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Scallop genome reveals molecular adaptations to
semi-sessile life and neurotoxins
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Shi Wang 1,5 & Zhenmin Bao1,3

Bivalve molluscs are descendants of an early-Cambrian lineage superbly adapted to benthic

filter feeding. Adaptations in form and behavior are well recognized, but the underlying

molecular mechanisms are largely unknown. Here, we investigate the genome, various

transcriptomes, and proteomes of the scallop Chlamys farreri, a semi-sessile bivalve with well-

developed adductor muscle, sophisticated eyes, and remarkable neurotoxin resistance. The

scallop’s large striated muscle is energy-dynamic but not fully differentiated from smooth

muscle. Its eyes are supported by highly diverse, intronless opsins expanded by retroposition

for broadened spectral sensitivity. Rapid byssal secretion is enabled by a specialized foot and

multiple proteins including expanded tyrosinases. The scallop uses hepatopancreas to

accumulate neurotoxins and kidney to transform to high-toxicity forms through expanded

sulfotransferases, probably as deterrence against predation, while it achieves neurotoxin

resistance through point mutations in sodium channels. These findings suggest that expan-

sion and mutation of those genes may have profound effects on scallop’s phenotype and

adaptation.
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B ivalve molluscs, which first appeared in the early-Cambrian
over 500 million years ago (MYA), represent an ancient
lineage of bilaterians that has survived several mass

extinction events1. Yet, extant bivalves with ~9600 species2

remain abundant and thriving in world oceans and freshwater
environments ranging from tropical to polar regions and from
intertidal zones to deep seas. Bivalves are well adapted to benthic
life as sessile, semi-sessile, or free-living filter feeders and play
critical roles in benthic ecology. Many bivalves are important
fishery and aquaculture species providing significant economic
benefits to humans. Despite their biological, ecological, and eco-
nomic significance, their genomes are poorly sampled for whole-
genome studies3–7, limiting our understanding of bilaterian
evolution, especially molecular adaptations in this ancient but
successful lineage.

Scallops are among the best-known bivalves recognized for
their beautiful shells of elegant shapes, sophisticated patterns, and
diverse colors. Scallops have some unique characteristics making
them good models to study development, adaptation, and early
animal evolution as indicated by a recent genome analysis of
Yesso scallop Patinopecten yessoensis5. Scallops have a large
adductor muscle, probably as an adaptation to swimming by
clapping valves for avoiding predation and seeking favorable
habitats8. They are rare among lophotrochozoans in having
numerous image-forming eyes along the edges of their mantles
that perform vital functions in detecting predators and guiding
swimming9. Scallops can attach to substrates as juveniles by
rapidly producing adhesive and strong byssal threads that are
either retained or lost in adults. As filter feeders that may feed on
toxic dinoflagellates, scallops can accumulate and tolerate high
levels of neurotoxins such as paralytic shellfish toxins (PSTs) that
are among the most potent natural toxins for humans10, 11. These
adaptive features are remarkable, and understanding the mole-
cular innovations underlying these remarkable features may
provide insights into how organisms adapt to their environments
and evolve, which is a fundamental question in evolutionary
biology.

The Zhikong scallop Chlamys farreri (Jones et Preston, 1904,
also known as Chinese scallop) is a subtropical Western Pacific
bivalve with wide water-temperature tolerance (−1.5 to 30 °C)12

and is naturally distributed along the coasts of Northern China,
Korea, Japan, and Eastern Russia. C. farreri is epibenthic and
semi-sessile. It usually attaches itself to rocks and other hard
surfaces with byssal threads, but can detach under adverse con-
ditions and swim away to new habitats12. It has an outstanding
ability to accumulate PSTs (up to 40,241 μg saxitoxin (STX) eq.
per 100 g compared to the 80 μg STX eq. per 100 g safety level for
human13) and therefore is widely used for studying PST accu-
mulation and transformation13–15. C. farreri is also a commer-
cially important bivalve with aquaculture production once
reaching ~1 million metric tons16. It is among the best genetically
characterized bivalve species with available linkage, physical and
cytogenetic maps17–21, fosmid and bacterial artificial chromo-
some (BAC) libraries22, 23, and a large number of expressed
sequence tags24, 25, making it a good candidate for whole-genome
sequencing (WGS).

Here we report the sequencing and analysis of the genome of
C. farreri along with a comprehensive set of 117 transcriptomes
and proteomes covering various organs, development stages, and
characteristics of scallop biology. Our multi-omic analyses and
associated assays revealed novel genomic features and molecular
changes that may underlie aspects of the scallop’s adaptation to
semi-sessile and filter-feeding life including the well-developed
adductor muscle, sophisticated photoreception system, rapid byssal
production, and remarkable resistance to potent neurotoxins.

Results
Genome sequencing and characterization. Genomes of bivalves
including C. farreri are challenging to sequence and assemble due
to their exceptionally high genome heterozygosity3, 5, 20. To
assemble the highly polymorphic scallop genome, a modified
SOAPde novo approach26 was used to resolve the complex bubble
structures resulting from high genome heterozygosity. Deep
sequencing of a 2-year-old C. farreri from the Penglai-Red
selectively bred population produced 362.8 Gb of clean sequences,
with average genome coverage of 382× (Supplementary Table 1).
The genome assembly is 779.9 Mb long with a contig N50 size of
21.5 kb and a scaffold N50 size of 602 kb (Supplementary
Table 2), and over 80% of the assembly is covered by the longest
1098 scaffolds (>142 kb) (Supplementary Table 3). The assembly
statistics of the scallop genome are comparable to or better than
those of previously published bivalve genomes (contig N50:
19–38 kb and scaffold N50: 167–804 kb)3–7. K-mer analysis
(Supplementary Fig. 1) provides an estimate of genome size of ~1
Gb, which is similar to ~1.2 Gb estimated by flow cytometry23.
The integrity and high quality of the assembly is demonstrated by
the mapping of 95.8% of sequencing reads, 97.6–100% of Sanger-
sequenced BAC clones, and 99.6–100% of various transcriptome
datasets (Supplementary Fig. 2 and Supplementary Tables 4–6),
and by the Benchmarking Universal Single-Copy Orthologs
(BUSCO)-based completeness assessment (Supplementary
Table 7). The assembly was anchored to chromosomes by
assigning 949 scaffolds (covering 66.9% of the assembly) to 19
linkage groups (Supplementary Table 8 and Fig. 1a) of a high-
density genetic linkage map20.

The C. farreri genome contains 28,602 protein-coding genes, of
which 93.3% encode proteins of at least 100 amino acid residues
(aa), and 94.3% are supported by known protein sequences and/
or transcriptomic data (Supplementary Fig. 3). Functional
analysis via comparison with various public protein databases
annotated 24,817 genes, accounting for 86.8% of all the predicted
genes (Supplementary Table 9). The C. farreri genome contains
261.8 Mb of repetitive sequences accounting for 32.1% of the
genome. This percentage is lower than that in most of existing
molluscan genomes (Supplementary Table 10). Tandem repeats
represent the most abundant repeat type (11.3%), followed by
DNA transposons (6.7%), and long interspersed elements (4.4%).
Transposable elements (TEs) show higher divergence in C. farreri
than in other bivalves (Supplementary Figs. 4 and 5), suggesting
that they are relatively old.

Polymorphism analysis identified 4.9 million single-nucleotide
polymorphisms (SNPs) in the assembled individual (Supplemen-
tary Table 11), yielding an intra-individual polymorphism rate of
0.81%. A genome-wide scan of polymorphism based on the
assembled and five additionally resequenced individuals identified
108 highly polymorphic genomic regions (≥500 kb) in the
genome (Fig. 1a), among which six are longer than 5Mb
(approximately one-fifth of a single chromosome). SNP density in
coding sequences (CDSs) varies dramatically among genes,
ranging from 0 to ~117 SNPs per kb (Fig. 1a). Particularly,
scanning the CDS regions identified a continuous and long SNP-
scarce region (~1.74Mb) on chromosome 1 (Fig. 1b), which
harbors an intact cluster of 11 Hox genes (3 anterior, 6 central,
and 2 posterior): key regulators of bilaterian body plan
development27. Similarly, low polymorphism was also observed
for the Hox genes of the scallop P. yessoensis, fruit fly, and mouse
(Supplementary Fig. 6). The finding of scallop Hox genes largely
devoid of polymorphism despite high SNP diversity in genomic
background (Supplementary Table 12) suggests that the scallop’s
body plan formation may be subject to rigid developmental
control and its regulators are under strong purifying selection.
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Phylogenetic analysis based on 1310 highly conserved
orthologous genes (Supplementary Fig. 7) suggests that the
scallop lineage diverged from the lineage leading to Pinctada
fucata and Crassostrea gigas ~457 MYA, and Bivalvia diverged
from its sister group Gastropoda28 ~500 MYA. Gene family
analysis (Supplementary Fig. 8) revealed that C. farreri has
preserved the highest number (7604) of ancestral bilaterian gene
families among bivalves. This number is comparable to that in
brachiopod Lingula anatina (7788), a “living fossil” lophotro-
chozoan29. Compared with other bivalves, 270 gene families are
significantly expanded in the scallop lineage (Fig. 1c and
Supplementary Data 1) and are predominantly involved in
neurotransmission, immune responses, signal transduction, and
xenobiotic metabolism (Supplementary Table 13). These
expanded gene families are probably important for the scallop’s
lineage-specific adaptations and biology. The notable expansion
of sodium- and chloride-dependent neurotransmitter transpor-
ters in C. farreri (61 versus 20–28 in other bivalves; Supplemen-
tary Fig. 9) may underlie the scallop’s more developed nervous
and vision systems, and higher locomotion activity than other
bivalves9.

Muscle regulation and evolution. Scallops have a remarkably
large adductor muscle (Supplementary Fig. 10) compared to most
of sessile and endobenthic bivalves such as oysters, mussels, and
clams, probably as adaptation to swimming (Supplementary
Movie 1) and the semi-sessile lifestyle. Swimming is an energy-
intensive activity, and it is not surprising that the adductor
muscle in scallops also serves as the primary organ of energy and
glycogen storage and mobilization. We found that arginine

kinase, the key enzyme responsible for producing ~ 70% of the
ATP needed for phasic contractions (using arginine phosphate as
substrate)30, shows extremely high levels of transcription in the
adductor muscle of C. farreri, especially the striated portion
(transcripts per million (TPM) = 34,704; ranked sixth among all
genes; Fig. 2a). Further analysis of energy-producing pathways
(glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative
phosphorylation) suggests that most genes related to energy
production show higher expression in the C. farreri’s striated
muscle than in its smooth muscle (Fig. 2a, Supplementary Fig. 11,
and Supplementary Table 14), pointing to higher energy
dynamics in striated muscle than in smooth muscle. These
findings may reflect differences in function, with the large striated
muscle responsible for fast, repetitive clapping of valves during
swimming and the small smooth muscle responsible for keeping
valves closed for long periods at a relatively low energy cost8.
Interestingly, enzymes participating in energy (ATP/energy-rich
H+) production (e.g., glyceraldehyde 3-phosphate dehydrogenase,
pyruvate dehydrogenase, dihydrolipoamide acetyltransferase,
isocitrate dehydrogenase, succinyl-CoA synthetase β-subunit in
glycolysis and in the TCA cycle) generally show higher expression
in the scallop C. farreri than in the oyster C. gigas, but the reverse
is true for the enzymes related to energy consumption (HK and
FBP; Fig. 2a and Supplementary Table 14). This finding may
reflect adaptations to lifestyles with different levels of energy
demand: high in semi-sessile scallop and low in sessile oyster.

To understand transcriptomic regulation in the adductor
muscle, we constructed gene co-expression networks from 35
adult transcriptome datasets, and identified M3 as the only
adductor muscle-related module (significantly enriched in both
striated muscle- and smooth muscle-related genes;
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Supplementary Data 2 and Supplementary Fig. 12). Analysis of
transcription factors (TFs) in M3 suggests that Twist, Nfix and
Zbtb40 are among the top-ranked TFs with the highest
intramodular connectivity (Fig. 2b and Supplementary Data 3),
with the former two known as key TFs in animal myogenesis31,
32. Twist, the master regulator of myogenesis, loses expression in
adult muscles of Drosophila31, 33 and shows high expression in
the adductor muscle of the adult scallop (Supplementary Fig. 13),
possibly related to the different modes of adult muscle growth:
determinate for Drosophila34 and indeterminate for the scallop35.

It is also interesting that key marker genes36 that distinguish
vertebrate striated muscles (striated Mhc (myosin heavy chain),
Tnnt, Tnni, Ttn, and Zasp) from smooth muscles (Cnn) show
high expression in both striated and smooth muscles of C. farreri
(Fig. 2c, d, Supplementary Fig. 14, and Supplementary Table 15),
revealing the “hybrid” nature of scallop striated and smooth

muscles that are not as distinctive as in vertebrates. The
expression of the same fast contractility components in smooth
as well as striated muscle has been reported for other scallop
species37, 38, ascidians39, 40, and flatworms41–43. Our findings
together with those from other studies suggest that smooth and
striated muscles in at least some invertebrates are not as
differentiated as in vertebrates, thereby probably representing a
plesiomorphic state, and still use shared basic building blocks (i.e.,
gene components) but in different organizations41.

Opsin diversity and retina evolution. Scallops possess a large
number of sophisticated non-cephalic eyes along the edge of their
mantle (Fig. 3a) and thus are thought to have the best vision
system among bivalve molluscs44. Opsins of the G-protein-
coupled receptor (GPCR) family are key light-sensing proteins
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responsible for visual signal transduction45. On the basis of
sequence alignment with known opsins and GPCR-domain
searches, we identified eight vision-related opsin genes in the
scallop genome, including four r-opsin, two Go-opsin and two c-
like-opsin (cl-opsin) genes (Supplementary Fig. 15). As the
characteristic opsin type in invertebrates46, r-opsin (also known as
Gq-coupled opsin) genes are significantly expanded (four copies)
in the C. farreri genome, compared to a single gene copy found in
other molluscs (Fig. 3b). In C. farreri, r-opsin1 is likely the
ancestral copy, because it shows relatively conserved gene struc-
ture and neighboring genes with the single-copy r-opsin genes in
other molluscs (Fig. 3b). Interestingly, r-opsin2, r-opsin3, and r-
opsin4 are all intronless (Fig. 3b) and are likely retrogenes gen-
erated via retroposition of a messenger RNA (mRNA) tran-
script47. Phylogenetic analysis suggests that these intronless r-
opsins were generated by stepwise duplications from the original
intron-containing gene (i.e., r-opsin1), with r-opsin2 generated by
retroposition first, followed by tandem duplications that

produced r-opsin3 and r-opsin4 (Fig. 3d). The latter, r-opsin4, is
the favored gene copy in the eyes of C. farreri, because its
expression (average TPM = 2415.0) greatly exceeds that (average
TPM = 2.3–46.4) of other r-opsins (Fig. 3a). Intronless genes are
more efficient to transcribe as no post-transcriptional splicing is
needed. For example, approximately 70% of early zygotic genes of
Drosophila are intronless48, due to a need for efficient tran-
scription during rapid cell divisions in early development48, 49.
The utilization of intronless opsins in C. farreri may represent an
adaptive change for enhancement of transcription efficiency in
support of the scallop’s unusual and advanced multi-eye visual
system.

Scallop eyes possess a unique double-layered retina (Fig. 3a),
which are equipped with different photoreceptors sensitive to
light of different wavelengths and play different roles in visual
behaviors50. The proximal retina consists of rhabdomeric
photoreceptor cells (also found in most of invertebrate eyes),
whereas the distal retina consists of ciliary photoreceptor cells
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(similar to rod and cone cells of vertebrates)51. Key genes
participating in rhabdomeric and ciliary phototransduction
pathways were identified here in the C. farreri genome, and
higher gene expression of the Gq-coupled rhabdomeric pathway
implies that the proximal retina plays prominent roles in the
scallop visual system (Supplementary Table 16). The evolutionary
origins of the two layers of the retina remain enigmatic. It has
been suggested that the distal retina might have evolved later than
the proximal retina51, 52 and thus is likely under relaxed selection
pressure. This hypothesis is, to some extent, supported by our
analysis of opsin genes from two scallop species (C. farreri and P.
yessoensis): ciliary opsins expressed in the distal retina showed
significantly lower sequence conservation (t-test p-value = 0.04),
greater Ka/Ks values (t-test p-value = 0.03), and much weaker
transcription relative to rhabdomeric opsins expressed in the
proximal retina (Fig. 3a, c). The presence (addition or retention)
of the otherwise vertebrate-specific distal retina may represent an
evolutionary innovation giving the scallop the potential to form
image and detect movement53.

Scallop eyes can detect a wide spectrum of light wavelengths
(λmax = 480–540 nm54), with the proximal retina sensitive to short
wavelengths, whereas the distal retina to long wavelengths50.
Various studies have shown that three key amino acid positions
in opsins (164, 261, and 269 in reference to rhodopsin of Bos
taurus55) are crucial determinants of spectral sensitivity to short
or long wavelengths56. R-opsin3 and r-opsin4, the two opsins
derived from gene duplication and most highly expressed in the
proximal retina of C. farreri, have “AFA” at these sites (just as
human green opsin does; Fig. 3d), adding a potentially valuable
variant to the ancestral “SFA” type found in the scallop (r-opsin1
and r-opsin2) and other bivalves. Apparently, the gene duplica-
tion increased the diversity of the r-opsin protein at core
functional sites in its amino acid sequence; this change may
broaden the scallop’s spectral sensitivity. Similarly, new func-
tional site variants of Go-opsin (AYT) and cl-opsin (GYA) were
observed in C. farreri (Fig. 3d) that may allow the scallop to sense
different ranges of long-wavelength light because SYT in humans
corresponds to red-light sensitivity56. These results show that
scallop eyes are not only numerous and structurally advanced but
also equipped with a diverse set of opsins including novel
intronless genes resulting from retroposition and tandem
duplication, and new opsin variants that are polymorphic at
functional sites in amino acid sequence and may broaden spectral
sensitivity. These notable molecular features may provide scallops
with enhanced vision or light sensitivity as part of their
adaptation to epibenthic semi-sessile life.

Byssal proteins and secretion regulation. Many aquatic animals
including bivalves, barnacles, and sandcastle worms have evolved
effective strategies for adhesion as adaptation to turbulent cur-
rents57. As an ancestral feature of bivalves58, byssal attachment is
an essential part of the sessile or semi-sessile lifestyle character-
istic of diverse bivalve families, but, to date, has been extensively
studied only in mussels59–61. In contrast to mussels, scallop byssal
attachment is characterized by abundant secretion of byssal
proteins and temporary attachment (in concert with swimming
behavior; Fig. 4a). The scallop byssus has different ultrastructure
and morphology in different regions (Fig. 4a and Supplementary
Fig. 16), indicating compositional and mechanical complexity.
Mass spectrometric analysis identified 16 candidate byssus-
related proteins (BRPs) in the whole byssal adhesive plaques of
C. farreri (Supplementary Figs. 17 and 18 and Supplementary
Data 4), including seven previously identified scallop byssal
proteins (SBPs62). Functional annotation of these BRPs suggests
that they potentially involve in oxidative reactions (tyrosinase and

peroxidase), extracellular matrix consolidation (tenascin-X), and
anti-biodegradation (serine protease inhibitor and metallopro-
teinase inhibitor) (Fig. 4b, Supplementary Data 4, and Supple-
mentary Fig. 19). Of the identified scallop BRPs, none shows
protein similarity to a well-known set of 11 mussel BRPs63, but up
to eight to an expanded set of 48 mussel BRPs recently identified
by Qin et al.64 (Supplementary Data 4). Four scallop BRPs
(CF48907.12, CF47691.7, CF44339.32, and CF30077.9) that do
not have either protein/domain annotations or similarity to
mussel BRPs likely represent novel SBPs. Of the 16 identified
BRPs, 12 show high and specific expression in the foot of C.
farreri but nearly no expression in the foot of the adult Yesso
scallop P. yessoensis, a species that is free living and does not
produce byssi in adulthood (Fig. 4c and Supplementary Table 17).
Ka/Ks analysis indicates that these BRPs diverged more rapidly
than other BRPs did (Fig. 4c), reflecting differential selection in
the two scallop species possibly because of different requirements
for byssal attachment at the adult stage.

Byssal secretion is a complicated process involving a series of
biochemical reactions occurring in various byssal and enzymatic
glands located in different regions of the foot65. To investigate the
molecular mechanism of byssal secretion, we conducted compre-
hensive temporal and spatial gene expression profiling by
sequencing 45 transcriptomes of three foot regions (proximal,
middle, and distal) and at five time points during byssal secretion.
Our results show that the three foot regions have different gene
expression patterns, reflecting their different roles during
byssogenesis (Fig. 4d). The proximal end of the foot, where the
primary byssal gland resides and byssal ribbons are secreted, is
characterized by high expression levels of connective proteins
tenascin-X and matrilin and various related enzymes. The middle
foot region where the secondary byssal and/or enzymic glands are
located and the byssal ribbon sheath or envelope is formed,
predominantly shows expression of a variety of tyrosinases
(Fig. 4g): enzymes crucial for mussel byssogenesis that catalyze
the formation of a strong adhesive, 3,4-dihydroxyphenylalanine
(DOPA)66. Tyrosinases’ participation in scallop byssogenesis is
supported by the enzymatic activity in foot glands and high
abundance of DOPA in byssi (Fig. 4e, f). The distal end of the foot
shows dramatically increased transcription of signal
transduction-related GPCR98-like proteins67, 68 at the initial
stage (<1 h) of byssal secretion, and likely plays a role in guiding
the search for suitable spots for attachment.

Neurotoxin accumulation and transformation. Bivalves can
tolerate and accumulate potent neurotoxins such as PSTs,
although the molecular mechanism of toxin resistance in bivalves
is not well understood. Like tetrodotoxin (TTX) of puffer fish,
PSTs attack the nervous system by blocking sodium channels on
nerve cell membranes and by inhibiting transduction of an action
potential69. We identified two sodium channel genes, Nav1 and
Nav2, in the C. farreri genome. Nav1 is the primary sodium
channel in animal nervous systems70 and is targeted by PSTs. We
found that the scallop’s Nav1 has a potentially toxin-resistant T
mutation at position 1425 (in reference to rat sodium channel
IIA69; Fig. 5a): the corresponding mutation in rat Nav1 yields a
15-fold increase in resistance to STX (the most potent PST) and a
15-fold increase in resistance to TTX71. This mutation is also
present in the Nav1 genes of two puffer fish species72, 73, Tetra-
odon nigroviridis and Takifugu rubripes (Fig. 5a), which have
strong toxin resistance, pointing to convergent evolution of toxin
resistance in the scallop and puffer fish. Furthermore, our analysis
revealed a Q mutation at position 945 in C. gigas and Atlantic
awning clam Solemya velum (Fig. 5a), which has been shown to
increase STX resistance up to 19,880-fold in a rat sodium
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channel73. The presence of these two novel mutations that are
known to increase toxin resistance in other organisms may
explain bivalves’ amazing ability to tolerate neurotoxins. More-
over, gene expression analysis in combination with PST quanti-
fication showed that toxin-rich organs (hepatopancreas and
kidney) are largely devoid of sodium channel gene expression
(Fig. 5b and Supplementary Table 18), which may represent
another novel adaptation of the scallop for tolerance of high
concentrations of PSTs via down-regulation of their targets. This
situation is consistent with the hepatopancreas and kidney being
the most toxin-rich or toxin-tolerant organs in the scallop.

Accumulation and transformation of PSTs in bivalves are well
documented13, 15, but detailed processes and mechanisms remain
obscure. To gain a deeper understanding of PST accumulation
and transformation in scallops, we comprehensively studied PST
accumulation and transformation in C. farreri by qualitatively
and quantitatively analyzing a variety of PSTs in six scallop
organs across five time points after exposure to PST-producing
microalgae Alexandrium minutum. We found that the hepato-
pancreas and kidney are the two organs with the highest
concentrations of PSTs, but the kidney is more toxic than
hepatopancreas (Fig. 5b). This is a new and significant finding
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because the kidney has been ignored in previous PST studies. The
hepatopancreas maintains a similar PST profile as the input
microalgae over time; however, the PST profile of the kidney
gradually changes with time and the most dramatic toxin change
(from input GTXs to highly toxic STX; Supplementary Fig. 20)
takes place after 5 days of A. minutum exposure (Fig. 5c,
Supplementary Fig. 21, and Supplementary Datas 5 and 6). This
finding suggests that the scallop hepatopancreas and kidney
function differently, with the former mostly accumulating the
incoming toxins, whereas the latter in toxin transforming and/or
eliminating them. To study the molecular mechanisms of PST
accumulation and transformation, we sequenced 36 transcrip-
tomes (Supplementary Table 19) of the hepatopancreas and
kidney after A. minutum exposure (across six time points, each
represented by three individuals) and constructed a gene co-
expression network for both organs (Supplementary Fig. 22).
Nine and five modules were identified as toxin-responsive (TR)
modules in the kidney and hepatopancreas, respectively (Fig. 5c
and Supplementary Data 7). Kidney TR modules were found to
be involved in diverse molecular functions (e.g., RNA/ion/
carbohydrate binding, transferase activity, peptidase activity,
and kinase activity), whereas hepatopancreas TR modules
primarily participated in a variety of “binding” activities
(Supplementary Datas 8 and 9). Notably, genes in the green
module were highly expressed on day 5 after A. minutum
exposure, coinciding with the highest transformation of PSTs in
the kidney (Fig. 5c). The green module is significantly enriched
with cytosolic sulfotransferase (Sult) genes (enrichment p-value =
5.9e−3; Fig. 5c and Supplementary Data 8), which may mediate

the transfer of a sulfate group from a donor molecule (such as
GTXs) to various acceptor molecules, endogenous metabolites,
and xenobiotics74. The Sult family is significantly expanded in the
C. farreri genome (83 genes versus 26 in the oyster, 31 in the pearl
oyster, 13 in humans, and 8 in the fly), and the Sult genes
showing significant up-regulation in the kidney during A.
minutum exposure all belong to the clade that is expanded in
C. farreri or bivalves (Supplementary Fig. 23 and Supplementary
Data 10). Collectively, our results suggest that the scallop
hepatopancreas and kidney act as two major “centers” for toxin
accumulation and transformation, respectively. The expanded
Sult genes likely participate in conversion of GTXs to more toxic
STX (Fig. 5d), which may give the scallop a powerful deterrent
against predation, while the novel mutations in Nav1 revealed in
this study may provide scallops and other bivalves with the ability
to tolerate those neurotoxins. It seems that dinoflagellates
produce neurotoxins to inhibit grazing by filter feeders, but
bivalve molluscs have adopted novel sodium channel variants to
tolerate neurotoxins and converted the toxins to even more toxic
forms for their own defense against predation. Our findings
highlight how simple mutations and expansion in one or two key
genes may have profound implications for an organism’s
adaptation to the environment and the complex interactions
with other organisms.

Discussion
Bivalves are a fascinating group of animals, which, despite long
evolutionary history dating back to the early-Cambrian, are still
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abundant and thriving as highly successful filter feeders dom-
inating diverse benthic environments. Their remarkable adapta-
tion to benthic life is not well studied at genomic levels. We
sequenced the genome of the Zhikong scallop and collected
extensive transcriptomes and proteomes to study molecular or
genomic changes related to several of its adaptive features. Our
analyses identified significant expansion in 270 gene families that
may be important for C. farreri’s biology and adaptation. The
scallop’s large striated muscle shows heightened energy dynamics
and is not fully differentiated from its smooth muscle. The
sophisticated noncephalic multiple eyes of C. farreri are sup-
ported by the predominant use of novel intronless r-opsin genes
(derived from retroposition and tandem duplication) and by
diverse opsin variants for possibly broadened spectral sensitivity.
The rapid secretion of byssi is enabled by a spatially differentiated
foot and multiple proteins/enzymes including the expanded
family of tyrosinases. The scallop uses the hepatopancreas to
accumulate algae-derived neurotoxins and uses the kidney to
transform them into highly toxic compounds by means of the
expanded family of sulfotransferases, probably as deterrence
against predation, while its own remarkable resistance to neuro-
toxins may be explained by mutational and expressional mod-
ulation of sodium channels. These molecular innovations may be
important for the scallop’s semi-sessile lifestyle as a filter feeder,
suggesting that simple expansion and mutation of a few key genes
may have profound effects on an organism’s phenotype and
adaptation.

Methods
Brief description of methods. The whole genome of a 2-year-old C. farreri was
sequenced using the Illumina HiSeq 2000 platform through the construction and
sequencing of both short-insert (180, 300 and 500 bp) and long-insert (2, 5, 10, 20
and 30 kb) DNA libraries. The genome size of C. farreri was estimated based on the
19-mer frequency distribution. To address the problem of high genome hetero-
zygosity, a hierarchical strategy based on a modified version of SOAPdenovo4 was
used for the assembly of the C. farreri genome. The integrity of the final assembly
was assessed by means of four data sets: four BAC sequences, WGS data, tran-
scriptome data, and an 843-BUSCO metazoan subset of genes. The assembly was
further anchored to chromosomes based on a high-density genetic linkage map10,
through the assignment of the scaffolds to 19 linkage groups. For repeat annota-
tion, tandem repeats were predicted using the software Tandem Repeats Finder11,
and TEs were predicted via two approaches (homology-based method and de novo
prediction). To predict genes in the C. farreri genome, three approaches (homolog-
based, de novo, and transcriptome-based predictions) were employed. Functional
annotation of the protein-coding genes of C. farreri was performed by searching
the SwissProt, TrEMBL, InterPro, GO (gene ontology), and KEGG (Kyoto Ency-
clopedia of Genes and Genomes) databases. Thirteen adult tissues/organs of the
scallop were chosen for transcriptome sequencing, including striated muscle,
smooth muscle, foot, hepatopancreas, kidney, female gonad, male gonad, gill, eyes,
mantle, cerebral ganglion, and visceral ganglion. Differentially expressed gene
(DEG) analysis was carried out using edgeR23 with three biological replicates, and
genes with a fold-change value ≥2 and adjusted p-value <0.05 were defined as
significant DEGs. To characterize the polymorphism in the C. farreri genome,
reads from the sequenced individual and five additional resequenced individuals
were aligned to the assembled genome for SNP calling using the BWA6 software.
Genomic regions or CDSs with high SNP density subjected to one-sided Fisher’s
exact test by comparing to the corresponding chromosomal background, and the
distribution of SNP density among chromosomes or genes was visualized using the
Circos software26. The OrthoMCL pipeline27 was used to define gene families for
the selected species. For phylogenetic analysis, we selected orthologous genes using
a tree-based approach PhyloTreePruner28, and the phylogenetic tree was con-
structed using RAxML29. To estimate the divergence time for C. farreri and other
metazoans, the first and second codon positions of the orthologs were extracted for
Bayesian dating using the MCMCtree program implemented in PAML31, with
reference divergence time of selected species retrieved from the TimeTree33

database. The evolutionary dynamics (expansion/contraction) of gene families were
analyzed in the software CAFÉ34, and GO enrichment analysis was performed
using the EnrichPipeline35. For muscle analysis, we compared the transcript
abundance of various enzymes involved in glycolysis, TCA cycle, and oxidative
phosphorylation pathways between different types of scallop muscles or between
scallop and oyster muscles. Co-expression gene networks were constructed by
means of WGCNA36 using 35 transcriptomes from adult tissues/organs, and
module enrichment of muscle-overrepresented genes was conducted by the
hypergeometric test (p< 0.05). The expression profile of vertebrate muscle marker

genes38 in the scallop was determined using the average TPM value of three bio-
logical replicates, and the corresponding value in human was obtained from the
HPA dataset (http://www.proteinatlas.org/). Putative opsin genes in the scallop and
other bivalves were identified by BLAST-based searching against known opsin
genes of other animal species at an e-value threshold of 1e−5, and only those
containing seven transmembrane domains and the lysine site (296 K) were kept for
subsequent analysis. The opsin phylogeny was constructed by the Bayesian
method39 using the sequences of seven transmembrane domains. Ka/Ks values
were estimated by means of Ka_Ks_calculator 2.040 using the YN method. Key
genes involved in rhabdomeric and ciliary phototransduction pathways were
identified by homology-based search against the known genes from Homo and
Drosophila, and putative light sensitivity of bivalve opsin genes was determined by
means of amino acid combinations at key positions (164, 261 and 269). The whole
protein sample as well as major sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis fractions extracted from byssal adhesive plaques by using the method
of Miao et al.43 were subject to mass spectrometric analysis. The mass spectrometry
raw data were searched against the predicted proteins from the C. farreri genome
using Mascot v.2.3.0. To be stringent, the identified proteins with ≤ 1 unique
matching peptide in both datasets and with expression ratio[foot/ave_nonfoot_organ] ≤ 2
were excluded from further analysis. Functional annotation of scallop candidate
BRPs was performed by searching against SwissProt, Pfam, InterPro, SMART, and
SignalP databases. Microstructures of the byssal thread were examined by scanning
electron microscopy (Hitachi S-3400N). Forty-five RNA-seq libraries covering
three foot regions (proximal, middle, and distal) and five time points after the
removal of byssal threads (0, 1, 1.5, 12 and 24 h) were subject to Illumina
sequencing and the overrepresented genes in each foot region were identified by
DEG analysis using the edgeR package23. A nitroblue tetrazolium staining assay
was performed on the whole byssal threads, and a catechol oxidase assay for in situ
detection of tyrosinase activity. For phylogenetic analysis of tyrosinases, a max-
imum likelihood (ML) tree was constructed using RAxML29 and the robustness of
the tree was tested by reanalysis of 1000 bootstrap replicates. The voltage-gated
sodium channel protein (Nav) sequences of C. farreri and other bivalves were
identified via homology-based searches with an e-value threshold of 1e−10. Amino
acids positions putatively conferring PST and TTX resistance were identified based
on conservation of previously reported sites45–50. Thirty-six RNA-seq libraries of
the hepatopancreas and kidney from scallops fed with toxic A. minutum were
subject to Illumina sequencing, and DEGs were identified using R package edgeR23.
The co-expression gene networks for the hepatopancreas and kidney were con-
structed using the R package WGCNA36, and over-representation analysis of the
TR genes was performed for each module by a hypergeometric test (p< 0.05) to
identify TR modules. GO enrichment analysis of each TR module in the networks
was conducted using the EnrichPipeline35. The cytosolic sulfotransferase (Sult)
genes were identified in the genomes of three bivalves, H. sapiens and D. mela-
nogaster using BLAST with an e-value threshold of 1e−5. The ML tree of SULTs
was constructed using RAxML29 and the robustness of the tree was tested by
reanalysis of 1000 bootstrap replicates. More detailed description of the above
methods can be found in the Supplementary Information.

Data availability. This genome project has been registered in NCBI under the
BioProject accession PRJNA185465. The sequencing data of C. farreri have been
deposited in NCBI Sequence Read Archive under the accession numbers of
SRX1305705, SRX2486272, SRX2486273, SRX2486281, SRX2486284, SRX2486300,
and SRX2913253-SRX2913260 for genomic data; and SRX2444844-SRX2444876,
SRX2508197-SRX2508199, SRX2444668-SRX2444682, SRX2444950-SRX2444979
and SRX2445405-SRX2445440 for transcriptomic data. The proteomic data have
been deposited in PRIDE Archive database under the accession numbers
PXD007932 and PXD007987. The C. farreri genome assemblies (including an
updated version improved by the addition of ~ 26 Gb PacBio data), gene sequences,
and annotation data are available at the scallop genome website (http://mgb.ouc.
edu.cn/cfbase/html/).
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