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Abstract

Stochastic fluctuations in gene expression give rise to distributions of protein levels across cell populations. Despite a
mounting number of theoretical models explaining stochasticity in protein expression, we lack a robust, efficient,
assumption-free approach for inferring the molecular mechanisms that underlie the shape of protein distributions. Here we
propose a method for inferring sets of biochemical rate constants that govern chromatin modification, transcription,
translation, and RNA and protein degradation from stochasticity in protein expression. We asked whether the rates of these
underlying processes can be estimated accurately from protein expression distributions, in the absence of any limiting
assumptions. To do this, we (1) derived analytical solutions for the first four moments of the protein distribution, (2) found
that these four moments completely capture the shape of protein distributions, and (3) developed an efficient algorithm for
inferring gene expression rate constants from the moments of protein distributions. Using this algorithm we find that most
protein distributions are consistent with a large number of different biochemical rate constant sets. Despite this
degeneracy, the solution space of rate constants almost always informs on underlying mechanism. For example, we
distinguish between regimes where transcriptional bursting occurs from regimes reflecting constitutive transcript
production. Our method agrees with the current standard approach, and in the restrictive regime where the standard
method operates, also identifies rate constants not previously obtainable. Even without making any assumptions we obtain
estimates of individual biochemical rate constants, or meaningful ratios of rate constants, in 91% of tested cases. In some
cases our method identified all of the underlying rate constants. The framework developed here will be a powerful tool for
deducing the contributions of particular molecular mechanisms to specific patterns of gene expression.
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Introduction

Stochasticity in transcription and translation produces fluctua-

tions in both RNA [1–4], and protein [5–16]. On a population

level these fluctuations manifest as a distribution of RNA and

protein counts across cells. Both protein and RNA distributions

are thought to contain information about the molecular processes

governing transcription and translation, though how much

information is unclear [17]. Learning the mechanistic details of

a gene’s expression from its stochastic signature requires (1) a

method to measure cell-to-cell expression variability experimen-

tally, (2) an explanatory stochastic model that simulates this

variability in silico, and (3) a method for fitting the model

parameters from experimental data.

There are consensus methods for accomplishing tasks (1) and

(2). Investigators routinely measure protein expression stochasticity

by recording reporter gene fluctuations with flow cytometry

[5,11,14,16,18] or microscopy [1,3,8,19–21]. The result is a

protein count distribution that reflects cell-to-cell variation in gene

expression. To simulate this cell-to-cell variation in silico, investi-

gators developed a stochastic model of gene expression (Fig. 1),

which has proven to be an effective abstraction of the central

dogma [1,3,5,8,10,14,20,22]. This model is parameterized by six

central dogma rate constants (CDRCs) that govern a gene’s ON

(ton) and OFF (toff ) transitions, transcription from the active state

(km), translation of RNAs (kp), and degradation of RNA (dm) and

protein (dp). With a specific set of CDRCs the gene expression

model depicted in Fig. 1 can be simulated with the Gillespie

algorithm [23] to produce the corresponding protein count

distribution [18,24–29].

Task (3), fitting the model of stochastic gene expression to

protein distributions, has no general solution. One possible

approach would be to test candidate CDRC sets by Gillespie-

simulating their corresponding distributions until a CDRC set that

best approximates an experimentally measured distribution is

identified. Several investigators have shown the utility of this

approach, however, the systems being modeled comprise RNA

expression only, where the number of molecules is low [4,30]. The

well-documented inefficiency of the Gillespie algorithm at even

modestly high molecule counts [31–36] renders this approach

untenable for parameter estimation of protein distributions, where

the average protein expression of single genes exceeds 12000

proteins per cell [37].

An alternative approach is to analytically solve for the shape of

the protein distribution as a function of the CDRCs. This

approach has yielded some elegant solutions; however, (1) the
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analytical solutions generally involve hypergeometric or gamma

functions, themselves ill-suited for parameter estimation, and more

problematically (2) each solution makes specific assumptions about

a gene’s expression [17,22,25,28,38–40]. Some methods are valid

only when protein count is high [25,39], while most require RNA

degradation to be orders of magnitude faster than protein

degradation [22,25,28,38,40]. Several only apply when genes do

not have an OFF state [9,25] or the ON-OFF transitions are rapid

[39]. Three approaches do not model RNA fluctuations

[17,38,40]. The result is a fundamental limitation in the

applicability of these methods, since it is usually unknown

beforehand whether a particular gene conforms to the basic

assumptions of these methods.

Even an assumption-free analytical solution to the protein

distribution may not adequately solve the fitting problem. Munsky

et al determined that degeneracy in the solution space of CDRCs

means that ratios of the CDRCs, but not the CDRCs themselves,

can be extracted from steady state protein distributions, and

further recommends temporal measurements for pinpointing

individual CDRC values [41]. Similarly, Ingram, Stumpf and

Stark demonstrated that many different combinations of CDRCs

can give rise to the same translational burst distribution [33]. The

authors suggested supplementing the burst distribution with the

steady state protein distribution, but were hindered in part by the

inefficiency of the Gillespie algorithm [33]. Any method for

determining the CDRCs that underlie protein distributions must

account for the expected degeneracy of CDRCs that can produce

a given protein distribution. Given this degeneracy, it is an open

question how much information any given protein distribution

contains about the CDRCs that underlie its shape. Mechanistic

information about the processes that produce an observed protein

distribution will most likely come from analyzing ensembles of

solutions that fit a particular protein distribution.

In this work we address how much information is contained in

protein distributions. The principal result is an assumption-free

solution to the steady state protein distribution. Our approach

consists of two parts: (1) analytical solutions to the first four

moments of the protein distribution, and (2) an efficient,

exhaustive fitting algorithm that returns ensembles of CDRC sets

that map to a particular set of moments. The main power of our

approach is that it returns all CDRC solution sets that are

consistent with a given protein distribution. These solution set

ensembles were always informative. Even in cases where we

observe degeneracy in both the individual CDRCs and their

ratios, the set of solutions provides mechanistic information about

gene behavior, for example distinguishing between genes under-

going transcription bursts from those that transcribe constitutively.

We compared our method directly to the Friedman analytical

solution [25]. While the model solved analytically by Friedman et

al does not incorporate an OFF state like other solutions

[22,28,29], only the Friedman result enables rapid estimation of

the causative CDRC ratios. Investigators recently took advantage

of this result to infer km=dp and kp=dm from protein distributions

measured by flow cytometry [42–44]. We found that in the

restrictive regime where the Friedman assumptions hold, our

method not only identifies both Friedman ratios, but often obtains

estimates for quantities inaccessible to the Friedman method,

including the average RNA count, kp=dp, and in some cases even

individual CDRCs.

Without assuming any regime, we find that supplementing our

fitting algorithm with experimentally determined limits for each

CDRC permits some CDRCs to be obtained individually. More

Figure 1. Central dogma model of gene expression with gene ON and OFF states.
doi:10.1371/journal.pcbi.1003596.g001

Author Summary

Proteins, the molecular machines encoded by our genes,
serve essential roles in every living cell. Investigators were
therefore surprised to find widely variable levels of a
particular protein within populations of genetically iden-
tical cells. This variation in protein level, called stochasti-
city, arises from the chemical nature of the processes that
underlie protein production. The ‘‘central dogma’’ of
biology dictates that the DNA encoding a particular gene
transmits information via RNA to molecular factories called
ribosomes in order to create proteins. Each step in
transcription and translation introduces some variation,
or stochasticity, into the production of the protein. In the
current work, we tackled how one might learn more about
the machinery responsible for creating proteins by the
character of the stochasticity in the central dogma process.
We find that many different mechanisms can explain any
given stochastic protein signature. Even though there
were many explanations for any particular pattern of
stochasticity, the set of explanations still inform on how a
given gene creates its protein. Our mathematical and
computational framework will permit others to better
understand how the machinery that expresses genes
works. This, in turn, will enable investigators to better
predict how a given mutation is likely to affect gene
expression.

Analyzing Stochasticity in Protein Expression
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often, CDRC ratios are well conserved among the ensemble of

solution outcomes. We can identify at least one CDRC in 40% of

regimes tested, and at least one CDRC ratio in 91%. Our

methodology provides a general, assumption-free framework for

extracting information from protein distributions. We anticipate

that our approach will be a powerful tool for quantitatively

characterizing the molecular machinery that underlies gene

expression.

Results

Computing moments from Central Dogma Rate
Constants

The stochastic behavior of the central dogma model (Fig. 1) is

exactly described by the chemical master equation (CME), Eq. 1 &

2.

dP0(m,q)

dt
~toff P1(m,q)zdm(mz1)P0(mz1,q)

zkpmP0(m,q{1)zdp(qz1)P0(m,qz1)

{(mdmzmkpzdpqzton)P0(m,q)

ð1Þ

dP1(m,q)

dt
~tonP0(m,q)zdm(mz1)P1(mz1,q)

zkpmP1(m,q{1)zdp(qz1)P1(m,qz1)

zkmP1(m{1,q)

{(kmzmdmzmkpzdpqztoff )P1(m,q)

ð2Þ

Here we separated the CME into two equations that describe the

system in its ON (P1) and OFF (P0) states. P0(m,q)zP1(m,q) is

the probability that a single cell will contain m RNAs and q
proteins. Thus, the probability space is a joint distribution for all

possible combinations of ½0,?) RNAs and ½0,?) proteins for each

promoter state.

The challenge is to use the CME to determine the CDRCs that

underlie an experimentally determined protein distribution. With

the CME model and a set of input CDRC parameters, a protein

distribution is determined by either Gillespie-simulating the CME,

or by solving the CME analytically. However, as discussed above,

numerical simulations are prohibitively expensive, and the

analytical solutions are valid only under restrictive assumptions.

To address this challenge we chose a hybrid approach that takes

advantage of the moments of a protein distribution as descriptors

of the protein distribution’s shape. A significant body of work

establishes the relationship between the CDRCs and the first two

moments, mean and variance [5,9,10,13,15,25,26,28,39,45].

However the mean and variance alone do not sufficiently

characterize the shape of an experimentally measured protein

distribution [24,41,46]. We therefore extended previous work by

solving for the third (skewness) and fourth (kurtosis) steady state,

central moments of protein distributions as functions of the six

CDRCs.

To analytically derive protein skewness and kurtosis, we

adopted the approach of Sánchez and Kondev in which the i-th

moment is computed by multiplying both Eq. 1 and 2 by qi and

summing over all possible q [45]. Instead of assuming instanta-

neous geometric distributions of protein, however, we explicitly

modeled protein translation. When translation is treated in this

way, the j-th protein moment SqjT depends on all RNA-protein

covariate moments whose sum equals j. The result is the following

expansion for the i-th and j-th moments and covariant moments

between the RNA and protein distributions.

dSmi
0q

j
0T

dt
~toff Smi

1q
j
1T{tonSmi

0q
j
0T

zdmSm0(m0{1)iq
j
0zmiz1

0 q
j
0T

zkpSmiz1
0 (q0z1)j{miz1

0 q
j
0T

zdpSmi
0(q0(q0{1)j{q

jz1
0 )T

ð3Þ

dSmi
1q

j
1T

dt
~tonSmi

0q
j
0T{toff Smi

1q
j
1T

zkmS(m1z1)iq
j
1{mi

1q
j
1T

zdmSm1(m1{1)iq
j
1zmiz1

1 q
j
1T

zkpSmiz1
1 (q1z1)j{miz1

1 q
j
1T

zdpSmi
1(q1(q1{1)j{q

jz1
1 )T

ð4Þ

The result is a set of 28 linear ODE partial moment equations

whose time derivatives we set to zero and solved simultaneously to

obtain protein skewness and kurtosis. A complete derivation is

provided in the Supplement.

The equilibrium equations for mean (Eq. 5) and variance (Eq.

S66) agree exactly with previously published analytical results [47].

Equations for skewness and kurtosis are provided as implemen-

tations in both MATLAB (2012a, The MathWorks, Natick, MA)

and C++ (Data S2). We checked these equations against Gillespie-

simulated protein distributions generated using diverse sets of

CDRCs. We then asked whether the sample moments of these

simulated protein distributions agreed with our analytical

moments. In all cases we found that the Gillespie simulations

converged on our analytical solutions. An example convergence is

shown in Fig. S1. Thus, we can express the first four moments of a

protein distribution as functions of the CDRCs.

Finding CDRC sets from moments
The results so far are exact equations relating the CDRCs to the

moments of protein distributions. To determine the CDRCs that

underlie an experimentally measured protein distribution we must

solve the inverse problem; we must implement a fitting method

that takes the moments of a protein distribution as input, and

returns the best estimate of the causative CDRCs. When

considering estimation procedures, we took under consideration

a previous result that steady state protein distributions alone

cannot contain enough information to directly fit CDRCs [41].

Corroborating that observation, Ingram et al found that even

constraining on both translational burst size and one of the

degradation rates, dm or dp, revealed degeneracy in the remaining

unknown CDRCs [33]. Since standard fitting approaches behave

erratically when solution spaces comprise flat or valley shaped

minima, we were motivated to consider alternatives more robust to

parameter space degeneracy.

The approach we took is to exhaustively test all of six-dimensional

CDRC space within the physiological ranges for each CDRC.

Physiological ranges for each CDRC were drawn from various genome-

wide analyses of S. cerevisiae. The degradation and synthesis rates’ ranges

were set to be d (min)
p ~:00045s{1, d (max)

p ~1s{1, d(min)
m ~:000628s{1,

d (max)
m ~3:1s{1, k(min)

m ~:01s{1, k(max)
m ~200s{1, k(min)

p ~:5s{1, and

Analyzing Stochasticity in Protein Expression
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k(max)
p ~55s{1 [11,48]. From the few in vivo measurements of ton and toff

[8,49] we extrapolated several orders of magnitude, setting these

ranges to be t(min)
on ,t

(min)
off ~:001s{1, and t(max)

on ,t
(max)
off ~50s{1.

Our brute force fitting routine gains efficiency by leveraging the

fact that the expression for the mean is simple (Eq. 5). Given

physiological ranges for each CDRC and an equation for the

mean, each choice for the value of one CDRC analytically limits

the values of yet-to-be-assigned CDRCs. When the algorithm

reaches the sixth and last CDRC, only one value of this CDRC

satisfies the mean equation. In this way we reduce the complexity

of our CDRC search by at least one dimension. The exact

algorithmic and mathematical details of this Analytically Con-

strained Exhaustive Search (ACES) routine are a central result of

this work, and are presented in Materials and Methods and

continued in the Supplement. We also provide an ACES

implementation in C++ (Data S2).

The ACES algorithm is efficient. If we examine 83 guesses

across the range for each CDRC, the ACES algorithm tests 836, or

327 billion possible parameter sets, and returns all solutions that

satisfy the input moments within some error tolerance. Here we

chose a cutoff of ,1%, though we envision adjusting the tolerance

to be consistent with measured experimental error in the

moments. A typical ACES execution takes approximately one

minute at a resolution of 83. Testing such a large number of

CDRC sets is only possible because (1) calculating the moment

objective functions is fast, (2) we check the most efficiently

calculated objective function first (variance), and the least efficient

objective function (kurtosis) last, thus our most expensive function

is called least frequently, and (3) we only test candidate CDRC sets

that we already know satisfy the mean moment equation exactly. It

is (3) that contributes most substantially to the efficiency of ACES.

Generating a library testing all parameter regimes
With a set of equations in hand that relate the CDRCs to the

moments of protein distributions, and an algorithm that uses those

equations to fit CDRCs to sample moments, we now have a

method for determining the CDRCs that underlie an experimen-

tally measured protein distribution. To evaluate the utility of our

method, we tested its ability to recover CDRC values from protein

distributions defined by known CDRC sets.

We chose CDRC sets to test keeping in mind that a key

drawback with other methods is that they only apply in specific

parameter regimes. Our method makes no such assumptions, and

so should be applicable in every regime of CDRC values. To test

‘‘every regime’’ in a course-grained manner, we constructed a

representative library of CDRC sets. Because each of the six

CDRCs can vary over several orders of magnitude, we selected

five values spaced evenly in log space across the physiological

range for each CDRC (Table S1). Our initial library contains all

possible combinations of the 5 values for each of the 6 CDRCs, or

56~15625 CDRC sets. We then removed all CDRC sets where

the associated mean protein count was less than 17 or greater than

100,000, leaving 8053 CDRC sets. The lower limit was chosen as

the lower limit of detection for fluorescent protein molecules, since

our method is only applicable when fluorescence is measurable

experimentally [50]. The upper limit was chosen arbitrarily to

capture .98% of Saccharomyces cerevisiae genes [37].

To assess how well ACES recovers CDRCs across all parameter

regimes, we applied ACES to each of the 8053 input CDRC sets.

For each CDRC set in the library, we computed the moments of

its protein distribution using our analytical solutions, and gave

these moments to our ACES algorithm as input. ACES then

returned a list of solutions, where each solution is a set of values for

each of the six CDRCs (Fig. 2). Every solution returned by ACES

produces moments that match the input moments with ,1%

relative error for each moment.

The number of solutions returned by the method depended on

the number of subdivisions probed by the ACES algorithm. At a

resolution of 83 (each CDRC tested at values ranging over 83

divisions across its physiological range), we find that 7555 of 8053

library member inputs result in at least one solution within the

tolerated error level. Of the remaining 498, increasing the

resolution to 127 resulted in solutions for all but 48 input sets,

and took approximately 3 minutes per run at this resolution. The

remaining 48 were extremely resistant to increases in resolution,

however, simply reversing the order in which ACES tests

Figure 2. CDRC estimation pipeline. At the top, a library member
input CDRC set (blue,*) is used to compute its corresponding moments
(*). ACES takes as input only the moments, and returns all CDRC sets
that correspond to those moments (the ‘‘ensemble’’). To visualize this
result, a histogram is generated for each CDRC or ratio column-wise. In
the resulting histograms, physiological range of the parameter (red,
dashed), the input value (blue dashed), and the ensemble solution
values (black) are plotted for the tested parameter space (x-axis). On the
bottom left, histograms for the CDRCs km and toff span half their
physiological range, but their ratio is constrained to a single value
(right, burst size).
doi:10.1371/journal.pcbi.1003596.g002
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parameters allowed us to find solutions for all of these remaining

input sets at low resolution (See Supplement, section S3.2).

We find multiple candidate solutions for every input set. The

number of solutions linked to any given CDRC set varied widely,

with some producing dozens of solutions, and others generating

tens of thousands. The median number of output solutions for a

CDRC input set was 29286 solutions. This seems like a large

number, but when put in the context that each ACES run tests

hundreds of billions, or trillions of parameters sets, this number of

solutions represents only a tiny fraction of tested CDRC sets. We

considered two possible explanations for the multiplicity of

solution sets obtained for every input set. (1) A previous analytical

result suggests that CDRC ratios but not their individual values

are recoverable from the steady state distribution [41]. Thus, every

combination of CDRCs conserving a particular ratio will come out

of our solution set. Although this explanation likely contributes to

the degeneracy we observed, a competing explanation is that (2)

four distribution moments inadequately describe the shape of

protein distributions. We sought to distinguish between these two

possibilities.

Maximally dissimilar CDRC sets with the same moments

produce the same distribution. We asked how well moments

approximated their corresponding protein count distribution by

Gillespie-simulating examples of output CDRC sets, along with

their input set, and comparing the resulting distributions. Given

the abundance of output sets for every input set, we sought specific

cases where the ensemble of output sets was least informative. We

chose the 100 worst fit library members, where neither CDRCs

nor ratios were well captured, and further identified CDRC output

sets within each solution ensemble that were the farthest apart in

log-Euclidean space. For example, the following two CDRC sets

give rise to almost identical mean, variance, skewness, and

kurtosis: (a) ton~0:003439, toff ~0:030224, km~0:11892,

dm~0:000628, kp~0:53938, dp~0:39368, (b) ton~43:9773,

toff ~45:7037, km~7:5668, dm~3:1, kp~22:1439, dp~1. Al-

most every CDRC value between these two CDRC sets differs by

several orders of magnitude. We then Gillespie-simulated both

CDRC sets and their associated input set to generate complete

protein distributions. We found that the protein distributions for

all 100 ‘‘maximally distant pairs’’ matched each other and their

input distributions (Figs. S2–S6). An example of a maximally

distant CDRC pair and its reference distribution are plotted in

Fig. 3A.

To quantify the differences between distributions, we computed

the Jensen-Shannon divergence [51] between distributions, which

is the symmetrized version of the Kullback-Leibler directed

divergence used by Shahrezaei et al for similar purposes [22].

Jensen-Shannon divergence (dJS ) values have an intuitive inter-

pretation; if P1 represents one probability distribution, and P2 the

second, 1=dJS(P1,P2) roughly estimates the number of samples

one would have to draw to determine from which distribution (P1

or P2) the values were taken [52]. Thus, Jensen-Shannon

divergence ranges between 0, indicating that two distributions

are identical, to 1, characterizing a pair of distributions as non-

overlapping. We found that maximally different CDRC solution

sets produce identical protein distributions (Fig. 3B). The median

Jensen-Shannon divergence between protein distributions derived

from maximally different CDRC solutions sets and the reference

distribution is .0043, a number which is very close to the median

divergence between Gillespie-simulated replicates of the reference

distribution, .0033. This result indicates that independent repli-

cates of one parameter set are essentially indistinguishable from

distributions generated from maximally distant parameter sets that

share the same moments.

We then asked whether the 5th sample moment could

distinguish between distributions that shared identical first four

moments (Supplement). We found that among the maximally

distant sets, their fifth moments were indistinguishable. Taken

together, these results confirm that the many solutions we obtain

from ACES arise solely from CDRC degeneracy and not from the

inadequacy of the first four moments to capture distribution shape.

Protein distribution shape informs on molecular

mechanism. With a rigorous way of identifying the ensemble

of CDRC sets that correspond to a particular protein distribution,

we surveyed how well these ensembles inform on the molecular

mechanisms that underlie the shape of protein distributions. For

each CDRC output set, we computed ratios that represent

physically relevant quantities, including: Pon (probability that a

promoter is active, ton=(tonztoff )), S (RNA synthesis rate, Ponkm),

B (burst size, number of RNAs produced per ON duration,

km=toff ), F (burst frequency, frequency of promoter transitions

Figure 3. Distributions that correspond to CDRC sets with
identical moments. A Two CDRC solution sets maximally different
from one another in log-Euclidean space are plotted in (solid) blue
( ton~0:0029963, toff ~0:023062, km~0:22529, dm~0:00068275,
kp~0:5, dp~0:18675) and (long-dashed) red (ton~6:2045, toff ~50,
km~60:3593, dm~3:1, kp~47:2619, dp~1). These candidate CDRC
solution sets map from ACES fitting of library member 6328, plotted in
(short-dashed) yellow from CDRC set (ton~2:7301, toff ~33:333,
km~133:33, dm~2:0667, kp~13:867, dp~0:66667) B Distribution of
Jensen-Shannon divergences of maximally-distant CDRC candidate
solution sets from their reference CDRC input set. (Inset) Zoom on the x-
axis.
doi:10.1371/journal.pcbi.1003596.g003
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between the ON and OFF states, (tonztoff )=(tontoff )), SRNAT
(average count of RNAs, S=dm), kp=dp (ratio of average protein

count to average RNA count), kp=dm (translational burst size [25]),

and S=dp (number of RNAs produced per cell cycle when protein

degradation is dominated by dilution and there are no ON-OFF

transitions [25]).

To develop our intuition, we plotted individual CDRC set

output ensembles as histograms (Figs. 2, 4). Consistent with others’

predictions [33,41], we found that many different individual

CDRC values map to the same distribution, while some CDRC

ratios are exactly conserved in the solution ensemble. This is

illustrated at the bottom of Fig. 2, where histograms for km , toff ,

and B reveal the range and frequency of each CDRC value in the

solution set. While km and toff may assume many different values,

their ratio (km=toff ) is constrained across every solution, indicating

that the transcriptional burst size is a defining feature of this

protein distribution. The solution ensemble for all CDRCs in a

different example reveals that some values for each CDRC are not

allowed by the distribution shape (Fig. 4). For example, ton is

restricted to the middle range of its possible values. We plotted

histograms of the CDRC ratios in Fig. 4B from the same input set

as in Fig. 4A, revealing that several ratios are exactly inferred from

the distribution shape (Pon , B, SRNAT). Contrary to our

expectations, ACES also returned many examples of individual

CDRCs themselves being well captured by the distribution shape.

For example, Fig. 4A illustrates that dp is well-estimated. In rare

cases every CDRC solution clustered exactly on top of the

associated input CDRC value (Fig. 4C). Equally rarely we

discovered library members where neither CDRCs nor ratios

were reasonably estimated (Fig. S7).

Examining each CDRC, or CDRC ratio ensemble as a

histogram was the most informative way of viewing our results,

however, this approach was not amenable to analyzing a library of

8053 members. To better grasp what ACES learned about

CDRCs or ratios across the library, we developed a metric of

fitness computed for each CDRC parameter. We tried many

different metrics, and ultimately chose median log distance (MD)

as our metric of fitness. To compute MD, we first calculated the

log distances of each solution value for each CDRC compared to

the known input value. That is, for the ith solution,

log-disti~Dlog(CDRCinput){log(solutioni)D. We then take the

median of this list of distances as the MD value. Thus, lower MD

values correspond to closer clustering of output values on the true

solution. We emphasize that this metric is for survey purposes

only–the value of ACES is in producing all possible CDRC

solutions consistent with a distribution.

With this purpose in mind, we arbitrarily defined a successful fit

as an MD,.75, corresponding to the median solution for a

particular CDRC or ratio being less than an order of magnitude

away from the true (input) parameter value. We find that the MD

Figure 4. Fitting CDRCs from moments. Plotted is a histogram of
CDRC solutions separated by parameter. Blue lines show the value of
the input CDRC parameter, and red lines denote each CDRC’s minimum
and maximum value. A CDRC solution sets for fitting library member
3515 with CDRC input values (ton~:22s{1,toff ~:018s{1,km~13:7s{1,

dm~:044s{1,kp~5:24s{1,dp~:66s{1), demonstrate only some param-
eters are well fit from four moments in this example. B Solution CDRC
ratios from the same output set in (A) (library member 3515) reveal
some CDRC ratios are well identified. C CDRC solution sets for fitting
library member 3585, with input CDRC values (ton~:22s{1,

toff ~:018s{1,km~133:3s{1,dm~2:07s{1,kp~:75s{1,dp~:66s{1), de-
monstrate all parameters are well fit from four moments in this
example.
doi:10.1371/journal.pcbi.1003596.g004
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metric generally aligns with the shape of a solution histogram; very

small MD values indicate a spike of solutions immediately on top

of the true solution, while increasing MD values correspond

smoothly to increasingly wide distributions about the true solution

(Fig. 5, top row). Distribution shapes not well captured by the MD

metric include cases where the majority of solutions map to the

true solution, while a minority of solutions appear elsewhere (Fig. 5,

bottom row, left two panels), as well as cases where the CDRC or

ratio may only take on two values, but the values are very different

(Fig. 5, bottom row, right two panels).

With reasonable confidence in our survey measure, we

computed the MD for every CDRC and ratio in each solution

output set. The results of this analysis for every library input set are

recorded in Data S1, while a summary of the results broken down

by CDRC or ratio are presented in column MVSK, Table 1.

Overall we can obtain at least one CDRC value or ratio in 91% of

the library members. Although only 89 distributions allow

inference of all six CDRCs, our analysis revealed 3276 of the

CDRC input sets contain at least one correct CDRC fit. The

breakdown in CDRCs identified was as follows: 13.1% for ton,

7.1% for toff , 6.8% for km, 16.2% for dm, 21.1% for kp, 18.2% for

dp. Among ratios, ACES identified Pon most frequently, even

when the individual values of ton and toff were poorly fit. 2396

input parameter sets correctly identify Pon (MD = :25+:06) when

both ton and toff solution distributions were wide (MD..75). On

average, we fit .82 CDRCs and 2.55 ratios per library member,

which we found to be remarkably informative given the overall

degeneracy in protein distributions.

CDRC inference improves when degradation rates are
known

One way to reduce the complexity of CDRC-space is to

experimentally measure some of the CDRCs that underlie a given

protein distribution. In the context of this in silico study, measuring

a CDRC corresponds to giving ACES one or multiple CDRCs at

the outset. We analyzed the performance of ACES when given the

values of the RNA and protein degradation rates, either separately

or together. We chose the degradation rates because they are the

easiest CDRCs to measure experimentally [11,48,53].

We re-ran our 8053 library of input sets giving ACES dm, dp, or

both at the outset. As before, ACES returned solution sets for

every input set, though ACES typically returned solutions on the

order of a few seconds rather than 1–3 minutes at comparable

resolutions.

Knowing dp or dm a priori improved ACES’ fit of the remaining

CDRCs and CDRC-ratios. When no CDRCs were known, .8/6

CDRCs and 2.55/8 ratios were fit per CDRC input set on average

(column MSVK, Table 1). When dm was given, 1.78/5 CDRCs

and 3.98/8 ratios were fit on average (column MSVKdm). When

dp was given, these numbers are 1.80/5 CDRCs and 3.99/8 ratios

(column MSVKdp). Constraining ACES with dm versus dp

improved estimation of two to three other CDRCs or CDRC

ratios. Both degradation rates indiscriminately improved estima-

tion of the remaining unknowns, though estimation of toff

improved only modestly, while estimation of the synthesis rate

(S) improved the most (columns Ddm, Ddp, Table 1).

When ACES was given both degradation rate constants

beforehand, we observed a dramatic improvement in CDRC

and CDRC-ratio estimation (columns MSVKdm{dp, Ddm{dp,

Table 1). The parameters kp, S, SRNAT , kp=dp, S=dp, and

kp=dm were essentially always measurable. On average 2.21/4

CDRCs and 5.68/8 ratios were fit in this library. Only toff , and

two ratios that depend on toff (B and F ) were not significantly

improved by providing either or both degradation rate, an

observation that will be explored further in a later section. Overall,

our results suggest that experimentally determining dm and dp will

greatly improve the estimation of the remaining CDRCs from

experimentally measured protein distributions.

Contribution of skewness and kurtosis to CDRC fitting
Higher moments contain diminishing information about the

shape of a probability distribution. To determine if skewness and

Figure 5. MD as a metric of fitness. Solution histograms for the CDRC ratio kp=dm . Titles show the library input set number above, and the
corresponding MD for the histogram below. (Top row) Increasing MD values typically correspond to increasing distribution widths. (Bottom row, left
2 panels) Poorly estimated ratios with misleadingly low MD values. (Bottom row, right 2 panels) Informative CDRC ratio histograms with misleadingly
high MD values.
doi:10.1371/journal.pcbi.1003596.g005
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kurtosis contribute to ACES’ fitting of the CDRCs, we performed

two experiments on the exact same library of CDRC input sets as

above. In the first, we modified ACES to fit only on the mean and

the variance (column MV, Table 1), and in the second we fit on

the first three moments (column MVS, Table 1).

We found that when ACES fits on mean and variance, on

average only .22/6 CDRCs and .27/8 CDRC ratios were

extracted per input set. When ACES was given the mean,

variance, and skewness, it returned on average .64 CDRCs and

1.86 CDRC ratios for each input set. Thus, skewness contributed

approximately .42 additional CDRCs and 1.59 CDRC ratios,

while kurtosis added a modest but significant .18 CDRCs and .69

CDRC ratios per input. We conclude that skewness and kurtosis

significantly contribute to the parameter fitting process, effectively

quadrupling the number of CDRCs determinable per set, and

increasing the number of CDRC ratios determinable by just under

ten-fold.

Distinguishing between bursting and non-bursting
genes

Because a major challenge in the field is to identify the cis-

and trans-acting machinery responsible for correlated transcrip-

tional bursts, we asked whether our method distinguishes

between CDRC sets that demonstrate bursting from sets that

do not. First, since our library contains every possible CDRC

regime, we attempted to identify which input sets exhibit

transcriptional bursting. Second, we asked how well the burst

parameter is detected by ACES, and whether certain regimes

are more or less amenable to measuring the burst size from a

protein distribution.

The Fano factor of the RNA distribution (FRNA~RNAvar=
RNAmean) distinguishes between constitutively active genes

(FRNA&1) from bursting genes (FRNA.1) [4,26]. This is because

in the limit of ton&toff , or if ton and toff are both high, the RNA

distribution’s variance approaches its mean, and the Fano factor

goes to 1 indicating constitutive RNA production. When we plot

how well the burst parameter is fit versus FRNA, we find that near

FRNA&1 the average MD in all libraries is very high, but drops

precipitously when FRNA is slightly greater than 1 (Fig. S8A).

Average MD of the burst parameter then slowly increases with

increasing FRNA. To gain some insight into this trend, we plotted

how well the burst parameter was fit versus the value of the burst

parameter itself (Fig. S8B). We observe that estimation of the burst

parameter incrementally improves with increasing burst size until

reaching an optimum corresponding to bursts of ones to tens of

molecules. Above this, increasing burst size makes the burst

parameter increasingly difficult to ascertain.

These data suggest that the high Fano factor regime

corresponds to transcription of hundreds to thousands of

transcripts per ON event, followed by long periods of gene

quiescence. In this large burst regime, the burst parameter is

difficult to infer precisely from the distribution. However, the

ensemble of candidate solutions for B in these situations proves to

be informative. Plotted in Fig. S9 are the forty highest Fano factor

library members’ burst parameter histograms. While some

demonstrate exact inference of the burst parameter (305–307,

234–237), and others exhibit widely varying burst parameter

values (637–645), all but one (638) of the forty reveal a burst size

confined to B&1, consistent with the behavior of the gene (Fig.

S9). We conclude again that even when individual CDRCs or

their ratios are not exactly inferred from the output of ACES, the

shape of the solution ensemble conveys mechanistic information

about the underlying gene.

Comparison to related methods
A number of analytical results map CDRCs or their ratios to

protein distribution shape [17,22,25,28,38–40]. However, only

Friedman, Cai and Xie’s work demonstrating that protein counts

are gamma-distributed [25] has been co-opted for solving the

inverse problem: using distribution shape to infer the parameters

[42–44]. Their result allows one to directly compute

V=M~kp=dm and M2=V~km=dp from a gamma distribution’s

measured mean (M) and variance (V). We compared ACES’

performance estimating the same ratios in the same regime as the

one assumed by the Friedman model.

First, we screened our library for CDRC input sets where

dm=dpw10, average protein count .1000, and ton&toff (Pon&1).

These restrictions correspond to the Friedman assumptions that 1)

dm&dp, 2) one can use a continuous approximation for protein

count, and 3) the gene is always active. 251 input sets (4%) in our

library satisfy these criteria. We examined the output solutions

ACES returned for these specific input sets. Because ACES makes

no assumptions about parameter regime, it returns solutions that

conform to the Friedman assumptions as well as many additional

solutions that do not. To compare ACES with the Friedman

approach on equal footing, we first only considered ACES

solutions that were consistent with the Friedman criteria. This

set of solutions accurately identifies both Friedman ratios; the

solutions cluster exactly on the true solution. By relative error, the

ACES solution slightly outperforms Friedman’s analytical estima-

tion of both ratios (Fig. S11A,B): for km=dp, the median relative

error in the estimate was .024, versus a median error of .076 for

the Friedman estimator. In addition to accurately recovering the

Friedman ratios, ACES also recovered other CDRCs or ratios not

obtainable from the Friedman model (Fig. S10B). Average RNA

count was the most commonly identified parameter besides kp=dm

and km=dp. This exercise serves as a control for our method,

demonstrating equivalence between our method and the Friedman

analytical solution, in the regime assumed by the Friedman model.

However, ACES’ utility derives from not assuming any

particular parameter regime. We therefore compared the solutions

that did not conform to the Friedman regime to the solutions that

did conform. Even the solutions that did not conform to the

Friedman assumption are highly enriched for successful fitting of

the Friedman ratios kp=dm and km=dp. Of 251 input sets, 222 have

an MD,.75. Both ratios share an average MD value of .33, as

compared to the overall library MD average of 1.25. Of the 29

input sets for which these ratios were fit with an MD ..75, all of

them demonstrate bimodality in histograms of both ratios,

suggesting that solutions outside the Friedman regime can produce

gamma distributed protein distributions. The value of ACES is

demonstrated by its ability to accurately fit the Friedman ratios

even in regimes that explicitly violate the Friedman assumptions.

We explored this point further and discovered that the model of

gene expression studied in this report (Fig. 1) readily generates

gamma distributions, most of which do not correspond to the

Friedman regime. There were 995 CDRC sets in our library that

generate gamma distributed protein distributions (See examples,

Fig. S11C,D). Of these, only 346 demonstrate accurate inference

of the km=dp and kp=dm ratios using the Friedman model. In Fig.

S11E, ACES’ fit of the distribution is compared to the Friedman

fit (magenta triangles), revealing that while ACES’ solution

ensemble contains the correct answer, the Friedman solution

settles on the incorrect value for both ratios. These results

emphasize that having a gamma distribution is necessary but not

sufficient for fitting the Friedman ratios, and reinforce that ACES

operates robustly outside of the Friedman regime.
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Discussion

Protein count distributions are readily measured from clonal

populations of reporter-gene bearing cells [11,54], yet we lack a

reliable computational framework for abstracting molecular

mechanisms from distribution shape. Here we presented an

efficient, assumption-free approach to inferring molecular mech-

anism from protein distribution shape. Though the full analytical

solution of the protein distribution remains elusive, we were able to

solve for exact expressions of the distributions’ higher order

moments, extending previous work which stopped at variance

[5,9,10,13,15,25,26,28,39,45]. We found that the higher order

moments skewness and kurtosis contributed significantly to the

fitting problem; indeed, when fitting only on the mean and

variance, we were rarely able to identify a CDRC or CDRC ratio

in our representative library of test sets (column MV, Table 1).

We found that four moments accurately reproduce the complete

protein distribution, even in the worst case scenario when very

different CDRC sets map to the same four moments (Figs. 3, S2–

S6). This is particularly exciting given the challenges of solving

anything but the simplest chemical master equation model, as the

moment-matching approach presented herein, while inelegant, is

perfectly general. Even in cases where moments do not exactly

capture distribution shape, moment matching could allow

investigators to rule out the vast majority of candidate solutions,

limiting the use of computationally intensive Gillespie simulations

to cases where a given parameter set is likely to be correct.

ACES, our algorithm for linking parameters to moments,

proved to be efficient enough to identify all CDRC sets consistent

with each of 8053 input sets. To build confidence in our results, we

checked whether ACES’ CDRC ensembles agreed with a previous

analytical result, which states that in a specific regime, gene

expression is gamma distributed and the ratios km=dp and kp=dm

are directly calculable from the mean and variance [25]. We found

that when limited to this regime, ACES’ not only agreed with the

Friedman results, but also frequently identified other expression-

related quantities, such as the average RNA expression level,

SRNAT and kp=dp. In many cases, assuming the Friedman

regime allowed direct inference of most of the remaining CDRCs

and ratios (compare Fig. S10A to S10B), quantities which cannot

be obtained by the Friedman model.

CDRC sets operating in the Friedman regime represented only

4% of the possible regimes we studied in our library, reinforcing

the importance of bringing to bear an unrestricted framework for

analyzing protein distributions. Opening our analysis to the whole

library, we discovered several trends. First, about one in eight

regimes recapitulate a gamma distribution, but only about one in

three of gamma distributed input sets fall in the Friedman regime.

In other words, model agreement with a distribution does not

prove model validity. This recalls a similar outcome from Zopf et

al, where the standard ON-OFF model studied here (Fig. 1)

accurately models total population distributions, but fails to

capture subpopulation distributions partitioned by cell cycle phase

[21]. Both results provide motivation for continued refinement of

stochastic gene expression models, which will benefit from the

parameter estimation approach suggested in this work.

Second, we find that the exact nature of degeneracy in a

solution set informs on mechanisms that underlie the shape of the

corresponding protein distribution. Every library member corre-

sponds to a unique ensemble of solutions. Sometimes, solution

histograms encompass the complete range of a given CDRC or

CDRC ratio, while often the range of a parameter is confined to a

fraction of its possible space. Sometimes ACES reveals the only

CDRC or CDRC ratio value consistent with a distributions shape.

All results are informative. In some cases, ACES revealed

bimodality in a particular parameter, suggesting that the

degeneracy arises from uncertainty in one particular CDRC

(Fig. 5). In other examples, we found that ACES reveals burst

histograms consistent with slow ON-OFF transitioning behavior,

even without always exactly identifying the burst parameter (Fig.

S9). Even knowing when a distribution cannot rule out any value

of a CDRC parameter or CDRC ratio, as in Fig. S7, informs an

investigator that additional information is needed to further

constrain the fitting problem.

Third, some ratios and CDRCs are more readily abstracted

from the distribution than others. While the ON-OFF transition

CDRCs were particularly challenging to infer, especially toff , we

found that ton and toff pairs often varied while conserving one

value of Pon. If this observation bears out in experimental validation,

accessibility to Pon suggests a novel way to parameterize another

class of models, the so-called thermodynamic model of cis-regulation

[55–57]. At the core of a thermodynamic model is a partition

function that divides transcriptionally active promoter states by all

molecular states, and is equal to Pon. Though ACES readily

identified a variety of CDRC ratios besides Pon we were surprised to

find individual CDRC values fit, despite evidence that CDRCs

cannot be obtained from steady state distributions alone [41]. We

speculate that explicitly confining the search to the physiological

domain of each parameter permitted estimation of some CDRCs.

Importantly, bounding CDRCs but fitting only on mean and

variance did not permit much CDRC estimation, indicating that it

is the full protein distribution in conjunction with parameter ranges

that enables ACES to estimate individual CDRCs. Independent of

CDRC or ratio, further constraining ACES with measures of one or

both of the degradation rates naturally improves parameter

estimation across the board (Table 1).

Although we explored CDRC estimation only when restricting

dm and dp, the algorithm accepts user-defined constraints

accounting for uncertainty in both the CDRCs and the moments.

For example, an investigator may have experimentally determined

the 95% confidence interval for a particular parameter. Confining

the ACES search to this interval requires only replacing the

physiological range with measured bounds. Similarly, measure-

ment of distribution moments will be imperfect, likely with higher

moments admitting more significant error. Again, one can adjust

ACES’ tolerance for each moment. This flexibility means that the

worst outcome manifests as CDRC values spanning their entire

range; an investigator need not fear overfitting or spurious

convergence.

More importantly perhaps, ACES fits will aid investigators in

model selection. ACES fit outcomes fall into three categories: (1)

ACES fails to discover a candidate CDRC set (2) ACES finds

CDRC solutions spanning most or all of the range of each

parameter, or (3) ACES narrows down some or all CDRCs to a

limited range. As discussed above, high experimental error or not

enough constraints can lead to outcome (2). Both (1) and (3) are

potentially instructive regarding model selection. In (1), either

moment error tolerance was more strict than measurement error,

ACES was not run with a sufficiently high enough resolution, or

the model does not adequately explain the data. The first two

possibilities are easily ruled out, and if excluded indicate the ON-

OFF model insufficiently characterizes a particular set of

moments, and therefore the distribution. Several examples in the

literature highlight alternative models, including the possibility of a

refractory OFF state [8], multiple ON states [30], and even

transcription rates that depend on the cell cycle [21]. This last

example illustrates how cellular state, called extrinsic noise

[5,14,27], intertwines with the intrinsic-only stochasticity captured
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by our approach. While a variety of methods have been developed

for measuring and minimizing the impact of extrinsic noise

[11,12,58–60], Zopf et al reinforce the idea that extrinsic can be

made intrinsic by explicitly incorporating fluctuating inputs into a

given model [21,24,29,60]. Though we focused solely on the ON-

OFF model, the paradigm suggested here of solving for and

exhaustively fitting to moments is perfectly viable for any linear

stochastic model, including those that admit fluctuating inputs or

comprise more elaborate promoter architectures. Whether the

additional CDRCs implicit to more detailed models can be

inferred from stationary distributions is an open question. The

significant degeneracy we encountered with the ON-OFF model

in this work suggests that significant constraints will be necessary

for such distributions to be informative.

Having some CDRCs or CDRC ratios well fit while others span

wider ranges, as in (3), suggest either the data are not sufficiently

constrained to distinguish each parameter, or the model is too

complex. We saw this latter scenario in our data; a variety of

choices of ton , ton , and km can conspire to drive transcription as a

Poisson process at rate S. However, by testing for constraint of

various CDRC ratios, these patterns arise naturally in our

framework. We saw numerous examples of model reduction.

Encouragingly, we rediscovered the Friedman solution, a two

parameter model characterized by kp=dm and km=dp [25]. Their

parameterization posits protein production as the product of the

number of transcripts produced per cell division (km=dp), assuming

that dilution dominates protein loss, and the number of proteins

produced in the lifetime of an RNA (kp=dm). In addition, we found

alternate two-parameter formulations, for example, SRNAT and

kp=dp , suggesting that in some regimes this pair of ratios ascribes

shape to the distribution, while the Friedman ratios do not. Of a

large number of test sets where Pon was fit, 387 cases identified only

Pon. Though we did not directly interrogate the ratio

(kmkp)=(dmdp), fitting Pon and given the protein mean guarantees

that this four-CDRC ratio is also fit in those test sets, providing yet

another two parameter model. Thus, the only undesirable

consequence of assuming a more complex model is increased

computational time, a potential roadblock that we did not

encounter in the current study. Indeed, the more general model

collapses into an intriguing number of unique simpler models that

might otherwise not be intuited by an investigator (Data S1).

ACES will enable a more mechanistic understanding of gene

regulation. We envision it will be most informative when used in

pairwise studies of reporter gene activity, for example, by

measuring reporter gene distributions before and after knocking

out a histone modifying enzyme, or a transcription factor binding

site in a promoter. Historically these manipulations reveal only

whether a cis- or trans- acting factor activates or represses gene

activity. By incorporating data from changes in stochasticity, we

expect to refine our understanding of regulation by ascertaining

which CDRC, or set of CDRCs, are regulated by a particular

sequence element or protein. Importantly, even if the exact values

of CDRCs cannot be obtained from a distribution, changes in the

range of a particular parameter still provide mechanistic insight

into the effects of specific genetic perturbations. Previous studies

incorporating noise into their analysis reveal insights such as these,

for example, that the mammalian cis-regulatory CCAAT box

element chiefly modulates the km and ton CDRCs, but has little

impact on toff [8].

Given that four moments capture the full shape of the protein

expression distribution, and that we can rapidly determine all

CDRC sets consistent with these moments, this approach shows

great promise in learning mechanistic information from stochas-

ticity in protein expression. We applied our framework to one

particular steady state protein distribution (Fig. 1), but the general

approach is amenable to analyzing any first-order chemical master

equation model of protein or RNA distributions, RNA-protein

joint distributions, and even distributions evolving over time. We

expect the application of ACES to improve our understanding of

the fundamental processes that govern gene expression.

Materials and Methods

ACES algorithm overview
For the first parameter km, we select its first value, for example,

k�m~km{min. Given the mean expression level from a population

of cells (mp), the equation for how this mean relates to the CDRCs,

mp~
ton

tonztoff

kmkp

dmdp

ð5Þ

and the CDRC minima and maxima, [d (min)
p , d(max)

p ], [d (min)
m ,

d (max)
m ], [k(min)

p , k(max)
p ], [k(min)

m , k(max)
m ], [t(min)

on , t(max)
on ], [t

(min)
off ,

t
(max)
off ], we can potentially further constrain the boundaries on the

next CDRC to be checked. If the next parameter to be selected is

kp, then we can check the boundaries on kp given all the

information we have to this point. That is, the new k(min)
p might be

greater than the physiological k(min)
p given that km is fixed at k�m,

and the mean expression level is fixed at m�p. Substituting in the

known values up to this point into Eq. 5, we get:

m�p~
ton

tonztoff

k�mkp

dmdp

ð6Þ

Then solving for kp we get:

kp~
tonztoff

ton

dmdpm�p
k�m

ð7Þ

The result is a monotonic function for all variables; thus, kp’s

minimum and maximum values can be obtained, subject to the

fixed parameters to this point (k�m and m�p) and the physiological

minima and maxima of the remaining free parameters:

k�(min)
p ~

t(max)
on zt

(min)
off

t
(max)
on

d (min)
m d(min)

p m�p
k�m

ð8Þ

k�(max)
p ~

t(min)
on zt

(max)
off

t
(min)
on

d(max)
m d (max)

p m�p
k�m

ð9Þ

These candidate minimum and maximum values are not

guaranteed to be greater than or less than, respectively, the

physiologically determined bounds for kp. To take this into

account, we accept k�(min)
p if it is greater than k(min)

p , and we accept

k�(max)
p if it is less than k(max)

p . Thus the new boundaries define a

range for kp that is less than or equal to the physiological range

defined at runtime. In the next step, the algorithm subdivides the

new kp range with resolution R�, shrinking the resolution R by the

fraction of parameter space lost by accepting a narrower CDRC
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range. The algorithm then selects the first value of kp in this new

range, and repeats the steps just outlined above with the next

parameter.

Because the mean equation is linear, at the end of this process

the last parameter can be directly solved for. At that point, we

have a set of CDRCs k�m, k�p, d�m, d�p , t�on, and t�off which, by the

nature of how each parameter was selected, already exactly equal

the first moment equation (Eq. 5). We then plug in this candidate

CDRC set into our variance solution; if the calculated variance

also matches within 1% of the measured variance, we test skewness

with the same criteria, and then again with kurtosis. If the 2nd

through 4th moments all agree with the input (measured)

moments, this CDRC set is recorded as a solution.

The full pseudocode is provided in the Supplement, and an

implementation of the algorithm is also provided in C++ (Data

S2).

Log Euclidean distance
Log Euclidean distances are computed as follows. For moment

space, log-euclidean distance between two moment sets X and Y ,

with elements mean (M ), variance (V ), skewness (S), and kurtosis

(K ) would be:

LED(X ,Y )~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log(

MX

MY

)2zlog(
VX

VY

)2zlog(
SX

SY

)2zlog(
KX

KY

)2

r ð10Þ

For CDRCs, the equation would be logs of ratios of CDRCs

rather than moments, and there would be six summands rather

than four. We used log distance so that a CDRC–or a moment–

changing from .01 to .1 contributes the same weight as another

parameter changing from 100 to 1000. Thus, very different scale

parameters, or moments, can be compared.

Jensen-Shannon Divergence
Jensen-Shannon Divergence for probability distributions A and

B (JSD(A,B)) is defined as

JSD(A,B)~
1

2
KL(ADDM)z

1

2
KL(BDDM) ð11Þ

given the definitions for Kullback-Leibler divergence (KL) and the

mixture distribution (M)

KL(X DDY )~
X?
i~0

ln(
Xi

Yi

)Xi ð12Þ

M~
1

2

X?
i~0

AizBi ð13Þ

Supporting Information

Data S1 ACES library data. ACES was run for each of the 8053

library members, generating a list of solutions. The summary data for

each ACES run is described is included in the excel spreadsheet. Data

S1 is the source of the library summary results reported in Table 1. A

more detailed explanation of each datasheet and column can be

found in the README datasheet within Data S1.

(XLSX)

Data S2 ACES algorithm and moment solution rou-
tines. This archive contains both the ACES algorithm routine

written in C++ and a Matlab implementation of the moment

solutions. See README.txt for more detail.

(ZIP)

Text S1 Supporting information. This supplement docu-

ments the moments derivation and validation, continues the

explanation of the ACES algorithm, and contains the supporting

figures referenced throughout the text.

(PDF)
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