila spermatocytes
depleted of eIF4G2 show growth defects and accumulate the CDK inhibitor protein, RUX, likely
as a growth checkpoint before meiotic division [139]. Mouse spermatocytes lacking eIF4G3
arrest in meiotic prophase and are unable to translate Hspa2 mRNA, which is necessary for
activation of meiotic prophase kinase CDC2A [86]. Germ cell eIF4Es in plants, flies and frogs also
have unique roles in development judging by the reproductive phenotypes resulting from their
deficiencies [126,133,135,138]. In a few cases, specific mRNAs have been shown to respond to a
specific eIF4E isoform. A unique Drosophila eIF4E regulates the translation of oskar mRNA, which is
necessary for embryonic posterior patterning [94,140]. Xenopus eIF4E1b was identified in an mRNP
complex responsible for the suppression of meiotic maturation in early stage oocytes [92]. This eIF4E1b
associates with a novel 4EBP called eIF4E-T that transports and sequesters mRNPs as a form of
repression. eIF4E-T is itself a determinant of germ cell differentiation [141], further linking CD
regulation to cell fates (Figure 3).

The utility of multiple eIF4E isoforms is most evident in C. elegans development. Worms express
five non-redundant isoforms from independent genes (eIF4Es are called IFE-1 to -5). At least
three forms function in the germ line, and one exclusively in somatic cells [130]. Studies using
strains with null mutations in individual eIF4E genes show that each deficiency exhibits a
different developmental phenotype, and most reduce fertility [114,129,131,142,143]. Polysome and
reporter analyses show that each isoform preferentially recruits a unique subset of mRNAs for CD
translation (Figure 4) [114,131,144,145]. Germline eIF4E-1 (IFE-1), for instance, is the key translational
regulator of late sperm and oocyte progression [114]. Without it, secondary spermatocytes are unable
to complete cytokinesis, late oocytes grow and mature poorly, and any fertilizations culminate in
embryonic arrest. Polysome bioinformatics show that eIF4E-1 recruits critical mRNAs (mex-1, oma-1,
glp-1, gld-1, pos-1, pal-1, vab-1, rab-7, etc.), many of which encode proteins used for meiotic maturation
or embryo differentiation [114,144]. Loss of isoform eIF4E-2, on the other hand, causes oocytes to be
highly sensitive to meiotic catastrophes because of defects in chromosome repair [131]. As might be
expected, eIF4E-2 recruits key mRNAs (msh-4, msh-5) for meiotic chromosome segregation. Perhaps not
surprisingly, eIF4E-1 and -2 localize differently in growing oocytes. eIF4E-1 joins large mRNPs
(P granules) by binding to PGL-1, whereas eIF4E-2 is diffuse in oocyte cytoplasm [129,131]. eIF4E-3 is
perhaps the least understood isoform, and its mRNA targets are as yet unknown. eIF4E-3 promotes
the decision between the female and male gamete cell fates, and associates with yet another mRNP,
the OMA granule [141,143,146]. Non-regulated mRNAs (like beta-tubulin or GAPDH) appear to be
indiscriminate in their choice of eIF4E isotype [23,114]. We propose a model in which a divergent CD
and CI translational apparatus carries out critically important mRNA selections that alter germ cell
fates (Figure 4 and [60]).
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without eIF4Es [23].

2.6. Potential Relevance of CI Translation to RNA Viruses That Cause Birth Defects

The recent epidemic of Zika virus infections that cause fetal microcephaly brings to light a
potential crossroad for CI translation in germ cells, susceptibility to RNA viruses, and downstream
embryonic development. The pathology observed in Zika-induced birth defects is attributed to neural
tube malformation late in embryogenesis, but there is evidence that the virus may infect/accompany
sperm or eggs [147]. Zika is an RNA flavivirus that is transmitted to the conceptus by either a male
or female infected parent [148]. Like many RNA viruses, it alters mRNA translation mechanisms to
commandeer host protein synthesis [149]. Zika replication is inhibited by an eIF4A inhibitor, silvestrol,
which points to a potential role for eIF4 dysregulation in its pathology [150]. Heterozygous mutation
of eIF4A4 in mouse embryos results in neural defects similar to those found in Zika pregnancies [151].
Zika infection also induces the unfolded protein response (UPR) to disrupt host translation initiation
via eIF2 phosphorylation [149,152]. Many RNA viruses use UPR in conjunction with CI translation to
coopt host protein synthesis. These are largely anecdotal connections to mRNA initiation activities,
but an understanding of the balance of CD and CI mRNA translation will be useful to determine how
“ripe” germ cells are for Zika infections.

3. Conclusions

There was previously little reason to consider roles for CD and CI initiation mechanisms in germ
cells, which already possess a large repertoire of mRNA translational control events. And it is worth
noting that the relevance of CI translation in vivo is still questioned [153]. But recent observations
show a striking diversity of eIF4 factors expressed in germ cells [60,136,154], and mutational analyses
has made it clear they have independent roles in developing cell types. Such observations strongly
suggest that CD and CI mechanisms may be as diverse as the many RBP-mediated translational
repression schemes already characterized in germ cells and embryos. Yet we know considerably
less about positive translational control than we do about negative control in these cells. Given that
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translation factors (particularly eIF4Es) are more evolutionarily conserved than are RBPs, it stands to
reason that the eIF4 complexes in germ cells will function as interchangeable modules. This suggests
that alternative complexes form, isoforms become sequestered or localized, and relative affinities vary
(e.g., eIF4E-eIF4GL-mRNA-RBP vs. eIF4GS-mRNA-RBP). But all such complexes will contribute in a
combinatorial manner to mRNA recruitment potential for translation. Future studies to untangle these
complexities in vivo will be facilitated by recent tools (i.e., CRISPR technology, fluorescent translational
reporters, polysomal RNA bioinformatics, RiboSeq, and mRNP proteomics) together with versatile
genetic animal models. We seem poised for molecular dissection of CD and CI translation to identify
functional complexes (RNA and protein) and their roles in differentiation. This initiative bears some
resemblance to emerging interest in CI vs. CD translation mechanisms in oncogenesis and cancer
progression [155–157]. Germ cells/embryos and cancers have revealed over time many remarkable
parallels in metabolism, cell cycle and growth, so parallels in translation mechanisms might also
be expected.
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UTR Untranslated region
eIF Eukaryotic (translation) initiation factor
4GS Short form of eIF4G
4GL Long form of eIF4G
PABP Poly(A) binding protein
IRES Internal ribosome entry site
RBP RNA binding protein
EMCV Encephalomyocarditis virus
mRNP Messenger ribonuclear protein
CI Cap-independent
CD Cap-dependent
CITE Cap-independent translational enhancer
CPEB Cytoplasmic polyadenylation element binding protein
MPF Maturation promoting factor (cyclin B/CDK2)

References

1. Jackson, R.J.; Kaminski, A. Internal Initiation of translation in eukaryotes: The picornavirus paradigm and
beyond. RNA 1995, 1, 985–1000. [PubMed]

2. Ehrenfeld, E. Initiation of translation by picornavirus RNAs. In Translational Control; Hershey, J.W.B.,
Mathews, M.B., Sonenberg, N., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA,
1996; pp. 549–573.

3. Hernandez, G. Was the initiation of translation in early eukaryotes IRES-driven? Trends Biochem. Sci. 2008,
33, 58–64. [CrossRef] [PubMed]

4. Borman, A.M.; Kirchweger, R.; Ziegler, E.; Rhoads, R.E.; Skern, T.; Kean, K.M. eIF4G and its proteolytic
cleavage products: Effects on initiation of protein synthesis from capped, uncapped, and IRES-containing
mRNAs. RNA 1997, 3, 186–196. [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/8595564
http://dx.doi.org/10.1016/j.tibs.2007.11.002
http://www.ncbi.nlm.nih.gov/pubmed/18242094
http://www.ncbi.nlm.nih.gov/pubmed/9042945


Int. J. Mol. Sci. 2019, 20, 173 11 of 18

5. Ziegler, E.; Borman, A.M.; Deliat, F.G.; Liebig, H.-D.; Jugovic, D.; Kean, K.M.; Skern, T.; Kuechler, E.
Picornavirus 2A protease-mediated stimulation of internal initiation of translation is dependent on enzymatic
activity and the cleavage of products of cellular proteins. Virology 1995, 213, 549–557. [CrossRef]

6. Shatkin, A.J. mRNA caps-old and newer hats. Bioessays 1987, 7, 275–277. [CrossRef] [PubMed]
7. Matsuo, H.; Li, H.; McGuire, A.M.; Fletcher, C.M.; Gingras, A.C.; Sonenberg, N.; Wagner, G. Structure of

translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein. Nat. Struct. Biol. 1997, 4,
717–724. [CrossRef] [PubMed]

8. Furuichi, Y.; LaFiandra, A.; Shatkin, A.J. 5’-Terminal structure and mRNA stability. Nature 1977, 266, 235–239.
[CrossRef]

9. Rhoads, R.E. Cap recognition and the entry of mRNA into the protein synthesis initiation cycle.
Trends Biochem. Sci. 1988, 13, 52–56. [CrossRef]

10. Hambidge, S.J.; Sarnow, P. Translational enhancement of the poliovirus 5’ noncoding region mediated by
virus-encoded polypeptide 2A. Proc. Natl. Acad. Sci. USA 1992, 89, 10272–10276. [CrossRef]

11. Borman, A.M.; Bailly, J.-L.; Girard, M.; Kean, K.M. Picornavirus internal ribosome entry segments:
Comparison of translation efficiency and the requirements for optimal internal initiation of translation
in vitro. Nucleic Acids Res. 1995, 23, 3656–3663. [CrossRef]

12. Graber, T.E.; Holcik, M. Cap-independent regulation of gene expression in apoptosis. Mol. Biosyst. 2007, 3,
825–834. [CrossRef] [PubMed]

13. Holcik, M.; Sonenberg, N. Translational control in stress and apoptosis. Nat. Rev. Mol. Cell Biol. 2005, 6,
318–327. [CrossRef] [PubMed]

14. Rhoads, R.E.; Lamphear, B.J. Cap-independent translation of heat shock messenger RNAs. Curr. Top.
Microbiol. Immunol. 1995, 203, 131–153. [PubMed]

15. Schneider, R.J. Cap-independent translation in adenovirus infected cells. Curr. Top. Microbiol. Immunol. 1995,
203, 117–129. [PubMed]

16. Lopez-Lastra, M.; Rivas, A.; Barria, M.I. Protein synthesis in eukaryotes: The growing biological relevance of
cap-independent translation initiation. Biol. Res. 2005, 38, 121–146. [CrossRef] [PubMed]

17. Bushell, M.; McKendrick, L.; Janicke, R.U.; Clemens, M.J.; Morley, S.J. Caspase-3 is necessary and sufficient
for cleavage of protein synthesis eukaryotic initiation factor 4G during apoptosis. FEBS Lett. 1999, 451,
332–336. [CrossRef]

18. Marissen, W.E.; Gradi, A.; Sonenberg, N.; Lloyd, R.E. Cleavage of eukaryotic translation initiation factor
4GII correlates with translation inhibition during apoptosis. Cell Death Differ. 2000, 7, 1234–1243. [CrossRef]

19. Marissen, W.E.; Lloyd, R.E. Eukaryotic translation initiation factor 4G is targeted for proteolytic cleavage by
caspase 3 during inhibition of translation in apoptotic cells. Mol. Cell. Biol. 1998, 18, 7565–7574. [CrossRef]

20. Nevins, T.A.; Harder, Z.M.; Korneluk, R.G.; Holcik, M. Distinct regulation of internal ribosome entry
site-mediated translation following cellular stress is mediated by apoptotic fragments of eIF4G translation
initiation factor family members eIF4GI and p97/DAP5/NAT1. J. Biol. Chem. 2003, 278, 3572–3579.
[CrossRef]

21. Prevot, D.; Darlix, J.L.; Ohlmann, T. Conducting the initiation of protein synthesis: The role of eIF4G. Biol. Cell
2003, 95, 141–156. [CrossRef]

22. Hosszu Ungureanu, N.; Cloutier, M.; Lewis, S.M.; de Silva, N.; Blais, J.D.; Bell, J.C.; Holcik, M. IRES-mediated
translation of Apaf-1, but not XIAP, is regulated during UV-induced cell death. J. Biol. Chem. 2006, 281,
15155–15163. [CrossRef] [PubMed]

23. Morrison, J.K.; Friday, A.J.; Henderson, M.A.; Hao, E.; Keiper, B.D. Induction of cap-independent BiP (hsp-3)
and Bcl-2 (ced-9) translation in response to eIF4G (IFG-1) depletion in C. elegans. Translation 2014, 2, e28935.
[CrossRef]

24. Malys, N.; McCarthy, J.E. Translation initiation: Variations in the mechanism can be anticipated. Cell. Mol.
Life Sci. 2011, 68, 991–1003. [CrossRef] [PubMed]

25. Baum, J.S.; St George, J.P.; McCall, K. Programmed cell death in the germline. Semin. Cell Dev. Biol. 2005, 16,
245–259. [CrossRef]

26. Kinchen, J.M.; Hengartner, M.O. Tales of cannibalism, suicide, and murder: Programmed cell death in
C. elegans. Curr. Top. Dev. Biol. 2005, 65, 1–45. [PubMed]

27. Shatsky, I.N.; Terenin, I.M.; Smirnova, V.V.; Andreev, D.E. Cap-Independent Translation: What’s in a Name?
Trends Biochem. Sci. 2018, 43, 882–895. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0042-6822(95)90001-2
http://dx.doi.org/10.1002/bies.950070611
http://www.ncbi.nlm.nih.gov/pubmed/3325057
http://dx.doi.org/10.1038/nsb0997-717
http://www.ncbi.nlm.nih.gov/pubmed/9302999
http://dx.doi.org/10.1038/266235a0
http://dx.doi.org/10.1016/0968-0004(88)90028-X
http://dx.doi.org/10.1073/pnas.89.21.10272
http://dx.doi.org/10.1093/nar/23.18.3656
http://dx.doi.org/10.1039/b708867a
http://www.ncbi.nlm.nih.gov/pubmed/18000559
http://dx.doi.org/10.1038/nrm1618
http://www.ncbi.nlm.nih.gov/pubmed/15803138
http://www.ncbi.nlm.nih.gov/pubmed/7555088
http://www.ncbi.nlm.nih.gov/pubmed/7555087
http://dx.doi.org/10.4067/S0716-97602005000200003
http://www.ncbi.nlm.nih.gov/pubmed/16238092
http://dx.doi.org/10.1016/S0014-5793(99)00614-6
http://dx.doi.org/10.1038/sj.cdd.4400750
http://dx.doi.org/10.1128/MCB.18.12.7565
http://dx.doi.org/10.1074/jbc.M206781200
http://dx.doi.org/10.1016/S0248-4900(03)00031-5
http://dx.doi.org/10.1074/jbc.M511319200
http://www.ncbi.nlm.nih.gov/pubmed/16595687
http://dx.doi.org/10.4161/trla.28935
http://dx.doi.org/10.1007/s00018-010-0588-z
http://www.ncbi.nlm.nih.gov/pubmed/21076851
http://dx.doi.org/10.1016/j.semcdb.2004.12.008
http://www.ncbi.nlm.nih.gov/pubmed/15642378
http://dx.doi.org/10.1016/j.tibs.2018.04.011
http://www.ncbi.nlm.nih.gov/pubmed/29789219


Int. J. Mol. Sci. 2019, 20, 173 12 of 18

28. Johannes, G.; Carter, M.S.; Eisen, M.B.; Brown, P.O.; Sarnow, P. Identification of eukaryotic mRNAs that are
translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc. Natl. Acad.
Sci. USA 1999, 96, 13118–13123. [CrossRef]

29. Yang, Q.; Sarnow, P. Location of the internal ribosome entry site in the 5’ non-coding region of the
immunoglobulin heavy-chain binding protein (BiP) mRNA: Evidence for specific RNA-protein interactions.
Nucleic Acids Res. 1997, 25, 2800–2807. [CrossRef]

30. Macejak, D.G.; Sarnow, P. Translational regulation of the immunoglobulin heavy-chain binding protein
mRNA. Enzyme 1990, 44, 310–319. [CrossRef]

31. Philippe, C.; Dubrac, A.; Quelen, C.; Desquesnes, A.; Van Den Berghe, L.; Segura, C.; Filleron, T.; Pyronnet, S.;
Prats, H.; Brousset, P.; et al. PERK mediates the IRES-dependent translational activation of mRNAs encoding
angiogenic growth factors after ischemic stress. Sci. Signal. 2016, 9, ra44. [CrossRef]

32. Vagner, S.; Gensac, M.C.; Mare, A.; Baynard, F.; Amalric, F.; Prats, H.; Prats, A.C. Alternative translation of
human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes. Mol. Cell. Biol. 1995, 15,
35–44. [CrossRef] [PubMed]

33. Silvera, D.; Schneider, R.J. Inflammatory breast cancer cells are constitutively adapted to hypoxia. Cell Cycle
2009, 8, 3091–3096. [CrossRef] [PubMed]

34. Hundsdoerfer, P.; Thoma, C.; Hentze, M.W. Eukaryotic translation initiation factor 4GI and p97 promote
cellular internal ribosome entry sequence-driven translation. Proc. Natl. Acad. Sci. USA 2005, 102,
13421–13426. [CrossRef] [PubMed]

35. Coldwell, M.J.; Mitchell, S.A.; Stoneley, M.; MacFarlane, M.; Willis, A.E. Initiation of Apaf-1 translation by
internal ribosome entry. Oncogene 2000, 19, 899–905. [CrossRef] [PubMed]

36. Holcik, M.; Gordon, B.W.; Korneluk, R.G. The internal ribosome entry site-mediated translation of
antiapoptotic protein XIAP is modulated by the heterogeneous nuclear ribonucleoproteins C1 and C2.
Mol. Cell. Biol. 2003, 23, 280–288. [CrossRef] [PubMed]

37. Sherrill, K.W.; Byrd, M.P.; Van Eden, M.E.; Lloyd, R.E. BCL-2 translation is mediated via internal ribosome
entry during cell stress. J. Biol. Chem. 2004, 279, 29066–29074. [CrossRef] [PubMed]

38. Komar, A.A.; Hatzoglou, M. Internal ribosome entry sites in cellular mRNAs: Mystery of their existence.
J. Biol. Chem. 2005, 280, 23425–23428. [CrossRef] [PubMed]

39. Sen, N.D.; Zhou, F.; Harris, M.S.; Ingolia, N.T.; Hinnebusch, A.G. eIF4B stimulates translation of long mRNAs
with structured 5’ UTRs and low closed-loop potential but weak dependence on eIF4G. Proc. Natl. Acad.
Sci. USA 2016, 113, 10464–10472. [CrossRef] [PubMed]

40. Cho, S.; Park, S.M.; Kim, T.D.; Kim, J.H.; Kim, K.T.; Jang, S.K. BiP internal ribosomal entry site activity is
controlled by heat-induced interaction of NSAP1. Mol. Cell. Biol. 2007, 27, 368–383. [CrossRef] [PubMed]

41. Dinkova, T.D.; Zepeda, H.; Martinez-Salas, E.; Martinez, L.M.; Nieto-Sotelo, J.; de Jimenez, E.S.
Cap-independent translation of maize Hsp101. Plant J. 2005, 41, 722–731. [CrossRef]

42. Gilbert, W.V. Alternative ways to think about cellular internal ribosome entry. J. Biol. Chem. 2010, 285,
29033–29038. [CrossRef] [PubMed]

43. Joshi-Barve, S.; DeBenedetti, A.; Rhoads, R.E. Preferential translation of heat shock mRNAs in HeLa cells
deficient in protein synthesis initiation factors eIF-4E and eIF-4g. J. Biol. Chem. 1992, 267, 21038–21043.
[PubMed]

44. Kraft, J.J.; Treder, K.; Peterson, M.S.; Miller, W.A. Cation-dependent folding of 3’ cap-independent translation
elements facilitates interaction of a 17-nucleotide conserved sequence with eIF4G. Nucleic Acids Res. 2013, 41,
3398–3413. [CrossRef] [PubMed]

45. Miras, M.; Truniger, V.; Querol-Audi, J.; Aranda, M.A. Analysis of the interacting partners eIF4F and 3’-CITE
required for Melon necrotic spot virus cap-independent translation. Mol. Plant Pathol. 2017, 18, 635–648.
[CrossRef] [PubMed]

46. Meyer, K.D.; Patil, D.P.; Zhou, J.; Zinoviev, A.; Skabkin, M.A.; Elemento, O.; Pestova, T.V.; Qian, S.B.;
Jaffrey, S.R. 5’ UTR m(6)A Promotes Cap-Independent Translation. Cell 2015, 163, 999–1010. [CrossRef]

47. Sweeney, T.R.; Abaeva, I.S.; Pestova, T.V.; Hellen, C.U. The mechanism of translation initiation on Type 1
picornavirus IRESs. EMBO J. 2014, 33, 76–92. [CrossRef]

48. Mitchell, S.A.; Brown, E.C.; Coldwell, M.J.; Jackson, R.J.; Willis, A.E. Protein factor requirements of the
Apaf-1 internal ribosome entry segment: Roles of polypyrimidine tract binding protein and upstream of
N-ras. Mol. Cell. Biol. 2001, 21, 3364–3374. [CrossRef]

http://dx.doi.org/10.1073/pnas.96.23.13118
http://dx.doi.org/10.1093/nar/25.14.2800
http://dx.doi.org/10.1159/000468767
http://dx.doi.org/10.1126/scisignal.aaf2753
http://dx.doi.org/10.1128/MCB.15.1.35
http://www.ncbi.nlm.nih.gov/pubmed/7799942
http://dx.doi.org/10.4161/cc.8.19.9637
http://www.ncbi.nlm.nih.gov/pubmed/19755858
http://dx.doi.org/10.1073/pnas.0506536102
http://www.ncbi.nlm.nih.gov/pubmed/16174738
http://dx.doi.org/10.1038/sj.onc.1203407
http://www.ncbi.nlm.nih.gov/pubmed/10702798
http://dx.doi.org/10.1128/MCB.23.1.280-288.2003
http://www.ncbi.nlm.nih.gov/pubmed/12482981
http://dx.doi.org/10.1074/jbc.M402727200
http://www.ncbi.nlm.nih.gov/pubmed/15123638
http://dx.doi.org/10.1074/jbc.R400041200
http://www.ncbi.nlm.nih.gov/pubmed/15749702
http://dx.doi.org/10.1073/pnas.1612398113
http://www.ncbi.nlm.nih.gov/pubmed/27601676
http://dx.doi.org/10.1128/MCB.00814-06
http://www.ncbi.nlm.nih.gov/pubmed/17074807
http://dx.doi.org/10.1111/j.1365-313X.2005.02333.x
http://dx.doi.org/10.1074/jbc.R110.150532
http://www.ncbi.nlm.nih.gov/pubmed/20576611
http://www.ncbi.nlm.nih.gov/pubmed/1400417
http://dx.doi.org/10.1093/nar/gkt026
http://www.ncbi.nlm.nih.gov/pubmed/23361463
http://dx.doi.org/10.1111/mpp.12422
http://www.ncbi.nlm.nih.gov/pubmed/27145354
http://dx.doi.org/10.1016/j.cell.2015.10.012
http://dx.doi.org/10.1002/embj.201386124
http://dx.doi.org/10.1128/MCB.21.10.3364-3374.2001


Int. J. Mol. Sci. 2019, 20, 173 13 of 18

49. Gradi, A.; Imataka, H.; Svitkin, Y.V.; Rom, E.; Raught, B.; Morino, S.; Sonenberg, N. A novel functional
human eukaryotic translation initiation factor 4G. Mol. Cell. Biol. 1998, 18, 334–342. [CrossRef]

50. Yoffe, Y.; David, M.; Kalaora, R.; Povodovski, L.; Friedlander, G.; Feldmesser, E.; Ainbinder, E.; Saada, A.;
Bialik, S.; Kimchi, A. Cap-independent translation by DAP5 controls cell fate decisions in human embryonic
stem cells. Genes Dev. 2016, 30, 1991–2004. [CrossRef]

51. Bonneau, A.-M.; Sonenberg, N. Proteolysis of the p220 component of the cap-binding protein complex is not
sufficient for complete inhibition of host cell protein synthesis after poliovirus infection. J. Virol. 1987, 61,
986–991.

52. Aldabe, R.; Feduchi, E.; Novoa, I.; Carrasco, L. Expression of poliovirus 2Apro in mammalian cells: Effects
on translation. FEBS Lett. 1995, 377, 1–5. [CrossRef]

53. IIzuka, N.; Najita, L.; Franzusoff, A.; Sarnow, P. Cap-dependent and cap-independent translation by internal
initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol. Cell. Biol. 1994, 14,
7322–7330. [CrossRef] [PubMed]

54. Ohlmann, T.; Rau, M.; Pain, V.M.; Morley, S.J. The C-terminal domain of eukaryotic protein synthesis
initiation factor (eIF) 4G is sufficient to support cap-independent translation in the absence of eIF4E. EMBO J.
1996, 15, 1371–1382. [CrossRef] [PubMed]

55. Hentze, M.W. eIF4G: A multipurpose ribosome adaptor? Science 1997, 275, 500–501. [CrossRef] [PubMed]
56. Keiper, B.D.; Gan, W.; Rhoads, R.E. Protein synthesis initiation factor 4G. Int. J. Biochem. Cell Biol. 1999, 31,

37–41. [CrossRef]
57. Dworkin, M.B.; Dworkin-Rastl, E. Functions of maternal mRNA in early development. Mo.l Reprod. Dev.

1990, 26, 261–297. [CrossRef] [PubMed]
58. Nousch, M.; Eckmann, C.R. Translational control in the Caenorhabditis elegans germ line. Adv. Exp. Med. Biol.

2013, 757, 205–247.
59. Tadros, W.; Lipshitz, H.D. Setting the stage for development: mRNA translation and stability during oocyte

maturation and egg activation in Drosophila. Dev. Dyn. 2005, 232, 593–608. [CrossRef]
60. Friday, A.J.; Keiper, B.D. Positive mRNA Translational Control in Germ Cells by Initiation Factor Selectivity.

Biomed Res. Int. 2015, 2015, e327963. [CrossRef]
61. Mendez, R.; Richter, J.D. Translational control by CPEB: A means to the end. Nat. Rev. Mol. Cell Biol. 2001, 2,

521–529. [CrossRef]
62. Cao, Q.; Richter, J.D. Dissolution of the maskin-eIF4E complex by cytoplasmic polyadenylation and

poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation. EMBO J. 2002, 21,
3852–3862. [CrossRef] [PubMed]

63. Macdonald, P.M.; Smibert, C.A. Translational regulation of maternal mRNAs. Curr. Opin. Genet. Dev. 1996, 6,
403–407. [CrossRef]

64. Varnum, S.M.; Wormington, W.M. Deadenylation of maternal mRNAs during Xenopus oocyte maturation
does not require specific cis-sequences: A default mechanism for translational control. Genes Dev. 1990, 4,
2278–2286. [CrossRef] [PubMed]

65. Wormington, M.; Searfoss, A.M.; Hurney, C.A. Overexpression of poly(A) binding protein prevents
maturation-specific deadenylation and translational inactivation in Xenopus oocytes. EMBO J. 1996, 15,
900–909. [CrossRef] [PubMed]

66. Tarun, S.Z.J.; Sachs, A.B. A common function for mRNA 5’ and 3’ ends in translation initiation in yeast.
Genes Dev. 1995, 9, 2997–3007. [CrossRef] [PubMed]

67. Wells, S.E.; Hillner, P.E.; Vale, R.D.; Sachs, A.B. Circularization of mRNA by eukaryotic translation initiation
factors. Mol. Cell 1998, 2, 135–140. [CrossRef]

68. Mancera-Martinez, E.; Brito Querido, J.; Valasek, L.S.; Simonetti, A.; Hashem, Y. ABCE1: A special factor that
orchestrates translation at the crossroad between recycling and initiation. RNA Biol. 2017, 14, 1279–1285.
[CrossRef]

69. Lee, M.H.; Mamillapalli, S.S.; Keiper, B.D.; Cha, D.S. A Systematic mRNA Control Mechanism for Germline
Stem Cell Homeostasis and Cell Fate Specification. BMB Rep. 2015, 2015, 3259. [CrossRef]

70. Parisi, M.; Lin, H. Translational repression: A duet of Nanos and Pumilio. Curr. Biol. 2000, 10, R81–R83.
[CrossRef]

71. Keiper, B.D. Translation of mRNAs in Xenopus oocytes. In Encyclopedia of Life Sciences; Nature Publishing
Company: London, UK, 2003; pp. 1–6.

http://dx.doi.org/10.1128/MCB.18.1.334
http://dx.doi.org/10.1101/gad.285239.116
http://dx.doi.org/10.1016/0014-5793(95)01269-9
http://dx.doi.org/10.1128/MCB.14.11.7322
http://www.ncbi.nlm.nih.gov/pubmed/7935446
http://dx.doi.org/10.1002/j.1460-2075.1996.tb00479.x
http://www.ncbi.nlm.nih.gov/pubmed/8635470
http://dx.doi.org/10.1126/science.275.5299.500
http://www.ncbi.nlm.nih.gov/pubmed/9019810
http://dx.doi.org/10.1016/S1357-2725(98)00130-7
http://dx.doi.org/10.1002/mrd.1080260310
http://www.ncbi.nlm.nih.gov/pubmed/2198066
http://dx.doi.org/10.1002/dvdy.20297
http://dx.doi.org/10.1155/2015/327963
http://dx.doi.org/10.1038/35080081
http://dx.doi.org/10.1093/emboj/cdf353
http://www.ncbi.nlm.nih.gov/pubmed/12110596
http://dx.doi.org/10.1016/S0959-437X(96)80060-8
http://dx.doi.org/10.1101/gad.4.12b.2278
http://www.ncbi.nlm.nih.gov/pubmed/1980656
http://dx.doi.org/10.1002/j.1460-2075.1996.tb00424.x
http://www.ncbi.nlm.nih.gov/pubmed/8631310
http://dx.doi.org/10.1101/gad.9.23.2997
http://www.ncbi.nlm.nih.gov/pubmed/7498795
http://dx.doi.org/10.1016/S1097-2765(00)80122-7
http://dx.doi.org/10.1080/15476286.2016.1269993
http://dx.doi.org/10.5483/BMBRep.2016.49.2.135
http://dx.doi.org/10.1016/S0960-9822(00)00283-9


Int. J. Mol. Sci. 2019, 20, 173 14 of 18

72. Richter, J.D.; Smith, L.D. Differential capacity for translation and lack of competition between mRNAs that
segregate to free and membrane-bound polysomes. Cell 1981, 27, 183–191. [CrossRef]

73. Richter, J.D.; Wasserman, W.J.; Smith, L.D. The mechanism for increased protein synthesis during oocyte
maturation. Dev. Biol. 1982, 89, 159–167. [CrossRef]

74. Asselbergs, F.A.M.; Peters, W.H.M.; van Venrooij, W.J.; Bloemendal, H. Cap analogues do not inhibit mRNA
translation in Xenopus laevis oocyte. FEBS Lett. 1978, 94, 195–198. [CrossRef]

75. Keiper, B.D.; Rhoads, R.E. Cap-independent translation initiation in Xenopus oocytes. Nucleic Acids Res. 1997,
25, 395–403. [CrossRef] [PubMed]

76. Skern, T.; Liebig, H.-D. Picornains 2A and 3C. Methods Enzymol. 1994, 244, 583–595.
77. Kerekatte, V.; Keiper, B.D.; Badorff, C.; Cai, A.; Knowlton, K.U.; Rhoads, R.E. Cleavage of poly(A)-binding

protein by coxsackievirus 2A protease in vitro and in vivo: Another mechanism for host protein synthesis
shutoff? J. Virol. 1999, 73, 709–717. [PubMed]

78. De Gregorio, E.; Preiss, T.; Hentze, M.W. Translation driven by an eIF4G core domain in vivo. EMBO J. 1999,
18, 4865–4874. [CrossRef] [PubMed]

79. McGrew, L.L.; Dworkin-Rastl, E.; Dworkin, M.B.; Richter, J.D. Poly(A) elongation during Xenopus oocyte
maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev.
1989, 3, 803–815. [CrossRef]

80. Dworkin, M.B.; Dworkin-Rastl, E. Changes in RNA titers and polyadenylation during oogenesis and oocyte
maturation in Xenopus laevis. Dev. Biol. 1985, 112, 451–457. [CrossRef]

81. Keiper, B.D.; Rhoads, R.E. Translational recruitment of Xenopus maternal mRNAs in response to poly(A)
elongation requires initiation factor eIF4G-1. Dev. Biol. 1999, 206, 1–14. [CrossRef]

82. Laskey, R.A.; Mills, A.D.; Gurdon, J.B.; Partington, G.A. Protein synthesis in oocytes of Xenopus laevis is not
regulated by the supply of messenger RNA. Cell 1977, 11, 345–351. [CrossRef]

83. Gamarnik, A.V.; Andino, R. Replication of poliovirus in Xenopus oocytes requires two human factors.
EMBO J. 1996, 15, 5988–5998. [CrossRef]

84. Contreras, V.; Richardson, M.A.; Hao, E.; Keiper, B.D. Depletion of the cap-associated isoform of translation
factor eIF4G induces germline apoptosis in C. elegans. Cell Death Differ. 2008, 15, 1232–1242. [CrossRef]

85. Hu, J.; Sun, F.; Handel, M.A. Nuclear localization of EIF4G3 suggests a role for the XY body in translational
regulation during spermatogenesis in mice. Biol. Reprod. 2018, 98, 102–114. [CrossRef] [PubMed]

86. Sun, F.; Palmer, K.; Handel, M.A. Mutation of Eif4g3, encoding a eukaryotic translation initiation factor,
causes male infertility and meiotic arrest of mouse spermatocytes. Development 2010, 137, 1699–1707.
[CrossRef] [PubMed]

87. De Domenico, E.; Owens, N.D.; Grant, I.M.; Gomes-Faria, R.; Gilchrist, M.J. Molecular asymmetry in the
8-cell stage Xenopus tropicalis embryo described by single blastomere transcript sequencing. Dev. Biol. 2017,
408, 252–268. [CrossRef] [PubMed]

88. Wharton, R.P.; Sonoda, J.; Lee, T.; Patterson, M.; Murata, Y. The Pumilio RNA-binding domain is also a
translational regulator. Mol. Cell 1998, 1, 863–872. [CrossRef]

89. Contreras, V.; Friday, A.J.; Morrison, J.K.; Hao, E.; Keiper, B.D. Cap-Independent translation promotes
C. elegans germ cell apoptosis through Apaf-1/CED-4 in a caspase-dependent mechanism. PLoS ONE 2011,
6, e24444.

90. Stebbins-Boaz, B.; Cao, Q.; de Moor, C.H.; Mendez, R.; Richter, J.D. Maskin is a CPEB-associated factor that
transiently interacts with elF-4E. Mol. Cell 1999, 4, 1017–1027. [CrossRef]

91. Mendez, R.; Barnard, D.; Richter, J.D. Differential mRNA translation and meiotic progression require
Cdc2-mediated CPEB destruction. EMBO J. 2002, 21, 1833–1844. [CrossRef]

92. Minshall, N.; Reiter, M.H.; Weil, D.; Standart, N. CPEB interacts with an ovary-specific eIF4E and 4E-T in
early Xenopus oocytes. J. Biol. Chem. 2007, 282, 37389–37401. [CrossRef]

93. Pique, M.; Lopez, J.M.; Foissac, S.; Guigo, R.; Mendez, R. A combinatorial code for CPE-mediated
translational control. Cell 2008, 132, 434–448. [CrossRef] [PubMed]

94. Hernandez, G.; Miron, M.; Han, H.; Liu, N.; Magescas, J.; Tettweiler, G.; Frank, F.; Siddiqui, N.; Sonenberg, N.;
Lasko, P. Mextli is a novel eukaryotic translation initiation factor 4E-binding protein that promotes translation
in Drosophila melanogaster. Mol. Cell. Biol. 2013, 33, 2854–2864. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/0092-8674(81)90372-X
http://dx.doi.org/10.1016/0012-1606(82)90304-9
http://dx.doi.org/10.1016/0014-5793(78)80936-3
http://dx.doi.org/10.1093/nar/25.2.395
http://www.ncbi.nlm.nih.gov/pubmed/9016570
http://www.ncbi.nlm.nih.gov/pubmed/9847377
http://dx.doi.org/10.1093/emboj/18.17.4865
http://www.ncbi.nlm.nih.gov/pubmed/10469664
http://dx.doi.org/10.1101/gad.3.6.803
http://dx.doi.org/10.1016/0012-1606(85)90417-8
http://dx.doi.org/10.1006/dbio.1998.9131
http://dx.doi.org/10.1016/0092-8674(77)90051-4
http://dx.doi.org/10.1002/j.1460-2075.1996.tb00985.x
http://dx.doi.org/10.1038/cdd.2008.46
http://dx.doi.org/10.1093/biolre/iox150
http://www.ncbi.nlm.nih.gov/pubmed/29161344
http://dx.doi.org/10.1242/dev.043125
http://www.ncbi.nlm.nih.gov/pubmed/20430745
http://dx.doi.org/10.1016/j.ydbio.2015.06.010
http://www.ncbi.nlm.nih.gov/pubmed/26100918
http://dx.doi.org/10.1016/S1097-2765(00)80085-4
http://dx.doi.org/10.1016/S1097-2765(00)80230-0
http://dx.doi.org/10.1093/emboj/21.7.1833
http://dx.doi.org/10.1074/jbc.M704629200
http://dx.doi.org/10.1016/j.cell.2007.12.038
http://www.ncbi.nlm.nih.gov/pubmed/18267074
http://dx.doi.org/10.1128/MCB.01354-12
http://www.ncbi.nlm.nih.gov/pubmed/23716590


Int. J. Mol. Sci. 2019, 20, 173 15 of 18

95. Cho, P.F.; Gamberi, C.; Cho-Park, Y.A.; Cho-Park, I.B.; Lasko, P.; Sonenberg, N. Cap-dependent translational
inhibition establishes two opposing morphogen gradients in Drosophila embryos. Curr. Biol. 2006, 16,
2035–2041. [CrossRef] [PubMed]

96. Hengartner, M.O.; Horvitz, H.R. Programmed cell death in Caenorhabditis elegans. Curr. Opin. Genet. Dev.
1994, 4, 581–586. [CrossRef]

97. Schedl, T. Developmental genetics of the germ line. In C Elegans II.; Riddle, D.L., Blumenthal, T., Meyer, B.J.,
Priess, J.R., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1997; pp. 241–269.

98. Gumienny, T.L.; Lambie, E.; Hartwieg, E.; Horvitz, H.R.; Hengartner, M.O. Genetic control of programmed
cell death in the Caenorhabditis elegans hermaphrodite germline. Development 1999, 126, 1011–1022.

99. Metzstein, M.M.; Stanfield, G.M.; Horvitz, H.R. Genetics of programmed cell death in C. elegans: Past, present
and future. Trends Genet. 1998, 14, 410–416. [CrossRef]

100. Lee, M.H.; Hook, B.; Pan, G.; Kershner, A.M.; Merritt, C.; Seydoux, G.; Thomson, J.A.; Wickens, M.; Kimble, J.
Conserved regulation of MAP kinase expression by PUF RNA-binding proteins. PLoS Genet. 2007, 3, e233.
[CrossRef]

101. Min, H.; Shim, Y.H.; Kawasaki, I. Loss of PGL-1 and PGL-3, members of a family of constitutive germ-granule
components, promotes germline apoptosis in C. elegans. J. Cell Sci. 2016, 129, 341–353. [CrossRef]

102. Subramaniam, K.; Seydoux, G. nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial
germ cell development and survival in Caenorhabditis elegans. Development 1999, 126, 4861–4871.

103. Boag, P.R.; Nakamura, A.; Blackwell, T.K. A conserved RNA-protein complex component involved in
physiological germline apoptosis regulation in C. elegans. Development 2005, 132, 4975–4986. [CrossRef]

104. Navarro, R.E.; Blackwell, T.K. Requirement for P granules and meiosis for accumulation of the germline
RNA helicase CGH-1. Genesis 2005, 42, 172–180. [CrossRef] [PubMed]

105. Navarro, R.E.; Shim, E.Y.; Kohara, Y.; Singson, A.; Blackwell, T.K. cgh-1, a conserved predicted RNA helicase
required for gametogenesis and protection from physiological germline apoptosis in C. elegans. Development
2001, 128, 3221–3232.

106. Salinas, L.S.; Franco-Cea, A.; Lascarez-Lagunas, L.I.; Villanueva-Chimal, E.; Maldonado, E.; Navarro, R.E.
Germ cell survival in C. elegans and C. remanei is affected when the DEAD box RNA helicases VBH-1 or
Cre-VBH-1 are silenced. Genesis 2012, 50, 801–818. [CrossRef] [PubMed]

107. Kritikou, E.A.; Milstein, S.; Vidalain, P.O.; Lettre, G.; Bogan, E.; Doukoumetzidis, K.; Gray, P.; Chappell, T.G.;
Vidal, M.; Hengartner, M.O. C. elegans GLA-3 is a novel component of the MAP kinase MPK-1 signaling
pathway required for germ cell survival. Genes Dev. 2006, 20, 2279–2292. [CrossRef] [PubMed]

108. Gavis, E.R.; Lehmann, R. Localization of nanos RNA controls embryonic polarity. Cell 1992, 71, 301–313.
[CrossRef]

109. Forbes, A.; Lehmann, R. Nanos and Pumilio have critical roles in the development and function of Drosophila
germline stem cells. Development 1998, 125, 679–690. [PubMed]

110. Lai, F.; Zhou, Y.; Luo, X.; Fox, J.; King, M.L. Nanos1 functions as a translational repressor in the Xenopus
germline. Mech. Dev. 2011, 128, 153–163. [CrossRef] [PubMed]

111. Chagnovich, D.; Lehmann, R. Poly(A)-independent regulation of maternal hunchback translation in the
Drosophila embryo. Proc. Natl. Acad. Sci. USA 2001, 98, 11359–11364. [CrossRef] [PubMed]

112. Galluzzi, L.; Joza, N.; Tasdemir, E.; Maiuri, M.C.; Hengartner, M.; Abrams, J.M.; Tavernarakis, N.;
Penninger, J.; Madeo, F.; Kroemer, G. No death without life: Vital functions of apoptotic effectors.
Cell Death Differ. 2008, 15, 1113–1123. [CrossRef] [PubMed]

113. Huh, J.R.; Vernooy, S.Y.; Yu, H.; Yan, N.; Shi, Y.; Guo, M.; Hay, B.A. Multiple apoptotic caspase cascades
are required in nonapoptotic roles for Drosophila spermatid individualization. PLoS Biol. 2004, 2, E15.
[CrossRef] [PubMed]

114. Henderson, M.A.; Cronland, E.; Dunkelbarger, S.; Contreras, V.; Strome, S.; Keiper, B.D. A germ line-specific
isoform of eIF4E (IFE-1) is required for efficient translation of stored mRNAs and maturation of both oocytes
and sperm. J. Cell Sci. 2009, 122, 1529–1539. [CrossRef] [PubMed]

115. Honarpour, N.; Du, C.; Richardson, J.A.; Hammer, R.E.; Wang, X.; Herz, J. Adult Apaf-1-deficient mice
exhibit male infertility. Dev. Biol. 2000, 218, 248–258. [CrossRef] [PubMed]

116. Arama, E.; Agapite, J.; Steller, H. Caspase activity and a specific cytochrome C are required for sperm
differentiation in Drosophila. Dev. Cell 2003, 4, 687–697. [CrossRef]

http://dx.doi.org/10.1016/j.cub.2006.08.093
http://www.ncbi.nlm.nih.gov/pubmed/17055983
http://dx.doi.org/10.1016/0959-437X(94)90076-F
http://dx.doi.org/10.1016/S0168-9525(98)01573-X
http://dx.doi.org/10.1371/journal.pgen.0030233
http://dx.doi.org/10.1242/jcs.174201
http://dx.doi.org/10.1242/dev.02060
http://dx.doi.org/10.1002/gene.20136
http://www.ncbi.nlm.nih.gov/pubmed/15986473
http://dx.doi.org/10.1002/dvg.22043
http://www.ncbi.nlm.nih.gov/pubmed/22674898
http://dx.doi.org/10.1101/gad.384506
http://www.ncbi.nlm.nih.gov/pubmed/16912277
http://dx.doi.org/10.1016/0092-8674(92)90358-J
http://www.ncbi.nlm.nih.gov/pubmed/9435288
http://dx.doi.org/10.1016/j.mod.2010.12.001
http://www.ncbi.nlm.nih.gov/pubmed/21195170
http://dx.doi.org/10.1073/pnas.201284398
http://www.ncbi.nlm.nih.gov/pubmed/11562474
http://dx.doi.org/10.1038/cdd.2008.28
http://www.ncbi.nlm.nih.gov/pubmed/18309324
http://dx.doi.org/10.1371/journal.pbio.0020015
http://www.ncbi.nlm.nih.gov/pubmed/14737191
http://dx.doi.org/10.1242/jcs.046771
http://www.ncbi.nlm.nih.gov/pubmed/19383718
http://dx.doi.org/10.1006/dbio.1999.9585
http://www.ncbi.nlm.nih.gov/pubmed/10656767
http://dx.doi.org/10.1016/S1534-5807(03)00120-5


Int. J. Mol. Sci. 2019, 20, 173 16 of 18

117. Zermati, Y.; Mouhamad, S.; Stergiou, L.; Besse, B.; Galluzzi, L.; Boehrer, S.; Pauleau, A.L.; Rosselli, F.;
D’Amelio, M.; Amendola, R.; et al. Nonapoptotic role for Apaf-1 in the DNA damage checkpoint. Mol. Cell
2007, 28, 624–637. [CrossRef] [PubMed]

118. Yang, J.; Medvedev, S.; Yu, J.; Tang, L.C.; Agno, J.E.; Matzuk, M.M.; Schultz, R.M.; Hecht, N.B. Absence of the
DNA-/RNA-binding protein MSY2 results in male and female infertility. Proc. Natl. Acad. Sci. USA 2005,
102, 5755–5760. [CrossRef] [PubMed]

119. Evdokimova, V.; Tognon, C.; Ng, T.; Ruzanov, P.; Melnyk, N.; Fink, D.; Sorokin, A.; Ovchinnikov, L.P.;
Davicioni, E.; Triche, T.J.; et al. Translational activation of snail1 and other developmentally regulated
transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell 2009, 15, 402–415.
[CrossRef] [PubMed]

120. Clemens, M.J. Targets and mechanisms for the regulation of translation in malignant transformation.
Oncogene 2004, 23, 3180–3188. [CrossRef]

121. De Benedetti, A.; Graff, J.R. eIF-4E expression and its role in malignancies and metastases. Oncogene 2004, 23,
3189–3199. [CrossRef]

122. Li, L.; Luo, Q.; Xie, Z.; Li, G.; Mao, C.; Liu, Y.; Wen, X.; Yin, N.; Cao, J.; Wang, J.; et al. Characterization of the
Expression of the RNA Binding Protein eIF4G1 and Its Clinicopathological Correlation with Serous Ovarian
Cancer. PLoS ONE 2016, 11, e0163447. [CrossRef]

123. Silvera, D.; Arju, R.; Darvishian, F.; Levine, P.H.; Zolfaghari, L.; Goldberg, J.; Hochman, T.; Formenti, S.C.;
Schneider, R.J. Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer.
Nat. Cell Biol. 2009, 11, 903–908. [CrossRef]

124. Baker, C.C.; Fuller, M.T. Translational control of meiotic cell cycle progression and spermatid differentiation
in male germ cells by a novel eIF4G homolog. Development 2007, 134, 2863–2869. [CrossRef] [PubMed]

125. Carrera, P.; Johnstone, O.; Nakamura, A.; Casanova, J.; Jackle, H.; Lasko, P. VASA mediates translation
through interaction with a Drosophila yIF2 homolog. Mol. Cell 2000, 5, 181–187. [CrossRef]

126. Ghosh, S.; Lasko, P. Loss-of-function analysis reveals distinct requirements of the translation initiation factors
eIF4E, eIF4E-3, eIF4G and eIF4G2 in Drosophila spermatogenesis. PLoS ONE 2015, 10, e0122519. [CrossRef]
[PubMed]

127. Long, X.; Spycher, C.; Han, Z.S.; Rose, A.M.; Muller, F.; Avruch, J. TOR deficiency in C. elegans causes
developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr. Biol. 2002, 12,
1448–1461. [CrossRef]

128. Shen, R.; Weng, C.; Yu, J.; Xie, T. eIF4A controls germline stem cell self-renewal by directly inhibiting BAM
function in the Drosophila ovary. Proc. Natl. Acad. Sci. USA 2009, 106, 11623–11628. [CrossRef] [PubMed]

129. Amiri, A.; Keiper, B.D.; Kawasaki, I.; Fan, Y.; Kohara, Y.; Rhoads, R.E.; Strome, S. An isoform of eIF4E is
a component of germ granules and is required for spermatogenesis in C. elegans. Development 2001, 128,
3899–3912.

130. Keiper, B.D.; Lamphear, B.J.; Deshpande, A.M.; Jankowska-Anyszka, M.; Aamodt, E.J.; Blumenthal, T.;
Rhoads, R.E. Functional characterization of five eIF4E isoforms in Caenorhabditis elegans. J. Biol. Chem.
2000, 275, 10590–10596. [CrossRef]

131. Song, A.; Labella, S.; Korneeva, N.L.; Keiper, B.D.; Aamodt, E.J.; Zetka, M.; Rhoads, R.E. A C. elegans
eIF4E-family member upregulates translation at elevated temperatures of mRNAs encoding MSH-5 and
other meiotic crossover proteins. J. Cell Sci. 2010, 123, 2228–2237. [CrossRef]

132. Cao, Q.; Padmanabhan, K.; Richter, J.D. Pumilio 2 controls translation by competing with eIF4E for 7-methyl
guanosine cap recognition. RNA 2010, 16, 221–227. [CrossRef]

133. Rodriguez, C.M.; Freire, M.A.; Camilleri, C.; Robaglia, C. The Arabidopsis thaliana cDNAs coding for eIF4E
and eIF(iso)4E are not functionally equivalent for yeast complementation and are differentially expressed
during plant development. Plant J. 1998, 13, 465–473. [CrossRef]

134. Ruffel, S.; Gallois, J.L.; Moury, B.; Robaglia, C.; Palloix, A.; Caranta, C. Simultaneous mutations in translation
initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper.
J. Gen. Virol. 2006, 87, 2089–2098. [CrossRef]

135. Hernandez, G.; Altmann, M.; Sierra, J.M.; Urlaub, H.; del Corral, R.D.; Schwartz, P.; Rivera-Pomar, R.
Functional analysis of seven genes encoding eight translation initiation factor 4E (eIF4E) isoforms in
Drosophila. Mech. Dev. 2005, 122, 529–543. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.molcel.2007.09.030
http://www.ncbi.nlm.nih.gov/pubmed/18042457
http://dx.doi.org/10.1073/pnas.0408718102
http://www.ncbi.nlm.nih.gov/pubmed/15824319
http://dx.doi.org/10.1016/j.ccr.2009.03.017
http://www.ncbi.nlm.nih.gov/pubmed/19411069
http://dx.doi.org/10.1038/sj.onc.1207544
http://dx.doi.org/10.1038/sj.onc.1207545
http://dx.doi.org/10.1371/journal.pone.0163447
http://dx.doi.org/10.1038/ncb1900
http://dx.doi.org/10.1242/dev.003764
http://www.ncbi.nlm.nih.gov/pubmed/17611220
http://dx.doi.org/10.1016/S1097-2765(00)80414-1
http://dx.doi.org/10.1371/journal.pone.0122519
http://www.ncbi.nlm.nih.gov/pubmed/25849588
http://dx.doi.org/10.1016/S0960-9822(02)01091-6
http://dx.doi.org/10.1073/pnas.0903325106
http://www.ncbi.nlm.nih.gov/pubmed/19556547
http://dx.doi.org/10.1074/jbc.275.14.10590
http://dx.doi.org/10.1242/jcs.063107
http://dx.doi.org/10.1261/rna.1884610
http://dx.doi.org/10.1046/j.1365-313X.1998.00047.x
http://dx.doi.org/10.1099/vir.0.81817-0
http://dx.doi.org/10.1016/j.mod.2004.11.011
http://www.ncbi.nlm.nih.gov/pubmed/15804566


Int. J. Mol. Sci. 2019, 20, 173 17 of 18

136. Joshi, B.; Lee, K.; Maeder, D.L.; Jagus, R. Phylogenetic analysis of eIF4E-family members. BMC Evol. Biol.
2005, 5, 1–20. [CrossRef] [PubMed]

137. Patrick, R.M.; Browning, K.S. The eIF4F and eIFiso4F Complexes of Plants: An Evolutionary Perspective.
Comp. Funct. Genom. 2012, 2012, 287814. [CrossRef] [PubMed]

138. Patrick, R.M.; Mayberry, L.K.; Choy, G.; Woodard, L.E.; Liu, J.S.; White, A.; Mullen, R.A.; Tanavin, T.M.;
Latz, C.A.; Browning, K.S. Two Arabidopsis loci encode novel eukaryotic initiation factor 4E isoforms that
are functionally distinct from the conserved plant eukaryotic initiation factor 4E. Plant Physiol. 2014, 164,
1820–1830. [CrossRef] [PubMed]

139. Franklin-Dumont, T.M.; Chatterjee, C.; Wasserman, S.A.; Dinardo, S. A novel eIF4G homolog, Off-schedule,
couples translational control to meiosis and differentiation in Drosophila spermatocytes. Development 2007,
134, 2851–2861. [CrossRef] [PubMed]

140. Nakamura, A.; Sato, K.; Hanyu-Nakamura, K. Drosophila cup is an eIF4E binding protein that associates
with Bruno and regulates oskar mRNA translation in oogenesis. Dev. Cell 2004, 6, 69–78. [CrossRef]

141. Sengupta, M.S.; Low, W.Y.; Patterson, J.R.; Kim, H.M.; Traven, A.; Beilharz, T.H.; Colaiacovo, M.P.; Schisa, J.A.;
Boag, P.R. ifet-1 is a broad-scale translational repressor required for normal P granule formation in C. elegans.
J. Cell Sci. 2013, 126, 850–859. [CrossRef]

142. Kawasaki, I.; Jeong, M.H.; Shim, Y.H. Regulation of sperm-specific proteins by IFE-1, a germline-specific
homolog of eIF4E, in C. elegans. Mol. Cells 2011, 31, 191–197. [CrossRef]

143. Mangio, R.S.; Votra, S.; Pruyne, D. The canonical eIF4E isoform of C. elegans regulates growth, embryogenesis,
and germline sex-determination. Biol. Open 2015, 4, 843–851. [CrossRef]

144. Friday, A.J.; Henderson, M.A.; Morrison, J.K.; Hoffman, J.L.; Keiper, B.D. Spatial and temporal translational
control of germ cell mRNAs mediated by the eIF4E isoform IFE-1. J. Cell Sci. 2015, 128, 4487–4498. [CrossRef]
[PubMed]

145. Dinkova, T.D.; Keiper, B.D.; Korneeva, N.L.; Aamodt, E.J.; Rhoads, R.E. Translation of a small subset of
Caenorhabditis elegans mRNAs is dependent on a specific eukaryotic translation initiation factor 4E isoform.
Mol. Cell. Biol. 2005, 25, 100–113. [CrossRef] [PubMed]

146. Spike, C.A.; Coetzee, D.; Eichten, C.; Wang, X.; Hansen, D.; Greenstein, D.I. The TRIM-NHL Protein LIN-41
and the OMA RNA-Binding Proteins Antagonistically Control the Prophase-to-Metaphase Transition and
Growth of Caenorhabditis elegans Oocytes. Genetics 2014, 198, 1535–1558. [CrossRef] [PubMed]

147. Sadler, T.W. Langman’s Essential Medical Embryology; Lippincott Williams & Wilkins: Philadelphia, PA, USA,
2005; pp. 6–13, 24–26, 135–141.

148. Larocca, R.A.; Abbink, P.; Peron, J.P.; Zanotto, P.M.; Iampietro, M.J.; Badamchi-Zadeh, A.; Boyd, M.;
Nganga, D.; Kirilova, M.; Nityanandam, R.; et al. Vaccine protection against Zika virus from Brazil. Nature
2016, 536, 474–478. [CrossRef] [PubMed]

149. Blazquez, A.B.; Escribano-Romero, E.; Merino-Ramos, T.; Saiz, J.C.; Martin-Acebes, M.A. Stress responses
in flavivirus-infected cells: Activation of unfolded protein response and autophagy. Front. Microbiol. 2014,
5, 266. [CrossRef] [PubMed]

150. Elgner, F.; Sabino, C.; Basic, M.; Ploen, D.; Grunweller, A.; Hildt, E. Inhibition of Zika Virus Replication by
Silvestrol. Viruses 2018, 10, 149. [CrossRef]

151. Mao, H.; McMahon, J.J.; Tsai, Y.H.; Wang, Z.; Silver, D.L. Haploinsufficiency for Core Exon Junction Complex
Components Disrupts Embryonic Neurogenesis and Causes p53-Mediated Microcephaly. PLoS Genet. 2016,
12, e1006282. [CrossRef]

152. Kuno, G.; Chang, G.J. Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika
viruses. Arch. Virol. 2007, 152, 687–696. [CrossRef]

153. Komar, A.A.; Mazumder, B.; Merrick, W.C. A new framework for understanding IRES-mediated translation.
Gene 2010, 502, 75–86. [CrossRef]

154. Hernandez, G.; Proud, C.G.; Preiss, T.; Parsyan, A. On the Diversification of the Translation Apparatus across
Eukaryotes. Comp. Funct. Genom. 2012, 2012, 256848. [CrossRef]

155. Sriram, A.; Bohlen, J.; Teleman, A.A. Translation acrobatics: How cancer cells exploit alternate modes of
translational initiation. EMBO Rep. 2018, 19, 17. [CrossRef] [PubMed]

http://dx.doi.org/10.1186/1471-2148-5-48
http://www.ncbi.nlm.nih.gov/pubmed/16191198
http://dx.doi.org/10.1155/2012/287814
http://www.ncbi.nlm.nih.gov/pubmed/22611336
http://dx.doi.org/10.1104/pp.113.227785
http://www.ncbi.nlm.nih.gov/pubmed/24501003
http://dx.doi.org/10.1242/dev.003517
http://www.ncbi.nlm.nih.gov/pubmed/17611222
http://dx.doi.org/10.1016/S1534-5807(03)00400-3
http://dx.doi.org/10.1242/jcs.119834
http://dx.doi.org/10.1007/s10059-011-0021-y
http://dx.doi.org/10.1242/bio.011585
http://dx.doi.org/10.1242/jcs.172684
http://www.ncbi.nlm.nih.gov/pubmed/26542024
http://dx.doi.org/10.1128/MCB.25.1.100-113.2005
http://www.ncbi.nlm.nih.gov/pubmed/15601834
http://dx.doi.org/10.1534/genetics.114.168831
http://www.ncbi.nlm.nih.gov/pubmed/25261698
http://dx.doi.org/10.1038/nature18952
http://www.ncbi.nlm.nih.gov/pubmed/27355570
http://dx.doi.org/10.3389/fmicb.2014.00266
http://www.ncbi.nlm.nih.gov/pubmed/24917859
http://dx.doi.org/10.3390/v10040149
http://dx.doi.org/10.1371/journal.pgen.1006282
http://dx.doi.org/10.1007/s00705-006-0903-z
http://dx.doi.org/10.1016/j.gene.2012.04.039
http://dx.doi.org/10.1155/2012/256848
http://dx.doi.org/10.15252/embr.201845947
http://www.ncbi.nlm.nih.gov/pubmed/30224410


Int. J. Mol. Sci. 2019, 20, 173 18 of 18

156. Walters, B.; Thompson, S.R. Cap-Independent Translational Control of Carcinogenesis. Front. Oncol. 2016,
6, 128. [CrossRef] [PubMed]

157. Braunstein, S.; Karpisheva, K.; Pola, C.; Goldberg, J.; Hochman, T.; Yee, H.; Cangiarella, J.; Arju, R.;
Formenti, S.C.; Schneider, R.J. A hypoxia-controlled cap-dependent to cap-independent translation switch in
breast cancer. Mol. Cell 2007, 28, 501–512. [CrossRef] [PubMed]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3389/fonc.2016.00128
http://www.ncbi.nlm.nih.gov/pubmed/27252909
http://dx.doi.org/10.1016/j.molcel.2007.10.019
http://www.ncbi.nlm.nih.gov/pubmed/17996713
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Sorting Roles for CD and CI Translation in Differentiating Meiotic Cells 
	Translational Control in Development Has Focused on Repression 
	Germ Cell Translation Does Not Follow the Rules; the Prevalence of CI Translation in Frog Oocytes 
	A Use for CI Translation in Germ Cell Homeostasis; Evidence from Worm Oocytes 
	Germ Cells also Use CI Translation of “Death-Promoting” mRNAs to Differentiate 
	Even CD Translation in Germ Cells Comes in Multiple Flavors 
	Potential Relevance of CI Translation to RNA Viruses That Cause Birth Defects 

	Conclusions 
	References

