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Abstract

Meniscus tears of the knee are among the most common orthopedic knee injury. Specifi-

cally, tears of the posterior root can result in abnormal meniscal extrusion leading to

decreased function and progressive osteoarthritis. Despite contemporary surgical treat-

ments of posterior meniscus root tears, there is a low rate of healing and an incidence of

residual meniscus extrusion approaching 30%, illustrating an inability to recapitulate native

meniscus function. Here, we characterized the differential functional behavior of the medial

and lateral meniscus during axial compression load and dynamic knee motion using a

cadaveric model. We hypothesized essential differences in extrusion between the medial

and lateral meniscus in response to axial compression and knee range of motion. We found

no differences in the amount of meniscus extrusion between the medial and lateral menis-

cus with a competent posterior root (0.338mm vs. 0.235mm; p-value = 0.181). However,

posterior root detachment resulted in a consistently increased meniscus extrusion for the

medial meniscus compared to the lateral meniscus (2.233mm vs. 0.4705mm; p-value <
0.0001). Moreover, detachment of the posterior root of the medial meniscus resulted in an

increase in extrusion at all angles of knee flexion and was most pronounced (4.00mm ±
1.26mm) at 30-degrees of knee flexion. In contrast, the maximum mean extrusion of the lat-

eral meniscus was 1.65mm ± 0.97mm, occurring in full extension. Furthermore, only the

medial meniscus extruded during dynamic knee flexion after posterior root detachment.

Given the differential functional behaviors between the medial and lateral meniscus, these

findings suggest that posterior root repair requires reducing overall meniscus extrusion and

recapitulating the native functional responses specific to each meniscus.

Introduction

The menisci are fibrocartilage structures that distribute load across the knee joint’s articular carti-

lage during activity [1]. Tears of the meniscus are among the most common orthopedic knee
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injuries, with an annual incidence of approximately 61 per 100,000 persons [2]. Posterior root

tears (PRTs) are a specific type of meniscus tear resulting in the detachment of the posterior root

ligament resulting in extrusion of the meniscus from between the femur and tibia [3]. Previous

studies demonstrate biomechanical alterations of the knee after PRT resulting from increased

meniscus extrusion leading to subsequent osteoarthritis (OA) [4–6]. Posterior root repair offers a

promise of restoring normal contact forces across the articular cartilage [5] and improving clinical

outcomes in the short term [7]. However, a critical challenge to be resolved is the recapitulation of

native meniscus function and prevention of knee OA [8–10]. There have been considerable efforts

to minimize meniscus extrusion by improving surgical techniques and fixation strength of the

suture repair; however, there remains a high rate of postoperative meniscus extrusion [4, 11–14].

Furthermore, recent studies suggest that there are essential differences in PRTs between the

medial and lateral meniscus. For instance, medial meniscus PRTs are associated with degener-

ative changes and advanced age [15], while lateral meniscus PRTs are most commonly associ-

ated knee trauma, such as anterior cruciate ligament ruptures [16]. In a recent clinical study

comparing the medial and lateral meniscus PRTs, Koo et al. found a higher rate and increased

amount of meniscus extrusion of the medial meniscus compared to the lateral meniscus on

static magnetic resonance imaging (MRI) after PRTs [1].

To demonstrate the effects of knee activity on meniscus motion, here we compared menis-

cus extrusion of the medial and lateral meniscus during axial compression and dynamic

motion before and after detachment of the posterior root. The objective of this study was to

understand essential differences in response to PRTs between the medial and lateral meniscus.

Materials and methods

Cadaveric dissection and posterior root detachment

The University of Wisconsin-Madison Institutional Review Board approved the study under

2016–1316, and as a cadaveric study with anonymous data analysis, written consent was not

required. Human knees were obtained from the Anatomic Gifts Registry. Knee specimens

were cleared of soft tissue leaving the capsule intact as previously described by Allaire et al [8].

The femur length was reduced to 6-inches and the tibia length to 4-inches to accommodate

testing. Holes were drilled through the distal end of the bones for pin placement to help fixate

the potting to the bone. Shafts were pinned with 3.2-mm steel pins and potted in tubular

molds using auto body filler. The molds were 44-mm in diameter for the femur and 56-mm

for the tibia to fit in custom fabricated grips. The condition of a torn posterior meniscus root

was simulated by transection of the meniscus within 1-cm of the root attachment using an

arthroscopic meniscus knife as described by LaPrade et al [17]. For the lateral meniscus, the

meniscal femoral ligaments were left intact.

Equipment and setup

Custom fabricated grips were attached to an MTS 858 Bionics servo-hydraulic test system (Fig

1). The lower grip was fabricated using an axle system to release the knee rotational (medial/

lateral) degree of freedom. The axle system was then mounted on two crossed roller slides

(Deltron NBT-6160A) in an X-Y arrangement to allow degree of freedom release of the

medial/lateral and anterior/posterior planes (Fig 1A). Data acquisition included the specimen

load, actuator displacement, and meniscus displacement, using a Lord Microstrain model

M-DVRT-6 transducer (M-DVRT-6, 6.0mm stroke micro-miniature DVRT linear displace-

ment Transducer, and DEMOD-DC, Miniature DC input, DC output signal conditioner,

LORD Corporation, 459 Hurricane Lane, Suite 102, Williston, Vermont 05495) (Fig 1B). Data

were acquired using a Data Translation 16-bit digital to analog converter. The force generated
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during each testing protocol was recorded in real-time. The upper grip was fabricated to allow

positioning the knee in the range of zero to one hundred degrees of flexion for mechanical test-

ing during a dynamic range of motion (Fig 1C).

Fig 1. Photographs of MTS testing setup. (A) Custom base (yellow bidirectional arrow) allowed for three degrees of freedom, and

femoral potting (top) allowed for control of knee flexion. (B) Photograph of cadaveric testing. A displacement sensor (white arrow)

was placed at the posterior meniscus root attachment 1-cm from the insertional footprint and in the tibia’s periosteum at the knee’s

midline (capsule reflected only for demonstration purposes). (C) Photograph demonstrating testing setup during knee range of

motion. An electronic goniometer arm (red star) captured real-time (60 Hz) knee angle during range of motion testing. (D)

Photograph of the calibrated femoral potting (top) used for axial compression testing.

https://doi.org/10.1371/journal.pone.0259678.g001
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Testing protocols

Protocols simulated clinical knee activities during weight-bearing, including axial compression

loading and passive non-weight-bearing dynamic range of motion. The amount of load deliv-

ered across the knee simulated that of a 75-kg person [18–20]. Specimens were tested in the

following sequence: posterior root intact and posterior root detached. Axial compression load:

Testing was performed in load control in the axial direction. A ramp to a constant load was

completed to simulate a load from 25-N preload to full weight-bearing (1800-N) at 0.1-second

ramp to set load, with a manual return to preload in full knee extension (0-degrees of knee

flexion). A sinusoidal cyclic load to simulate a walking gait at 20-cycle compressive ½ cycle

sine wave, 25-N to set load with 1-sec cycle (0.3-second down, 0.3-second up, 0.4-second

pause to stimulate swing phase of gait). This test was performed across 0-, 30-, 45-, 60- and

90-degrees of knee flexion. Dynamic non-weight-bearing range of motion: Each knee was taken

through a range of motion from 0- to 100-degrees of flexion. Meniscus extrusion was linked to

range of motion data detected with a calibrated custom electronic goniometer in real-time.

Statistical analysis

Means and standard deviations or standard error of the means were calculated. Between group

comparisons were performed using a Student’s t-test for two groups and analysis of variance

(ANOVA) for more than two groups. Pairwise comparisons and post-hoc adjustments were

performed if the ANOVA model was statistically significant. Linear regression was used to

model the relationship between knee flexion and meniscus extrusion. A p-value < 0.05 was

considered statistically significant. Calculations were performed using GraphPad Prism 9.0.1

for Mac (San Diego, CA, USA).

Priori power analysis

Based upon our preliminary data demonstrating a variance of 3.0-mm between groups and a

variance of 1.27-mm within groups, a total of 3.27 meniscus roots per group would need to be

tested to achieve 80% with a balanced one-way ANOVA with a 5% significance level.

Results and discussion

This study used a total of eleven cadaveric specimens (six for testing the medial meniscus and

five for testing the lateral meniscus). There were six males and five females, seven right knees

and four left knees, with a mean age of 69.7 years (range: 36–84 years) (S1 Table). The overall

amount of extrusion with a competent posterior meniscus root did not differ between the

medial and lateral meniscus. However, overall medial meniscus extrusion was increased com-

pared to the lateral meniscus in response to detachment of the posterior root (Table 1). Data is

available at doi:10.5061/dryad.1ns1rn8v9 [21].

With a competent posterior root, a constant axial compressive load across the knee in full

extension result in a mean extrusion of 0.436mm (± 0.459mm) for the medial meniscus and

0.270mm (± 0.250mm) for the lateral meniscus (p-value = 0.893). Detachment of the posterior

meniscus root resulted in increased meniscus extrusion for both the medial (Fig 2A) and lat-

eral meniscus (Fig 2B). Extrusion of the medial meniscus was increased compared to the lateral

meniscus after posterior root detachment (Fig 2C).

To test the hypothesis that meniscus extrusion is a function of knee flexion, knees were sub-

jected to cyclic axial compression loading at knee flexion angles at 0-, 30-, 45-, 60-, and

90-degrees. Overall, the mean extrusion of an intact medial meniscus was seen at 45-degrees of

knee flexion (0.7235mm ± 0.298mm). However, the mean extrusion of an intact medial
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meniscus was not dependent on the degree of knee flexion (p-value = 0.304). Conversely,

detachment of the posterior root resulted in an increase in extrusion of the medial meniscus

across all tested degrees of knee flexion (Fig 3A). The greatest extrusion was recorded at

30-degrees of knee flexion (4.000 ± 01.259mm; p-value = 0.015). Loading the knee in axial

compression at various degrees of knee flexion resulted in no difference in extrusion of an

intact lateral meniscus (p-value = 0.787). Knee flexion of 45-degrees resulted in the greatest

extrusion of an intact lateral meniscus (0.235mm ± 0.007mm). In agreement with the previous

findings of extrusion of the lateral meniscus after posterior root detachment under constant

axial compression loading in full knee extension, cyclic loading resulted in an increase in lat-

eral meniscus extrusion after posterior root detachment at 0-degrees of knee flexion. However,

none of the other knee flexion categories resulted in increased extrusion of a detached poste-

rior lateral meniscus root compared to an intact root (Fig 3B). Although there was no differ-

ence in extrusion of an intact medial meniscus posterior root compared to a lateral meniscus,

detachment of the posterior root resulted in increased extrusion of the medial meniscus com-

pared to the lateral meniscus at all degrees of knee flexion (Fig 3C). Thirty-degrees of knee

Table 1. Summary data for medial and lateral posterior root extrusiona.

Condition Medial Meniscus Lateral Meniscus p-valueb

Intact 0.338 ± 0.296 0.235 ± 0.242 0.181

Torn 2.233 ± 1.270 0.4705 ± 0.566 0.001

a Data represents mean ± standard deviation. n = 11 aggregated across all testing conditions.
b Student’s t-test comparing medial meniscus and lateral meniscus displacement. Bold indicates statistical significance.

https://doi.org/10.1371/journal.pone.0259678.t001

Fig 2. Comparison of meniscus extrusion between the medial and lateral meniscus under constant axial compression load. (A) Meniscus extrusion comparing

intact versus detached condition for the medial meniscus. (B) Meniscus extrusion comparing intact versus detached condition for the lateral meniscus. (C) Comparison

of meniscus extrusion between the medial and lateral meniscus. n = 5 cadavers aggregated in triplicate. ns = not statistically significant; ���� p-value< 0.0001.

https://doi.org/10.1371/journal.pone.0259678.g002
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flexion resulted in the greatest difference between the medial and lateral meniscus extrusion of

a torn posterior root (3.805mm ± 0.0.505mm; p-value < 0.0001).

To test the hypothesis that cyclic range of knee motion without axial compression load

results in an increase in meniscus extrusion, cadaveric knees were subjected to dynamic range

of motion from full extension to maximum allowable flexion capturing meniscus extrusion

and range of motion with an electric goniometer in real-time. There was a direct linear rela-

tionship between increasing knee flexion and meniscus extrusion with an intact posterior root

for both the medial and lateral meniscus (Fig 4A). However, detachment of the posterior root

resulted in a direct nonlinear relationship between increasing knee flexion and meniscus

extrusion for the medial meniscus with a maximum of 4.59mm of extrusion occurring at

Fig 3. The effects of knee flexion on meniscus extrusion during axial compression loading. (A) Comparison of meniscus extrusion between intact and detached

posterior meniscus root of the medial meniscus. (B) Comparison of meniscus extrusion between intact and detached posterior meniscus root of the lateral meniscus. (C)

Comparison of meniscus extrusion between medial and lateral meniscus. n = 5. Titles represent the angle of knee flexion in degrees. ns = not statistically significant; � p-

value< 0.05; �� P-value< 0.01; ���� p-value< 0.0001.

https://doi.org/10.1371/journal.pone.0259678.g003
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19.4-degrees of knee flexion and 2.69mm occurring at 63.8-degrees of knee flexion for the lat-

eral meniscus (Fig 4B). In comparison, detachment of the lateral meniscus posterior root

resulted in increased variability in meniscus extrusion, but a direct linear relationship between

knee flexion and meniscus extrusion was preserved (Fig 4B). Means and standard deviations

were calculated and compared between the medial and lateral meniscus for each 10-degrees of

knee flexion (Fig 4C). The mean extrusion of an intact posterior medial root was greater than

an intact posterior lateral root for knee flexion greater than 40-degrees, although this did not

reach the threshold of statistical significance. However, detachment of the posterior root

resulted in increased extrusion of the medial meniscus compared to the lateral meniscus for

knee flexion greater than 10-degrees.

Tears of the posterior meniscus roots account for up to 21% of all meniscus tears [3]. PRTs

of the medial meniscus treated with partial meniscectomy have a conversion rate to total knee

replacement of up to 35% [22], and PRTs of the lateral meniscus are associated with anterior

crucial ligament tears [1, 16]. The stark association between PRT and clinically progressive dis-

ease is purportedly due to the functional consequences, namely meniscus extrusion and the

resultant abnormal contact stresses across the knee joint [8, 23]. For example, one study found

that a PRT of the medial meniscus caused a 25% increase in peak contact pressure compared

to an intact meniscus [8]. A more recent study used a finite element analysis to demonstrate

that a PRT of the lateral meniscus caused maximum contact pressure and contact stress values

approaching that found after total lateral meniscectomy [23].

Although medial meniscus PRTs treated without repair are associated with progressive

joint degeneration, results of surgical repair are not uniformly superior. For example, after

medial meniscus repair, MRI evaluation has demonstrated continued meniscus extrusion [24]

and low healing rates [25]. Similarly, the paucity of research regarding the clinical implications

of PRTs of the lateral meniscus demonstrates lax healing of up to 21% [26], and a recent sys-

tematic review was unable to conclude whether root repair restored the functional hoop stress

characteristics required of the meniscus to distribute compression forces across the knee

evenly [27]. Furthermore, a recent study found characteristic clinical differences between the

medial and lateral meniscus PRTs, including the association of trauma in lateral meniscus

PRTs, and older age and higher grade of OA changes of the knee in medial meniscus PRTs [1].

Although surgical repair strategies can repair the posterior root to the tibia, the recapitulation

of meniscus function remains a significant challenge in clinical orthopedics. Here we exam-

ined the behavior of the meniscus in response to both axial compression load and dynamic

range of motion of the knee.

Our model successfully captured the amount of meniscus extrusion under axial compres-

sion and knee motion, as evidenced by the increased extrusion amount after detachment of

the posterior root in both medial and lateral menisci. Interestingly, the findings of increased

meniscus extrusion after detachment of the posterior root in both the medial and lateral

meniscus suggest the loss of structural integrity and the possibility of compromised resistance

to hoop stress after PRTs of both medial and lateral meniscus. Indeed, the detection of menis-

cus extrusion of MRI has been reported to be evident after PRT clinically [1, 4, 28]. Moreover,

the degree of extrusion is associated with the progression of articular cartilage damage for the

medial meniscus [10].

Here, we found no difference in meniscus extrusion with an intact posterior root between

the medial and lateral meniscus under a constant axial compression load across a fully

extended knee. However, detachment of the posterior root resulted in a significant increase in

both the medial and lateral meniscus extrusion compared to an intact posterior root. Interest-

ingly, extrusion of the medial meniscus was increased compared to the lateral meniscus after

posterior root detachment. These results are consistent with Koo et al., who reviewed MRIs of
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patients with PRTs and found mean meniscal extrusion of 4.2mm for the medial meniscus and

0.9mm for the lateral meniscus [1].

The effects of knee flexion on meniscus extrusion are not well described. Previous clinical

research has examined MRI findings after PRTs [1, 4, 28–30], and biomechanical protocols

aim to test suture repair constructs in a fixed knee position [5, 12, 31–35]. Again, we found

small amounts of extrusion when the posterior root was intact with no difference between the

medial and lateral meniscus regardless of knee flexion angle. Similarly, there were differences

Fig 4. The effects of cyclic range of motion without axial compression on meniscus extrusion. (A) Scatterplot of the

relationship of knee range of motion and meniscus extrusion for the medial and lateral meniscus with an intact

posterior root. (B) Scatterplot of the relationship of knee range of motion and meniscus extrusion for the medial and

lateral meniscus with the posterior root detached. (C) Comparison of meniscus extrusion between the medial and

lateral meniscus. n = 5. Top left: Regression equation represented by the red line. ���� p-value< 0.0001.

https://doi.org/10.1371/journal.pone.0259678.g004
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in the medial and lateral meniscus behavior after detachment of the posterior root. The medial

meniscus extrusion increased after posterior root detachment at every knee flexion angle. The

greatest amount of extrusion was found at 30 degrees of knee flexion (mean

4.00mm ± 1.26mm). However, the lateral meniscus extruded the greatest amount after poste-

rior root detachment in full extension (mean 1.645mm ± 0.971mm). Moreover, we found that

lateral meniscus extrusion did not increase significantly after posterior root detachment when

subjected to axial compression load at greater angles of knee flexion. Compared to the lateral

meniscus, the medial meniscus demonstrated increased extrusion at all knee flexion angles

(mean difference 2.49mm ± 0.90mm). These findings suggest that compared to the lateral

meniscus, extrusion of the medial meniscus may increase during axial compression load with

the knee flexed, such as what may occur during ambulation. Moreover, static MRI protocols

with the knee in full extension may underestimate the degree of extrusion in PRTs of the

medial meniscus. On the other hand, these data suggest that axial compression load in flexed

knee angles results in less extrusion in PRTs of the lateral meniscus.

While this model successfully demonstrates that PRTs increase meniscus extrusion, partic-

ularly in the medial meniscus, under axial compression load, we also examined the behavior of

the meniscus when subjected to dynamically flexing the knee. Similar to axial compression

load testing results, dynamic flexion of the knee resulted in differing behavior of the medial

compared to the lateral meniscus with an incompetent posterior root. We found that when the

posterior root was intact and competent, there was a direct linear relationship between knee

flexion and meniscus extrusion for both the medial and lateral meniscus. Detaching the poste-

rior root resulted in a nonlinear relationship between knee flexion and meniscus extrusion for

the medial meniscus. Although this relationship is complex, it is clear that across lower degrees

of knee flexion, meniscus extrusion increases rapidly and plateaus at knee flexion angles

greater than about 50 degrees. The lateral meniscus responded differently after posterior root

detachment. Although there was more scatter and an increase in the average extrusion during

knee range motion with an incompetent posterior root, a direct linear relationship was pre-

served. Furthermore, compared to the medial meniscus, the amount of extrusion was signifi-

cantly less for the lateral meniscus at knee flexion angles greater than 10-degrees.

Together these findings suggest that PRTs compromise the functional integrity of both

menisci and result in an increase in meniscus extrusion compared to a competent posterior

root consistent with previous biomechanical studies. For example, Camarda et al. found that

using three single loops enhanced the biomechanical behavior for suture repair [31]. Similarly,

Daney et al. used a cadaveric model and found that using a centralization suture reduced

extrusion and restored tibiofemoral contact mechanics [12]. However, we found that the

behavior of meniscus extrusion differed between the medial and lateral meniscus. Indeed,

these findings suggest that while reducing meniscus extrusion is a requirement of suture

repair, it may not be sufficient to recapitulate native function.

Here, we identified that the essential differences after PRTs between the medial and lateral

meniscus are the extrusion and behavior of extrusion during motion. This study is the first to

directly compare the extrusion between the medial and lateral meniscus with both a competent

and incompetent posterior root condition. Moreover, we demonstrate that a nonlinear rela-

tionship exists in response to PRTs in the medial meniscus, which may be critical in optimiz-

ing repair following PRTs. Finally, we also demonstrate that the extrusion of the lateral

meniscus is variable and results in significantly less extrusion in response to PRTs. The clinical

significance of these findings are that PRTs of the lateral meniscus may not result in the same

biomechanical changes as is found after PRTs of the medial meniscus, assuming a stable ACL

and meniscofemoral ligament. While cadaveric tissue may not replicate that of living tissue,

our model had no occurrences of tissue failure.
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Similarly, we recognize that this is a “time-zero” study and does not directly consider the

effects of any biologic healing, concomitant surgical procedures (e.g., anterior cruciate liga-

ment reconstruction), or lower extremity alignment variability. However, at present, the char-

acterization of meniscus extrusion in vivo is limited. Despite these limitations, this study

further demonstrates the need to improve the fixation of posterior meniscus roots, particularly

following medial root tears.

Conclusions

Minimal extrusion occurs with a competent posterior meniscus root for both the medial and

lateral menisci. The functional behavior associated with a detached posterior meniscus root

are different between the medial and lateral meniscus. While strictly limiting the amount of

meniscus extrusion after PRTs is necessary, it may not be sufficient to recapitulate native

meniscus function.
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