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Abstract

Background: We aimed to further understand the relationship between cAMP concentration and mnesic performance.

Methods and Findings: Rats were injected with milrinone (PDE3 inhibitor, 0.3 mg/kg, i.p.), rolipram (PDE4 inhibitor, 0.3 mg/
kg, i.p.) and/or the selective 5-HT4R agonist RS 67333 (1 mg/kg, i.p.) before testing in the object recognition paradigm.
Cyclic AMP concentrations were measured in brain structures linked to episodic-like memory (i.e. hippocampus, prefrontal
and perirhinal cortices) before or after either the sample or the testing phase. Except in the hippocampus of rolipram
treated-rats, all treatment increased cAMP levels in each brain sub-region studied before the sample phase. After the sample
phase, cAMP levels were significantly increased in hippocampus (1.8 fold), prefrontal (1.3 fold) and perirhinal (1.3 fold)
cortices from controls rat while decreased in prefrontal cortex (,0.83 to 0.62 fold) from drug-treated rats (except for
milrinone+RS 67333 treatment). After the testing phase, cAMP concentrations were still increased in both the hippocampus
(2.76 fold) and the perirhinal cortex (2.1 fold) from controls animals. Minor increase were reported in hippocampus and
perirhinal cortex from both rolipram (respectively, 1.44 fold and 1.70 fold) and milrinone (respectively 1.46 fold and 1.56
fold)-treated rat. Following the paradigm, cAMP levels were significantly lower in the hippocampus, prefrontal and
perirhinal cortices from drug-treated rat when compared to controls animals, however, only drug-treated rats spent longer
time exploring the novel object during the testing phase (inter-phase interval of 4 h).

Conclusions: Our results strongly suggest that a ‘‘pre-sample’’ early increase in cAMP levels followed by a specific lowering
of cAMP concentrations in each brain sub-region linked to the object recognition paradigm support learning efficacy after a
middle-term delay.
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Introduction

Most modern theories of learning and memory postulate that

memory processes require cyclic adenosine monophosphate

(cAMP) synthesis [1]; however, there is little evidence concerning

the mechanisms by which memory affects adenylyl cyclase activity

(cAMP synthesis) and/or phosphodiesterase (PDE) activity (cAMP

degradation). Literature reports indicate that activation of the

cAMP-PKA pathway cascade by memory processes triggers

activation of transcription factors such as CREB [2], leading to

neural processes that underlie learning and memory [1,3–5].

Consequently, several studies argue that artificial cAMP-PKA

cascade activation through intra-hippocampal infusion of 8Br-

cAMP, adenylyl cyclase or PKA activation improves memory

performance [4,6–9] whereas pharmacological inhibition of PKA

disrupts hippocampal long term potentiation and hippocampus-

based long-term memory [6,10,11]. Memory efficiency seems,

however, to require a restricted or selective cAMP production;

high cAMP levels do not necessarily improve memory. Indeed,

studies on flies and mice show that increases in adenylyl cyclase

activity can result in memory deficits [12,13]. Similarly, increasing

PKA activity impairs prefrontal cortex-dependent memory in mice

and expression of a constitutively active isoform of the G-protein

subunit Gas impairs mice behavioural performance in a fear-

conditioning task [14]. These works clearly demonstrate the

complexity of cAMP-dependent responses.

Mnesic mechanisms may be investigated through the use of an

object recognition memory task, a one-phase task based on

spontaneous activity and the natural preference that rodents

display to explore a novel object rather than a familiar one [15].

With this paradigm, memory performances were demonstrated to

be enhanced by the activation of serotonin 5-HT4 receptors (5-

HT4R) [16–19], receptors that have been also demonstrated to be

implicated in short- and long-term memory processes in laboratory

animals [20–30] (for review see [31]). Activation of 5-HT4R,

positively coupled to adenylyl cyclase, induce increases in cAMP

concentrations that can be regulated by activation of cAMP

phosphodiesterases (PDE) isoforms from families 1, 2, 3, and 4
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[18]. Involvement of PDE4 inhibitors in working and reference

memory [5,32–34] has already been well investigated through the

use of rolipram, a selective PDE4 inhibitor. In fact, several studies

have already reported a positive effect of PDE4 inhibition on

spatial memory [3,5,33–37], inhibitory avoidance learning

[5,33,38], contextual fear conditioning [4,39], and object

recognition [40–42]. The PDE4 isoenzymes are encoded by four

independent genes (Pde4a to Pde4d), which generate more than 25

splice variants [43,44]. Each splice variant exhibits unique

properties leading to specific control of cAMP levels [45,46].

Few studies deal with the involvement of each PDE4 isoforms in

memory performance as few studies have also investigated the

effect of others cAMP-PDE families on memory performance,

especially in the object recognition task [42,47]. Thus, from the

literature, little is known about the behavioural consequence and

especially memory performance following PDE4 [18], PDE3 [48]

or PDE2 [47] inhibition although these PDE families accounts for

a major part of the total cAMP-PDE-hydrolysing activities in the

hippocampus, the prefrontal and perirhinal cortices, brain

structures involved in recognition memory [18].

A way to enhance cAMP signaling and consequently influence

the pathways involved in object recognition (episodic-like)

memory, is to stimulate 5-HT4Rs and/or inhibit PDE enzymes,

especially PDE3 and 4 [18]. Here, we further characterize the

respective role of PDE3 and PDE4 in the processes of recognition

memory and assayed the relationship between cAMP concentra-

tions and mnesic performance. With this aim, we injected rats

before the acquisition phase, with milrinone (a selective PDE3

inhibitor currently used in heart failure studies [49], with a half-life

of 1.5–2.3 h [50,51], 0.3 mg/kg), or rolipram (a selective PDE4

inhibitor with good brain penetration and a relatively short half-

life of 1–3 h [52], 0.3 mg/kg) both alone and in combination or

not with the selective 5-HT4R agonist RS 67333 (1 mg/kg)

[17,18]. The half-life of RS 67333 in the rat is not reported

in the literature, but the data from behavioral studies [17,18]

suggest that this is comparable (1–3 hours) to those of the two PDE

inhibitors.

Before or after either the sample or the testing phase, cAMP

concentrations were measured in the hippocampus, prefrontal and

perirhinal cortices. We show that a ‘‘pre-sample’’ early increase in

cAMP levels followed by a specific lowering of cAMP concentra-

tions in each brain sub-region linked to the object recognition

paradigm support learning efficacy after a middle-term delay.

Following the different treatments and at the end of the testing

trial, we also examined in these brain sub-regions i) the PDE

activities to validate efficiency of PDE3 or PDE4 inhibition by

their respective inhibitor and ii) the phosphoprotein phosphatase

(PP) type 2 activities since cAMP concentrations have been shown

to be transiently up- or down-regulated by PP2A activation in

various cell types [53–55]. In fact, as cAMP-PDE limit excessive

cAMP production by catalysing its hydrolysis; PP1 and PP2

(accounting for more than 90% of total phosphatase activity in

brain [56]) limit PDE-induced excessive catabolism of cAMP by

reversing PP2A phosphorylation of phosphorylated PPE3B [57] or

particulate PDE4 activities [58]. We also demonstrate here, that

milrinone alters type PP2 activities in anatomical structures linked

to object recognition memory in rat.

Materials and Methods

1. Subjects
A total of 172 adult male Sprague-Dawley rats (300–350 g,

René Janvier, France) were used in these experiments. Rats were

housed in groups of three in a temperature controlled room under

a 12L:12D cycle (lights on at 8:00 pm), with food and water

provided ad libitum. All procedures were performed in conformity

with National (JO 887–848) and European (86/609/EEC)

legislations on animal experimentation. Behavioural procedures

received approval from the Ethics Committee for Animal

Experimentation of Normandy (Approval number 1009-01).

2. Behavioural experiments
2.1 Apparatus. The apparatus consisted of an open-box

(1006100660 cm) made of wood with the inside painted in black.

The objects to be discriminated were made of plastic, or glass (all

5 cm height) and were available in four copies. The objects were

fixed (Patafix) on the floor in the box, to ensure that they could not

be displaced by the rats.

2.2 Handling and habituation. Rats were handled daily for

one week prior to the study and then habituated to the apparatus

and the test room. The first two days, rats were put together as a

group of 3 to explore the empty arena for 10 min. On the third

day, rats were put individually in the empty box for 3 min and the

next two days, in the presence of an object that will not be used for

the experimental task. Testing began on day 6.

2.3 Object recognition task. Animals were tested in the

object recognition task as described previously [15,18]. The test

session consisted of two phases with a duration of 3 min each on

day 6. During the sample phase, each rat was placed in the box

with two identical objects (placed close to the corners). After a

delay of 4 h, during which the animal returned to its cage and

both objects were replaced (one by its identical copy, the other by

a new object in the same locations), the rat was returned to the box

(testing phase). From rat to rat, the role (familiar or new object) as

well as the relative position of the two objects were

counterbalanced and randomly permuted.

The number of animals in each group was: saline-treated

(n = 32), RS 67333 1 mg/kg (n = 32), milrinone 0.3 mg/kg

(n = 27), milrinone+RS 67333 (n = 27), rolipram 0.3 mg/kg

(n = 27), rolipram+RS 67333 (n = 27).

3. Drugs and drug administration
In all experiments, each rat was given an i.p injection of either

saline (NaCl 0.9%) or RS 67333 (1 mg/kg) 30 minutes prior to the

sample phase as previously described [18]. We have not tested

other steps of memorization or lower doses of RS 67333 because i)

RS6733-induced enhancement was reported only for the acqui-

sition phase of information processing and ii) doses of 0.001 or

0.01 mg/kg were ineffective to enhance recognition memory

[16,17]. Milrinone (PDE3 inhibitor) or rolipram (PDE4 inhibitor)

was injected each at the dose of 0.3 mg/kg i.p. 45 min prior to the

sample phase. Higher doses of PDE inhibitors were not tested

since at high dosage, milrinone can have vasodilatory and

arrhythmogenic effects [59] and rolipram can have sedative side-

effects [60,61]. Efficiency of PDE3 or PDE4 inhibition was

confirmed by specific PDE3 or 4 activity measures in hippocam-

pus, prefrontal and perirhinal cortices at the end of the

behavioural task. Moreover, since object recognition performance

can only be determined if the animals show sufficient exploration

[62], we concomitantly evaluated the exploration levels of the

animals. In our experiment, a dose of 0.3 mg/kg rolipram or

0.3 mg/kg milrinone, given 45 min before the sample phase,

resulted in a substantial decrease in locomotor activity but not in

exploratory behaviour. A total of 148 rats were used to perform

the object recognition task (tested animals), and 24 rats received

the different injections, without being subjected to the behavioural

task (untested animals).

Biphasic cAMP Regulation and Recognition Memory
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4. Biochemical analysis
4.1 Cyclic AMP measurement. Cyclic AMP extraction was

performed according to a procedure adapted from Rodriguez

[63]. Immediately after the testing phase or at the corresponding

delay following the different injections (for untested animals), rats

were subjected to euthanasia by decapitation without prior

anesthesia. Intact brains were dissected on ice into prefrontal

cortex, perirhinal cortex and hippocampus, taken systematically in

this order and in less than 3 min following euthanasia. Brain sub-

regions were rinsed with cold saline and dried. Each sub-region

was homogenized in cold 100% ethanol in an ice bath and the

homogenate centrifuged at 20,000 g for 15 min. The supernatant

was recovered and, the pellet resuspended in 1 ml of 2:1

ethanol:water solution and centrifuged as before. The combined

supernatants were evaporated to dryness in a 60uC bath under a

stream of nitrogen gas. The final residue was dissolved in 0.5 ml of

assay buffer (0.05 M sodium acetate, pH 5.8, containing sodium

azide). Cyclic AMP levels were determined with a radioimmuno-

assay (Amersham). This assay measures the competitive binding of
3H-labeled cAMP to a cAMP-specific antibody.

4.2 Preparation of rat brain membranes and soluble

fractions. Sub-cellular fractionation of the brain regions was

also performed immediately after euthanasia as detailed previously

[18]. Briefly, each cerebral tissue was placed, immediately upon

isolation, into ice-cold homogenization buffer (20 mMTris-HCl

pH 7.2, 1 mM EDTA, 250 mM sucrose, supplemented with

0.1 mMphenylmethanesulfonyl fluoride, 2 mMbenzamidin, and a

mixture of antiproteases (antipain, aprotinin, leupeptin, pepstatin

A) at a final concentration of 1 microg/ml), homogenized by

several passages through 25-G needle. Homogenates were

centrifuged at 1,000 g, 4uC for 5 min and the supernatants

decanted and centrifuged at 100,000 g, 4uC for 1 h. Each

supernatant (soluble fraction) and the respective pellet

(particulate fraction, re-suspended in ice-cold complete

homogenization buffer) were then stored at 220uC. Protein

content of each fraction was determined by the method of

Bradford with BSA as a standard [64]. Purity of each subcellular

fraction was assayed by both lactate deshydrogenase (soluble

activity) and alkaline phosphatase (membrane-associated activities)

as already reported [18].

4.3 PDE Assay. Phosphodiesterase activities were assayed

according to the two-step modified procedure of Thompson and

Applemann [65] as already described [18]. To discriminate PDE2,

PDE3 or PDE4 activities from other PDE activities, protein from

each sample were incubated either in the absence (total PDE

activities) or in the presence of specific inhibitors of each family:

20 mM erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA), 20 mM

milrinone or 10 mM rolipram for PDE2, PDE3 and PDE4,

respectively, according to their respective IC50 described

elsewhere [18]. Differences between total and selective inhibitor-

insensitive PDE activities were considered as corresponding PDE

activities.

4.4 Phosphatase Assay. Total PP2 activities in subcellular

fractions of the different rat brain structures were determined by

Serine/Threonine Phosphatase Assay (Promega, Charbonière-les-

Bains, France) which used a specific substrate for PP2. Assays were

conducted according to the manufacturer’s procedure. Free

phosphate was then quantified by a colorimetric method.

4.5 SDS-PAGE Western Blot Analysis. Subcellular fraction

protein from hippocampus, prefrontal and perirhinal cortices were

boiled for 5 min and separated by 8% SDS-PAGE. The proteins

were transferred onto a nitrocellulose membrane (1 h at 100 V

and 4uC). Western blotting was then performed using an affinity-

purified goat polyclonal antibody raised against a peptide that

maps near the C-terminus of the human PDE4D (Santa Cruz

Biotechnology). Immunoblotting with antibody that was pre-

incubated with an excess of the peptide used for immunization

(Santa Cruz Biotechnology) was performed as a negative control,

following the instructions of the supplier. Immunoreactive bands

were detected using a donkey anti-goat IgG-horseradish

peroxidase (HRP) complex and an enhanced chemiluminescence

(ECL) Advance Western Blotting Detection Kit (Amersham

Biosciences). For b-actin detection, the blots were stripped in a

stripping buffer that contained 62.5 mM Tris-HCl (pH 6.7) 2%

SDS, and 100 mM b-mercaptoethanol at 58uC for 30 min, and

reprobed for actin with monoclonal mouse anti-actin antibody and

goat anti-mouse IgG-HRP (Calbiochem). The immunoblots were

scanned on the ProXPRESS Proteomic Imaging System (Perkin

Elmer Life Science, Boston, MA) and analyzed with the TotalLab

Image Analysis software (Nonlinear Dynamics Ltd., Newcastle,

UK).

5. Data scoring and analysis
5.1 Behavioural analysis. The experimenter sat in front of

the box. Total time spent exploring each object in both the sample

and the testing phases were recorded. Exploration of an object was

defined as follows: directing the nose to the object at a distance

,2 cm. Overall exploration times across phases were analyzed by

a two-way ANOVA (phase and treatment as factors) with repeated

measures. For testing phase data, exploration of each object was

analyzed using a two-way repeated-measurements ANOVA with

object and treatment as factors. When appropriates, post-hoc

testing was performed using Fisher’s least significant difference

(LSD) test. We calculated discrimination indexes as D1, which is

the difference in time spent exploring the two objects in testing

trial (i.e. time with novel object minus time with familiar object);

and D2, the discrimination ratio, which is the difference in

exploration time (D1) expressed as a ratio of the total time spent

exploring the two objects in the testing trail (e.g. novel-familiar/

novel+familiar). This ratio makes it possible to adjust for individual

or group differences in the total amount of exploration time.

Comparisons were made using one-way ANOVA with treatment

as factor and post-hoc testing was performed using Fisher’s least

significant difference (LSD) test.

Locomotor activity was measured during the test session

through videotaping. The arena was divided into 9 squares

(32632 cm). During each phase, the number of entries in each

square was measured. Analysis was performed using two-way

repeated-measurements ANOVA with entry and treatment as

factors, followed by Fisher’s LSD test when necessary.

5.2 Biochemical analysis. After construction of a standard

curve, cAMP levels were determined directly from the counts (in

duplicate for each brain region of each animal) in nanomoles per

milligram of tissue wet weight. PDE activities (in triplicates) were

expressed in pmol of cAMP hydrolyzed per min and mg of

protein. PP2 activities were expressed as nmol of phosphate

released per min.

Statistical differences were determined through non-parametric

tests adapted to small size data (Friedman and Kruskal-Wallis,

followed by a post-hoc Mann-Whitney U-test; Sigma Stat software

SPSS Inc, Chicago, IL).

Results

Hippocampus, prefrontal and perirhinal cortices exhibit
different patterns of particulate PDE4D isoforms

Cyclic AMP-PDE was assayed in subcellular fraction from

hippocampus, prefrontal and perirhinal cortices. Here, we

Biphasic cAMP Regulation and Recognition Memory
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confirmed our previous work [18] reporting that the total cAMP-

PDE-hydrolysing activities of the particulate fraction from

hippocampus, prefrontal and perirhinal cortices are mainly

composed by PDE3 (38,2%, 34,8% and 43,4% respectively in

hippocampus, prefrontal and perirhinal cortices) and PDE4

(26,7%, 43,4% and 21,4% respectively in hippocampus, prefrontal

and perirhinal cortices) (data not shown). Since each PDE4D

isoform plays specific roles on the cAMP concentration feedback

[45,46], we furthermore characterized by western blotting the

pattern of PDE4D isoforms present in these brain sub-region

(Fig. 1). We demonstrated that PDE4D protein expression

differed according to the subcellular fraction and the brain sub-

region. In the particulate fraction from prefrontal cortex, the

presence of nine immunoreactive proteins suggests that all nine

PDE4D isoforms (i.e. PDE4D1 to PDE4D9) are expressed

whereas particulate fraction of hippocampus did not exhibit

PDE4D6 and of perirhinal cortex neither particulate PDE4D8/9

nor particulate PDE4D3. Nevertheless, in the particulate fraction

from hippocampus, prefrontal or perirhinal cortices, both the short

PDE4D1 and the long PDE4D4 isoforms are the mainly PDE4D

isoforms expressed. Finally, PDE4D1, PDE4D2, PDE4D4 and

PDE4D6 were the isoforms revealed in the soluble fraction from

prefrontal or perirhinal cortices. A similar panel of PDE4D

isoform was revealed in the soluble fraction from the hippocam-

pus, except that no immunoreactive band matches with PDE4D2.

As reflected by the densitometric analyses (right panel of Fig. 1),

the patterns of the putative PDE4D isoforms did not display any

significant structure-related differences.

RS 67333 enhances particulate PDE3 activity from the
perirhinal cortex in rat

To identify which cAMP-PDE family support the rolipram-

insensitive PDE activities increased in the perirhinal cortex following

the selective activation of 5-HT4R (RS 67333; [18]), rats were

injected with a saline solution or RS 67333 (1 mg/kg, i.p.) before the

object recognition paradigm (inter-phase interval of 4 h). Immedi-

ately after the testing phase, rats were subjected to euthanasia and

PDE activities were assayed. As shown in Fig. 2, RS 67333 elevated

PDE3 activities by 71% (P,0.01) in the perirhinal cortex lightening

this family as a key regulator of cAMP concentration in this structure

linked to object recognition. No variation was measured in the

supernatant fraction (data not shown).

5-HT4 receptor stimulation, PDE3- or PDE4-inhibition
improve familiar object recognition after a 4-h delay in
rat

Rats were then injected with milrinone (PDE3 inhibitor,

0.3 mg/kg, i.p.), rolipram (PDE4 inhibitor, 0.3 mg/kg, i.p.)

and/or the selective 5-HT4R agonist RS 67333 (1 mg/kg, i.p.)

before the object recognition paradigm sample phase.

We first validate the efficiency of the treatments with PDE

inhibitors; rats were immediately subjected to euthanasia after the

testing phase, and PDE activities from the hippocampus,

prefrontal and perirhinal cortices, were assessed. We especially

measured PDE3 activity for milrinone-treated animals (Fig. 3)

and PDE4 activity for rolipram-treated animals (Fig. 4). Con-

cerning the measurements of particulate PDE3 activities in

milrinone-treated rats (Fig. 3), we showed that PDE3 activity

was inhibited in the hippocampus (230%, P,0.01) and prefrontal

cortex (263%, P,0.001), but not in the perirhinal cortex, when

compared to saline-treated rats. However, pre-treatment of rats by

milrinone before RS 67333 prevented the RS 67333-induced

increase in particulate PDE3 in the perirhinal cortex. Finally,

milrinone did not affect significantly cAMP-PDE activities

supported by other families than PDE3. As illustrated in Fig. 4,

in rolipram-treated rats, particulate PDE4 activity was lower than

in saline-treated rats, in the hippocampus (260%, P,0.05) and

the prefrontal (242%, P,0.05) cortex, while tend to be lower in

the perirhinal cortex (226%). Similar decrease when compared to

RS 67333-treated group was also observed for rolipram+RS

67333-treated animals in the prefrontal cortex (242%, P,0.05)

and, despite no significant, in the perirhinal cortex (247%).

As shown in Table 1, all rats spent a similar total time exploring

both objects during either the sample or the testing phase after a 4-

h delay (P.0.05). Comparison of locomotor activities revealed an

overall significant effect of treatment during the sample phase (F (5,

112) = 9.25, P,0.001). Post hoc analyses showed that rolipram- or

rolipram+RS 67333-treated rats had a smaller number of entries

compared to saline-treated (respectively P,0.001, P,0.01), RS

67333-treated (P,0.001), milrinone-treated (respectively P,0.001,

P,0.05), milrinone+RS 67333- treated animals (respectively

P,0.001, P,0.01) (Table 2). Finally, we found that milrinone-

treated animals explore less than RS 67333-treated ones (P,0.01).

Analysis of the testing phase revealed no significant treatment effect

on the exploratory behaviour.

The repeated-measures ANOVA revealed i) for saline-treated

rats, no significant difference of novel object exploration time

(Fig. 5); ii) for drug-treated rats, both an overall significant effect

of time spent exploring each object (F(1, 112 = 109.3, P,0.001)

and an interaction between time exploring each object and

treatment (F 5, 122) = 5.4, P,0.001). Post hoc analyses showed

that all drug-treated rats significantly spent more time exploring

the novel object, when compared to saline-treated rats (RS 67333-

treated, P,0.001, rolipram-treated, P,0.001; rolipram+RS

67333-treated, P,0.01, P,0.001; milrinone-treated, P,0.001;

milrinone+RS 67333-treated, P,0.05) (Fig. 5). This result is also

confirmed by analysis of discrimination indexes (Table 3).

ANOVA performed on D1 and D2 showed a significant treatment

effect [for both D1 and D2: (F(5, 112) = 4.5, P,0.001)]. Post-hoc

analysis revealed that all treated animals had a greater

discrimination index (D1) compared to saline-treated animals

(RS 67333-treated (P,0.001), rolipram-treated (P,0.001), roli-

pram+RS 67333 treated (p,0.01), milrinone-treated (P,0.01)

milrinone+RS 67333- treated animals (P,0.05). These results are

also confirmed by post-hoc analysis of the discrimination ratio

(D2), compared to saline-treated rats (RS 67333-treated

(P,0.001), rolipram-treated (P,0.001), rolipram+RS 67333

treated (p,0.05) milrinone-treated (P,0.01) milrinone+RS

67333- treated animals (P,0.05).

Familiar object recognition is associated with a ‘‘pre-
sample’’ early increase in cAMP levels in hippocampus,
prefrontal and perirhinal cortices

To further characterize the cellular mechanisms involved after a

4 h-delay, rats were subjected to euthanasia before or after the sample

or the testing phase of the paradigm, and cAMP was measured in the

anatomical structures linked to the object recognition task (i.e.

hippocampus, prefrontal and perirhinal cortices) (Fig. 6).

As illustrated in Fig. 6, cAMP concentrations measured before

the sample phase (white bars), demonstrate, except in the

hippocampus of rolipram treated-rats, the efficiency of RS

67333 (1 mg/kg, i.p.), rolipram (0.3 mg/kg, i.p.) and milrinone

(0.3 mg/kg, i.p., data not illustrated for more readability) to

increase cAMP levels in the three brain structures studied, i.e.

hippocampus (,1.3 fold), prefrontal (,1.5 fold) and perirhinal

cortices (,1.6 fold) when compared to saline-treated rats (Mann-

Whitney test versus saline group, P,0.05).

Biphasic cAMP Regulation and Recognition Memory
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RS 67333, milrinone and rolipram treatments prevent the
sample phase-induced increase in cAMP levels in the rat
central nervous system

Analysis of the cAMP concentrations reveal that, in saline-
treated rats, the sample phase induces an increase in cAMP
levels in all brain regions studied (Fig. 6, grey bars versus
white bars; ,1.8 fold, ,1.3 fold and ,1.3 fold for the

hippocampus, prefrontal and perirhinal cortices, respectively;

Mann-Whitney test, P,0.05). Such a sample phase-induced

increase could not be observed for the drug-treated animals; a

tendency to a decreased level of cAMP was even noticed in the

prefrontal cortex of these animals (,0.86 to 0.62 fold according to

drug treatment, Fig. 6) except those treated with milrin-

one+RS67333.

Figure 1. Expression of PDE4D proteins in the particulate and soluble fractions of rat hippocampus, prefrontal and perirhinal
cortices. Particulate and soluble fractions from the rat hippocampus, the prefrontal cortex and perirhinal cortex were isolated and proteins extracted
as described in Materials and Methods section. The left panel shows representative immunoblots of particulate (25 mg) and soluble (25 mg) protein
fractions probed with goat polyclonal human anti-PDE4D antibody in the hippocampus, prefrontal and perirhinal cortices. Arrowheads indicate the
molecular weights of the immunoreactive proteins. The right panel shows quantification; the intensities of the immunoreactive bands in the
particulate and soluble fractions from hippocampus, prefrontal and perirhinal cortices were determined and normalized to those of actin. The
densitometry values are the mean 6 SEM (n = 3).
doi:10.1371/journal.pone.0032244.g001
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Drug treatments lower cAMP levels in hippocampus,
prefrontal cortex and perirhinal cortex after the object
recognition test

After the testing phase (black bars, Fig. 6) when compared with

the situation before the testing phase (hatched bar), cAMP

concentrations in saline –treated rats were once more increased

in both the hippocampus (2.76 fold, P,0.05) and the perirhinal

cortex (2.10 fold, P,0.05) but not in the prefrontal cortex.

Nevertheless cAMP concentrations in the prefrontal cortex from

saline-treated animals still tend to be higher than before the

sample phase (P.0.05). Thus, between the beginning and the end

of the paradigm, we reported a 4.1, 1.3 and 3.2 fold increase in

cAMP concentrations, respectively in the hippocampus, prefrontal

cortex and perirhinal cortex from the saline group (Mann-Whitney

test, respectively P,0.05; P.0.05 and P,0.05).

Figure 3. Milrinone (0.3 mg/kg, i.p.) specifically inhibits PDE3
activities in hippocampus, prefrontal cortex and perirhinal
cortex from rats. Rats were injected with the PDE3 inhibitor
(milrinone, 0.3 mg/kg, i.p.) and then with saline or the 5-HT4 receptor
agonist (RS 67333, 1 mg/kg, i.p.), respectively 45 minutes and
30 minutes before the sample phase of the object recognition task.
Immediately after the testing phase, both particulate and soluble
fractions from the hippocampus, the prefrontal cortex and perirhinal
cortex were isolated and particulate fraction was assayed for milrinone
(20 mM)-sensitive PDE activities. Milrinone-sensitive and –insensitive
PDE activities were expressed as pmolcAMPhydrolysed/min/mg protein.
Results are means 6 SEM of four independent subcellular fractionations
performed in triplicate. Within each subcellular compartment,
* indicated significant differences of PDE activity as compared with
other treatment within a type of PDE activity (PDE3 or other PDE)
(*, P,0.05, **, P,0.01, ***, P,0.01, ANOVA followed by Fisher’s LSD
test).

Figure 2. Effect of RS 67333 (1 mg/kg, i.p.) on PDE activities in
the perirhinal cortex from rats performing the object recogni-
tion task with a 4-h delay. Rats were injected with saline or the 5-
HT4 receptor agonist RS 67333 (1 mg/kg, i.p.), 30 minutes before
exposure to the sample trial of he object recognition task. Immediately
after the testing trial, particulate fractions from the hippocampus,
prefrontal and perirhinal cortices were isolated and assayed for EHNA-
(20 mM), milrinone- (20 mM) and rolipram- (10 mM) sensitive PDE
activities, respective inhibitors of PDE2, PDE3 and PDE4 families. PDE
inhibitor-sensitive and –insensitive PDE activities were each expressed
as pmolcAMPhydrolysed/min/mg protein. Results are means 6 SEM of
four independent subcellular fractionations performed in triplicate.
Within each subcellular compartment, * indicates a significant
difference of PDE activity as compared with saline treatment within a
family of PDE activity (PDE2, 3, 4 or other PDE) (**, P,0.01, ANOVA
followed by Fisher’s LSD test).
doi:10.1371/journal.pone.0032244.g002
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In the drug-treated animals, minor increases in cAMP levels

(lower than in the saline-treated group) were also reported after the

testing phase. Both rolipram and milrinone alone or administered

before RS 67333 induced an almost 1.4 fold increase in cAMP

concentrations in the hippocampus between the beginning and the

end of the paradigm (P,0.05). Similarly, in the perirhinal cortex,

a 1.6 fold increase of cAMP levels in the rolipram group (Fig. 6,

P,0.05) and a 1.5 fold increase in the milrinone group (P,0.05)

were reported after the testing phase. Finally, in the prefrontal

cortex from drug-treated rats, cAMP levels still tend to decrease

(,28 to 222% according to drug treatment).

At the end of the paradigm, cAMP concentrations from rats

injected with a PDE inhibitor alone or in combination with RS

67333 were markedly lower when compared to saline-treated rats

in the hippocampus (254 to 261% according to the treatment,

P,0.05), the prefrontal (213 to 231% according to the

treatment) or perirhinal cortices (213 to 235% according to the

treatment) (Mann-Whitney test versus saline group, P,0.05).

Milrinone altered PP2 activities in anatomical structures
linked to object recognition memory in rat

We assessed PP2 activities in both subcellular compartments

(soluble and particulate) of the hippocampus, prefrontal and

perirhinal cortices since excessive cAMP catabolism is limited by

reversing phosphorylation of particulate PDE4 activities [53–55].

PP2 activity was measured in both the soluble and particulate

fraction (Table 4); PP2 activity was however mainly present in the

soluble fraction (68.162.1% to 75.361.7% of total PP2 activity

Figure 4. Rolipram (0.3 mg/kg, i.p.) specifically inhibits PDE4
activities in hippocampus, prefrontal cortex and perirhinal
cortex from rats. Rats were injected with the PDE4 inhibitor (rolipram,
0.3 mg/kg), and then with saline or the 5-HT4 receptor agonist (RS
67333, 1 mg/kg), respectively 45 minutes and 30 minutes before the
sample phase of the object recognition task. Immediately after the
testing phase, both particulate and soluble fractions from the
hippocampus, the prefrontal cortex and perirhinal cortex were isolated
and the particulate fraction was assayed for rolipram (10 mM)-sensitive
PDE activities. Rolipram-sensitive and –insensitive PDE activities were
expressed as pmolcAMPhydrolysed/min/mg protein. Results are means
6 SEM of four independent subcellular fractionations performed in
triplicate. Within each subcellular compartment, * indicated significant
differences of PDE activity as compared with other treatment within a
type of PDE activity (PDE4 or other PDE) (*, P,0.05, **, P,0.01, ANOVA
followed by Fisher’s LSD test).
doi:10.1371/journal.pone.0032244.g004

Table 1. Time of exploration of objects measured during the
sample and the testing trails in the object recognition task.

Time exploring objects
(in s, mean ±SEM)

Sample Testing

Saline (n = 32) 31.762.9 29.462.4

RS 67333 (1 mg/kg, i.p.) (n = 32) 33.163.1 34.662.5

Rolipram (0.3 mg/kg, i.p.) (n = 27) 29.863.5 32.662.4

Rolipram (0.3 mg/kg, i.p.)+RS 67333
(1 mg/kg, i.p.) (n = 27)

32.763.9 36.963.4

Milrinone (0.3 mg/kg, i.p.) (n = 27) 29.863.2 31.763.3

Milrinone (0.3 mg/kg, i.p.)+RS 67333
(1 mg/kg, i.p.) (n = 27)

27.362.7 26.762.4

doi:10.1371/journal.pone.0032244.t001
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according to the structure considered). Milrinone significantly

altered PP2 activities in the soluble fraction of the hippocampus

(Fig. 7a) and perirhinal cortex (Fig. 7c) as well as the soluble and

particulate fractions of the prefrontal cortex (Fig. 7b). In fact, a

slight decrease was evidenced in the soluble fraction of the

hippocampus from RS 67333-treated rats (220%, P,0.01,

Fig. 7a). Thus, in milrinone-treated rats, soluble PP2 activities

decrease (244% when compared to saline rats, P,0.001) was

significantly strengthened (P,0.01) when rats were also injected

with RS 67333 (PP2 activities was diminished by 270% when

compared to saline rats, P,0.001). Similar observations were done

in the prefrontal cortex of milrinone-treated rats (Fig. 7b), in

which PP2 activities decrease in the soluble fraction (253% when

compared to saline rats, P,0.001) was significantly strengthened

(P,0.01) when rats were also injected with RS 67333 (PP2

activities was diminished by 279% when compared to saline rats,

P,0.001). PP2 activities of the particulate compartment were

altered in milrinone-treated rat (279%, P,0.001) but this

decrease was not strengthened in milrinone+RS 67333 treated

animals. Finally, milrinone affected soluble PP2 activities in the

perirhinal cortex, when administrated alone or in association with

RS 67333 (275% when compared to saline-treated rats, P,0.001;

Fig. 7c).

Such modifications of PP2 activities could not be evidenced in

rolipram-treated animals (data not shown).

Discussion

Object recognition memory in rodents and primates is thought

to be mediated, at least in part, by interactions between the

perirhinal cortex, prefrontal cortex and hippocampus [66–70].

Interestingly, 5-HT4R, known to be involved in learning and

memory [31], including acquisition of information [18] are widely

distributed among these brain structures [71–73]. Since 5-HT4R

stimulation induces an increase in cAMP that has been associated

to memory processes [6,8,9,11], we first hypothesized that the

drug-induced increase in cAMP might support the improvement

of object recognition memory performance. Data presented here

strongly suggest that the ‘‘pre-sample’’ early increase in cAMP

levels followed by a specific lowering of cAMP concentrations in

each brain sub-region involved to the object recognition paradigm

improve learning efficacy after a middle-term delay.

We first confirmed the major role of PDE3 and PDE4 in the

control of cAMP levels in the anatomical structures linked to the

object recognition task [18]. Indeed, we reported that both the

stimulation of cAMP production (RS 67333) and the inhibition of

its hydrolysis (milrinone, PDE3 inhibitor or rolipram, PDE4

inhibitor) in the rat, improve familiar object recognition after a 4-h

delay. Besides, we observed similar effects of PDE3 and PDE4

inhibitors. In line with previous studies, we reported a higher

Table 2. Locomotor activity measured during the sample and
the testing trails in the object recognition task.

Total number of entries
(mean ±SEM)

Sample Testing

Saline (n = 32) 50.862.1 48.963.0

RS 67333 (1 mg/kg, i.p.) (n = 32) 54.961.4 51.862.6

Rolipram (0.3 mg/kg, i.p.) (n = 27) 36.262.6 49.963.3

Rolipram (0.3 mg/kg, i.p.)+RS 67333
(1 mg/kg, i.p.) (n = 27)

37.663.4 53.363.3

Milrinone (0.3 mg/kg, i.p.) (n = 27) 46.262.6 46.763.2

Milrinone (0.3 mg/kg, i.p.)+RS 67333
(1 mg/kg, i.p.) (n = 27)

51.862.9 49.862.5

doi:10.1371/journal.pone.0032244.t002

Figure 5. Object recognition task after a 4 h-delay in saline,
rolipram- or milrinone- treated rats with or without RS 67333
co-treatment. Time of exploration of the familiar and novel objects
during the testing phase of the object recognition memory task of
saline (n = 32), RS 67333 (n = 32), rolipram (n = 27), rolipram+RS 67333
(n = 27), milrinone (n = 27), or milrinone+RS 67333 (n = 27)-treated rats.
Rats were injected with the PDE inhibitor (0.3 mg/kg, i.p.) solution
45 minutes before the sample phase and with saline or RS 67333
(1 mg/kg, i.p.) solution 30 minutes before the sample phase. Object
recognition was assayed after a 4 h-delay. Values are means in s 6 SEM.
NS: non significant, (*) indicates a significant difference in comparison
with saline treatment. (*, P,0.05, **, P,0.01, ***, P,0.001, ANOVA
followed by Fisher’s PLSD test).
doi:10.1371/journal.pone.0032244.g005

Table 3. Value of the index measures of discrimination in the
object recognition task.

D1
(mean±SEM)

D2
(mean±SEM)

Saline (n = 32) 1.462.3 0.160.08

RS 67333 (1 mg/kg, i.p.) (n = 32) 17.262.7*** 0.560.06***

Rolipram (0.3 mg/kg, i.p.) (n = 27) 16.462.2*** 0.560.06***

Rolipram (0.3 mg/kg, i.p.)+RS
67333 (1 mg/kg, i.p.) (n = 27)

12.963.6** 0.360.08*

Milrinone (0.3 mg/kg, i.p.) (n = 27) 12.262.6** 0.460.07**

Milrinone (0.3 mg/kg, i.p.)+RS
67333 (1 mg/kg, i.p.) (n = 27)

8.562.3* 0.360.07*

*P,0.05,
**P,0.01,
***P,0.001, one-way ANOVA followed by Fisher LSD test, comparison with

saline-treated group.
doi:10.1371/journal.pone.0032244.t003
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Figure 6. Rolipram and/or RS 67333 induce a biphasic modulation of cAMP concentrations in the hippocampus, prefrontal and
perirhinal cortices of rats performing an object recognition task with a 4-h delay. Rats were injected with the inhibitor of PDE4 (rolipram,
0.3 mg/kg, i.p.) and then with saline or the 5-HT4 receptor agonist (RS 67333, 1 mg/kg, i.p.), respectively 45 minutes and 30 minutes before to the
sample phase of the object recognition task. Rats were euthanized before or after the sample phase, or before or after the testing phase. Cyclic AMP
was extracted from the hippocampus, prefrontal and perirhinal cortices and then assayed. Cyclic AMP was expressed as pmolcAMP/mg of weight
tissue. Results were means 6 SEM of three independent extractions performed in duplicate. (0) indicated significant differences in comparison with
other steps of the paradigm in each brain sub-region, Mann-Whitney test, P,0.05. (*) indicated a significant difference in comparison with saline
treatment in each brain sub-region. (0,*, P,0.05).
doi:10.1371/journal.pone.0032244.g006
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sensitivity of PDE3- than PDE4-regulated cAMP pools to PKA

activation, associated to a lower efficacy of PDE3 to hydrolyze

cAMP [74–77]. We hypothesized this familiar object recognition

improvement to be linked to the early cAMP levels increase

measured before the sample phase in the hippocampus, prefrontal

and perirhinal cortices from these animals. Early cAMP

activations in the prefrontal cortex have already been described

to be beneficial for working memory under conditions that require

hippocampal-prefrontal cortex interactions [14,78]. Moreover, the

observation that the drug-induced early increase in cAMP in the

brain sub-regions improves the mnesic trace is consistent with data

reporting that activation of the cAMP-PKA pathway cascade

improves memory processes [2,4,6,8,9] unlike inhibition of PKA

[6,10,11,79]. Indeed, according to the model of Frankland and

Bontempi, experience is both initially encoded in hippocampal

and cortical networks. Subsequent reactivation of the hippocampal

network reinstates activity in different cortical networks. This

coordinated replay across hippocampal–cortical networks leads to

gradual strengthening of cortico-cortical connections, progressive-

ly disengaging the memory trace from the hippocampus [80].

Thus, the higher cAMP levels induced by drug treatments could

support a better acquisition of the mnesic trace that will, in turn,

benefit to the animal during the testing phase.

We also observed that drug treatments induce a lowering, and/

or a reduction of the awaited increases, in cAMP levels in all

brains regions studied after the testing phase, when compared to

saline injected animals. Hence, cAMP concentrations were

systematically lower in both the hippocampus and perirhinal

cortex from animals that have increased behavioural performances

than in the saline-treated rats that exhibit poor object recognition

performances. Appearing at a first glance as a discrepancy from

data from the literature, this situation can easily be reconciled by

recent studies suggesting that memory requires a restricted, or

selective cAMP production rather than a large and widespread

increase in cAMP levels [28,81]. Indeed, Kelly and co-workers

(2008) observed an impairment of memory consolidation and/or

retrieval in a fear-conditioning task in mice that express a

constitutively active isoform of the G-protein subunit Gas in the

forebrain [81]. Perez-Garcia and Meneses, (2008) also demon-

strate that the hippocampal production of cAMP was higher in

untrained rats than in rats subjected to a behavioral task [28]. In

this respect, low cAMP levels might be optimal to convert

temporary memory during acquisition to long-term memory (4 h-

delay) while high cAMP levels might disturb such a conversion of

short-term memory to long-term memory, resulting in low

performances in controls animals.

These few elements point out the complexity of cAMP-

dependent responses and the putative interactions between

behaviour- and drug-induced effects on cellular signaling. By

rapidly degrading cAMP from selected compartments, PDEs can

fix the boundaries for cAMP diffusion, shape the intracellular

gradients of the second messenger and thereby modulate defined

sets of PKA-mediated intracellular events. Hence, PDE alteration

may affect cAMP compartmentalization, leading to untargeted

cAMP signals, aberrant phosphorylation of target proteins and

thus contribute to dysfunction. We report here that hippocampus,

prefrontal and perirhinal cortices exhibit different patterns of

particulate PDE4D isoforms. One can therefore hypothesize

differential implications of PDE isoforms, keys mediators of

memory and learning processes in the limitation of cAMP increase

[36,37,82,83]. For example, PDE4D8 found only in the

particulate fraction from the hippocampus or the prefrontal

cortex, has been shown to be responsible for controlling local

cAMP concentrations and PKA activity in the vicinity of b1

adrenergic receptors [46]. PDE4D3 that we only described in the

particulate fraction from the hippocampus or the prefrontal

cortex, was reported to bind to muscle- specific A-kinase

anchoring protein (mAKAP), which in turns controls perinuclear

AMP levels and recruits the MAP kinases MEK5 and ERK5 [84].

Hence, each PDE isoform plays a critical role in the specificity of

cAMP-signaling, effectively creating cyclic nucleotide microdo-

mains and/or cAMP gradients that can be sensed by the cell

[46,85–88]. Accordingly, some PDE4D isoforms precisely regulate

the coupling between GPCR and the Gs protein. A desensitization

of 5-HT4R, through an over-stimulation by RS67333 and/or an

alteration of PDE, could thus lead to a lowering of cAMP

concentrations in brain regions expressing 5-HT4R. Indeed, PKA

activated after a 5-HT4R stimulation, will phosphorylate 5-HT4R

leading to cell membrane recruitment of GRK2, which in turn will

phosphorylate i) the associated GPCR [89] inhibiting its coupling

with Gs, and ii) PDE4, which locally attenuates the PKA activity

by lowering local cAMP levels [90–92].

Effects induced by 5-HT4R stimulation are time-limited since

PKA phosphorylation of 5-HT4R, GRK2 or PDE can be reversed

by phosphatase (PP) activity [58]. PP1 and PP2, compartmental-

ized inside the mammalian cell [93,94], account for the major

phosphatase activities [56]; PP2 is however more particularly

investigated because of its ability to dephosphorylate many

signaling proteins [93]. Since PP2A is activated by cAMP level

increases [53–55], we suggested that phosphatase activity may

have been raised in the brain sub-region structures from drug-

treated rats, but it is not what we found here. While inhibition of

PDE4 activity failed to alter PP2 activity, milrinone administration

induced an alteration of PP2 activity, especially in the supernatant

fractions from the brain regions investigated; such an alteration

could in turn alter dephosphorylation of the 5-HT4R, prevent the

efficiency of coupling between this receptor and the Gs protein,

and thus lead to a lowered cAMP production. Such a functional

contrast following selective inhibition of PDE3 and PDE4 has been

already observed in many cell types [95–97]. Interestingly, the cell

Table 4. Distribution of the total PP2 activities between particulate and soluble fractions from rat hippocampus, prefrontal cortex
and perirhinal cortex.

Total PP2 activities (nmol of phosphate released/min) (% of the total PP2 activities)

Hippocampus (n = 4) Prefrontal cortex (n = 4) Perirhinal cortex (n = 4)

Particulate fraction 15.8361.18 = 24.761.7% 2.5860.24 = 32.062.1% 3.3860.39 = 27.861.7%

Soluble fraction 48.0760.9111 = 75.361.7% 5.4760.27111 = 68.162.1% 8.7360.20111 = 72.261.7%

Values are means 6 SEM.
111P,0.001 (ANOVA followed by Fisher’s LSD test): different from the corresponding particulate fraction.
doi:10.1371/journal.pone.0032244.t004
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membrane recruited PDE4 also desensitizes the switched coupling

of the b2AR to activation of Gi induced by the PKA-mediated

phosphorylation [98], defining thus an appropriate coupling of the

GPCR [99]. Hence, in our opinion, drugs injected before the

sample phase rapidly increase cAMP levels leading to the

uncoupling of 5-HT4R. However, during the test phase, further

5-HT4R stimulation does not raise cAMP level, probably because

of 5-HT4R uncoupling. 5-HT4R uncoupling could thus be an

adaptative mechanism to reduce cAMP levels in the presence of an

excessive stimulation of 5-HT4R or an absence of PDE3 or 4

activities thus avoiding an excessive accumulation of cAMP. If

such threshold of cAMP level exists and is reached by either the

stimulation of 5-HT4R or inhibition of PDE3 or PDE4 alone, thus

no further improvement of memory performance could be

induced by the pharmacological treatments by the combination

of RS 67 333 and PDE inhibitor.

Finally, early increases in cAMP levels followed by an

immediate drop in cAMP concentrations have already been well

described in cell differentiation, particularly in Sertoli cells [58].

Indeed, before the cAMP increase, stimulation of Sertoli cells by

gonadotropin leads to an activation of the ERK pathway, while

following the peak of cAMP, gonadotropin activates the PKA

pathway. Interestingly, ERK pathway could prolong activation of

the cAMP signaling system in cells by having both short and long

term effects on PDE4D activity by respectively inactivating long

PDE4D isoform (the ones to exhibits a site that allows

phosphorylation by ERK) and altering PDE4D mRNA stability

(for review [99]). Hence, by analogy to differentiation mechanisms,

another hypothesis is that ‘‘cellular learning’’ may result from the

crossing of a milestone, resulting in the subsequent activation of

alternative intracellular signalling pathways. Increases in cAMP

levels but also their subsequent declines account in mnesic

performance improvement. The part of ERK pathway in these

processes should be addressed in furthers works.

Our results show that a ‘‘pre-sample’’ early increase in cAMP

levels followed by both a ‘‘post-sample’’ lowering of cAMP

concentrations in the prefrontal cortex and a ‘‘post-test’’ lowering

of cAMP concentrations in the hippocampus and perirhinal cortex

support improved learning efficacy after a middle-term delay. If

cAMP triggers a temporally defined cellular response, a major

question that should be addressed in future works is to clarify how

such a functionally ubiquitous signaling pathway may be involved

in memory formation.
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Figure 7. Effect of milrinone (0.3 mg/kg) on PP2 activities in
hippocampus, prefrontal and perirhinal cortices from rats
performing the object recognition task with a 4-h delay. Rats
were injected with the inhibitor of PDE3 (milrinone, 0.3 mg/kg)
45 minutes before exposure then with saline or the 5-HT4 receptor
agonist (RS 67333, 1 mg/kg), 30 minutes before exposure to the sample
trial of the object recognition task. Immediately after the testing trial,
both particulate (white bar) and soluble (black bar) fractions from the
hippocampus (a), the prefrontal cortex (b) and perirhinal cortex (c)
were isolated and were assayed for PP2 activity. PP2 activities were
pmol of phosphate released by min and mg protein. Results are means

6 SEM of four independent subcellular fractionations performed in
triplicate. Within each subcellular compartment, # indicated significant
differences of PP2 activity as compared with other treatment (#,
P,0.05, ##, P,0.01, ###, P,0.001, ANOVA followed by Fisher’s
LSD test).
doi:10.1371/journal.pone.0032244.g007
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