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Abstract: For decades, research relating to modification of host immunity towards antitumor response
activation has been ongoing, with the breakthrough discovery of immune-checkpoint blockers.
Several biomarkers with potential predictive value have been reported in recent studies for these
novel therapies. However, with the plethora of therapeutic options existing for a given cancer entity,
modern oncology is now being confronted with multifactorial interpretation to devise “the best
therapy” for the individual patient. Into the bargain come the multiverse guidelines for established
and emerging diagnostic biomarkers, as well as the complex interplay between cancer cells and
tumor microenvironment, provoking immense challenges in the therapy decision-making process.
Through this review, we present various molecular diagnostic modalities and techniques, such as
genomics, immunohistochemistry and quantitative image analysis, which have the potential of
becoming powerful tools in the development of an optimal treatment regime when analogized with
patient characteristics. We will summarize the underlying complexities of these methods and shed
light upon the necessary considerations and requirements for data integration. It is our hope to
provide compelling evidence to emphasize on the need for inclusion of integrative data analysis
in modern cancer therapy, and thereupon paving a path towards precision medicine and better
patient outcomes.

Keywords: precision oncology; integrative data analysis; cancer genomics; digital pathology;
biomarker; image analysis; immunotherapy

1. Introduction

Within the medical field, more specifically in oncology, treatments have shifted from
a “one-size-fits-all” therapy to individualized treatment strategies for a given patient,
supporting the notion of intratumoral and intertumoral heterogeneity. Consequently, this
requires state-of-the-art diagnostic approaches along with centralized treatment efforts
using digitized, scalable, and standardized information processing.

Historically, with the discovery of oncogenes, dedicated scientists have identified
molecules that drive cancer initiation and progression. However, nowadays, its value has
expanded to hold predictiveness in stratification of patients for selection of treatments [1].
For instance, overexpression of HER2 on tumor cell surfaces has been proposed as a potent
therapeutic target [2,3] and its inhibition has led to clinical responses [4].

To mine for such biomarkers, specific diagnostic assays are conducted based on the
cancer type and patient characteristics. Diagnostic biomarkers are regularly coupled with
therapeutic drugs; for instance targeting specific oncogenic alterations is a known concept
as companion diagnostics [5,6]. Correctly identifying the molecular characteristics of the
given cancer at a certain level of confidence is key in the process. Although it may be
fortunate in terms of therapeutic advances, from a logistics perspective, there has been a
growing number of concerns regarding the vast number of targets that have been identified
throughout several different cancer entities. Thus, scant tissue samples may become
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confronted with large number of assays. Interestingly, decision support systems are already
available that may guide therapy decision making for individual cancer patients, although
these technologies still need further improvement [7]. However, given that resistance
mechanisms of therapy that may occur, depending on the time of treatment and other
patient-, entity-, and therapy-specific traits, specimens may have to undergo additional
analyses [8,9]. For example, a prolonged course of therapy has been reported to give rise to
persistent clonal variants by adding specific selective pressure [10]. Consequently, these
resistance mechanisms may require additional sample processing throughout treatment,
such as performing liquid biopsy analyses [11].

In parallel, there is an additional layer of complexity with the recent advances in
immunotherapy, a novel treatment strategy allowing us to reprogram the tumor microenvi-
ronment (TME) towards pro-immunogenicity [12,13]. Here, therapeutics are administered
that block natural immune-defense mechanisms to allow the immune system to alleviate
anti-cancer activities. On one hand, there seems to be a lack of biomarkers that show
both sensitivity and specificity to identify patients that would respond to immunotherapy.
On the other hand, combinatorial treatment regimens with other immune-checkpoint
blockers or different small molecule inhibitors in combination with other therapies are
emerging [14].

With the following review, we will first introduce selected current and future diagnos-
tic modalities being used in precision oncology and illustrate the elements that are needed
to translate these diagnostics to a more integrative approach and factors that should be
considered for a successful integration.

2. Current and Future Diagnostic Modalities in Precision Oncology
2.1. Sources of Genomics Data

Genomics, the study of genes and their functions, encompasses various aspects of
the genome, such as genetics, transcriptomics, epigenetics, proteomics and more recently,
dissection of the aforementioned aspects in single-cell resolution. By incorporating cancer
genomics with clinical data, translational research is achieving higher levels of relevance
and precision in the clinical care they provide to cancer patients [15]. A significant contri-
bution to integrative analysis in oncology has been made by The Cancer Genome Atlas
(TCGA) funded by the National Cancer Institute (NCI) [16,17].

For this review, a focused publication retrieval was done on the PubMed database by
using keywords, such as precision oncology AND genomics OR molecular OR integrative
OR multiomics.

2.1.1. DNA-Sequencing

For decades, genetic alterations have been used to diagnose a variety of hereditary dis-
eases that were previously undiagnosed [18–20]. However, in the era of modern oncology,
genetic alterations are now being referred to guide medical care decisions [21]. Depending
on the type of DNA input used in the sequencing process, DNA sequencing can reveal
somatic and germline genetic mutations, insertions/deletions, amplifications, deletions,
chromosomal copy number variations, gene fusions and other structural alterations [22–24].

There are several different genomic approaches that may be used for DNA-sequencing
(Table 1). Whole-genome sequencing (WGS) allows researchers to examine both the exons
(coding) and introns (non-coding) of the DNA, which roughly accounts to 3 billion base-
pairs [25,26]. On the other hand, whole-exome sequencing (WES) captures and analyzes
only the exonic regions (approximately 30 million base-pairs) of the genome [25,26]. This
approach has the advantage of decreasing the cost and time compared to WGS, since exons
are translated into functional proteins and their alterations are most likely to produce
phenotypic changes. Targeted gene panels, which captures key genes or areas of interest,
is another attractive option to a significant reduction in time and cost compared to WGS
and WES. As a result, several targeted gene panels have already been adopted and used
regularly in clinical settings [27–29]. Diagnostically, WGS, WES as well as targeted gene
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panels are also being used for detection of copy number variations, tumor mutational
burden, homologous repair deficiency and genomic scarring patterns, as well as mutational
signatures. Interestingly, all of these parameters may have an impact on selection of
effective tumor therapies.

Table 1. Summary and comparison of various diagnostic modalities.

Technique Description Platform Data Analysis Pros Cons

Whole-genome
sequencing

(WGS)

whole genome is
analyzed • Illumina

• PacBio
• Complete
• Ion Torrent
• BGI/MGI
• Oxford

Nanopore

• sequenced
reads as data
output with
read align-
ments or
quality scores

• variant identifi-
cation

• annotation
• visualization
• statistical analy-

sis

• whole genomic
sequence can
be analyzed

• can identify
non-coding
mutations

• costly and
time-consuming for
data interpretation

• high chance of
incidental findings

Whole-exome
sequencing

(WES)

entire exome is
analyzed

• cost-effective
and
time-efficient
than WGS

• deep coverage
in exonic
regions

• high risk of
incidental findings

• information only on
coding regions

Targeted gene
panel

captures key genes or
regions of interest set
by prior knowledge

• significant
reduction in
time and cost
compared to
WGS/WES

• suitable as a
diagnostic
modality

• requires prior
knowledge of
targeted regions

• not suitable for
biomarker
discovery

RNA-sequencing
(RNAseq)

number of mRNA or
total RNA molecules
in the transcriptome
is directly sequenced

and quantified

• can detect
novel
transcripts,
fusions, single-
nucleotide
variants, indels,
alternative
splicing,
allele-specific
expression and
newly
transcribed
regions

• good for
biomarker
discovery

• need high-quality
RNA (RNA
integrity number >
8)

• only the expressed
markers can be
detected, thereby
missing alterations
in regulatory
regions or
non-expressed
genes

Multiplex gene
expression panel

a variation on RNA
microarrays that uses
hybridization probes

• NanoString
• QuantiGene

Plex

• color-coded
probes are
converted into
counts

• counts are
normalized
using
housekeeping
genes

• RNA from
FFPE material
can be used

• can be done
with less
amount of RNA
compared to
RNAseq

• amplification
free

• minimal
background
signal

• not suitable for
biomarker
discovery

• limited flexibility

Epigenetic
techniques

heritable
phenotypical

alterations that do
not involve DNA

sequence

• Illumina
• Nimblegen
• Axon
• Roche

• different
epigenetic
techniques are
integrated

• based on these
annotations,
epigenome
differences are
recognized

• epigenetic
changes, such
as DNA
methylation or
histone
modification
can be assessed

• risk of variations
depending on time
of harvest and
different
organs/samples

• difficulty in
choosing the
techniques
depending on the
modification
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Table 1. Cont.

Technique Description Platform Data Analysis Pros Cons

Proteomic
techniques

quantifies
protein/peptide

abundance,
modification and

interaction

• mass
spectrometry-
based

• protein
microarray-
based

• covalent
changes are
quantified by
determining
the equivalent
change in
protein mass in
contrast to the
unmodified
peptide

• gives a different
level of
understanding
from D/RNA
sequencing by
high-
throughput
analyses of
thousands of
proteins in cells
or body fluids

• weak
reproducibility and
repeatability
compared to other
genomics
techniques

Immunohistochemistry
(IHC)

detection of
molecules using
antibodies, enzy-

matic/fluorescent
dyes used to
visualize by

secondary antibody
conjugates

• automated
staining devices
from several
suppliers

• dedicated
multiplexing
techniques e.g.
Roche
DISCOVERY /
PerkinElmer
Opal™

• brightfield IHC
requires
microscopes
while more
advanced
image analysis
requires whole-
slide-scanners

• fluorescent
dyes require
specialized
imaging
devices

• allows spatial
distributions of
cell types /
molecules of
interest

• limited to single /
multiple molecules
of interest on a
given slide and
therefore requires
predefined
antibody panels

In situ
hybridization

(ISH)

hybridization of
RNA/DNA

molecules using
fluorescent (F-ISH) or
chromogenic (C-ISH)

dyes

•
RNAscope®Technology
for RNA

• DNAscope™
for DNA

• brightfield
microscopes for
CISH and
fluorescent
imagers for
FISH

• application of
object detection
and sementic
segmentations
allows
automation and
quantitative
analysis

• quantitative
measure of
RNA/DNA
molecules at
cellular level

• can be applied
on
Formalin-Fixed
Paraffin-
Embedded
(FFPE) tissues

• limited to single /
multiple molecules
of interest

Single cell
sequencing

(sc-seq)

measures DNA,
RNA, epigenetic

marks and protein at
a single-cell
resolution

• Illumina
• Ion Torrent
• BGI/MGI
• 10X Genomics

• annotations of
individual cells
using cellular
barcodes

• rest are
analyzed in a
similar manner
to bulk
sequencing

• provides more
precise
classification of
cell types and
states than bulk
sequencing

• introduction of
noise due to
experimental
procedures

• computational
burden due to high
dimensionality data

• difficult to integrate
data from various
types of single-cell
approaches

One of the most widely used area is pharmacogenomics, which analyzes how an
individual’s genome will affect the therapeutic response [30]. For example, these alter-
ations may entail identifying individual targetable variants or estimating tumor mutational
load to predict response to treatment, such as immune-checkpoint inhibitors [31,32]. An-
other emerging field in genetics is the use of non-invasive circulating tumor DNA to
monitor the treatment responses of the patients as well as to characterize the resistance
mechanisms [33,34]. With the advancement of technology, the relevance of genetics in the
clinical setting is predicted to increase more soon.

2.1.2. RNA-Sequencing

The transcriptome is comprised of all RNA molecules in a single cell, or a group of
cells, and it can be applied to all RNAs or only messenger RNA (mRNA). Sequencing of
tumor RNA as well as its surrounding TME, such as stromal cells and the extracellular
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matrix, allows for a comprehensive characterization of transcriptome, such as gene fusions,
gene signatures, small RNAs, spliced variants and allele-specific expression patterns [35,36].
Given the fact that clinical applications utilizing RNA expression in tumors are already
being implemented in clinical practice, these applications have transformed the way
patients are diagnosed and treated [37].

Like DNA-sequencing, genome-wide transcriptome can be assessed using RNA-
sequencing (RNA-seq) as well as the array-based transcriptome by using targeted panels
(Table 1). RNA-seq can generate a read depth of 10–30 million reads per sample on a
high-throughput device, and this provides access to most of the transcriptome [38]. In
work from our group, Klein et al. showed through transcriptomic profiling that advanced
pleomorphic dermal sarcoma (PDS) cases generally illustrate inflamed TME [39,40], which
has been reported to be associated with response to immune checkpoint inhibitors. As
metastasized PDS cases are presented with limited therapeutic options, such as surgery, the
fact that uncommon tumor entities may receive benefits from such prognostic applications
is one exemplary case that shows the power of transcriptomic approach. Through this novel
discovery, our team has reported, for the first time, two PDS cases who were successfully
treated with pembrolizumab, an anti-PD-1 inhibitor [40].

Compared to RNA-seq, nCounter methods provide certain advantages, such as accep-
tance of poor-quality RNA, including formalin-fixed paraffin-embedded (FFPE) material,
and that it is amplification free [41] (Table 1). Such advantages are what allowed its suc-
cessful integration for clinical use, such as Prosigna, which predicts the recurrence risk of
breast cancer patients [42].

2.1.3. Epigenetics

Epigenetics entails studying changes in higher-order chromatin structure, as well as
chemical modifications of DNA and/or histones, and epigenome mapping can be done
with increasing precision nowadays. Epigenetic mechanisms can be divided into DNA
methylation, histone modification and noncoding RNAs (ncRNAs) [43]. Since cancer is
nowadays regarded to be both a genetic and an epigenetic disease, epigenetics is predicted
to have a higher impact in the future of health care. Biomarkers, which are prognostic
and/or predictive of therapeutic response, are currently a major area of interest in the
clinical application of epigenetics. O6-methylguanine-DNA methyltransferase (MGMT)
promoter methylation, a marker that predicts response to temozolomide chemotherapy in
glioblastoma, is one example that is already implemented in a clinical setting [44,45].

Due to the advancement in technology, the discovery of epigenetic signatures that
have the ability to distinguish neoplastic from matching normal cells is now possible
with the inclusion of appropriate controls [46]. By taking into account the physiological
epigenome change caused by aging, environmental stimuli or pathological disease, cell-
type heterogeneity and the cell-of-origin can be investigated [47]. One recent example
would include the study of epigenetic changes in mesenchymal stem cells during differen-
tiation of cells-of-origin of solid tumors [48]. A deeper grasp of tumorigenesis and cancer
progression can be therefore understood through epigenetic studies.

Other emerging areas in epigenetics compose of studying drug response related
epigenetic alterations and dysregulation of microRNAs (miRNAs) leading to drug resis-
tance [49–51]. Integration of large-scale studies of disease-associated epigenetic alterations
(epigenome-wide associated studies; EWAS) and genome-wide associated studies (GWAS)
data will be crucial for enhancing our knowledge in functional analysis [52].

2.1.4. Proteomics

Proteomics enable the collecting of valuable information for treatment, diagnosis and
pathophysiological mechanisms of various diseases that cannot be effectively characterized
by epi/genetic- and transcriptomic-sequencing [53,54]. At a functional level, cancer is
inherently a proteomic disease, and changes occur at the protein level through post-
translational modifications and cellular signaling alterations [54,55]. Although broad
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proteomic analysis is still an emerging field in precision oncology, many of these signaling
pathways are already established as U.S. Food and Drug Administration (FDA)-approved
biomarkers [25,56,57]. For instance, prostate specific antigen (PSA) analysis in serum is now
a standard of prostate cancer diagnosis, where it is accompanied with digital examination to
assess whether prostate biopsies are necessary [58]. Some emerging clinical applications in
proteomics include disease monitoring and improved patient stratification [55]. A detailed
description on this topic on the future of proteomics in combination with genomics has
been reviewed elsewhere [16].

Efforts to lower transplant rejection rates is one example. Despite the improvement
in lowering transplant rejection rates through genetic profiling of HLA loci, up to 10%
experience rejection or graft versus host disease (GVHD) [59,60]. It is predicted that
personalized proteomic analysis of the peptidome may help in reducing this rate even
further [61]. As a result, integration of proteomic analysis may help refine or modify
epi/genetics and transcriptomics-guided personalized therapy.

2.1.5. Single-Cell

Intratumor heterogeneity (ITH) is commonly displayed across various tumor entities
and it is thought to be the key to understanding the complex process of metastasis and ther-
apeutic resistance mechanisms [62]. Conventional sequencing technologies are conducted
in bulk, where the effort to understand rare cell populations within the tumor poses a
challenge. To overcome this aspect, high-throughput technologies profiling at a single-cell
resolution—especially at the transcriptomic level—have been developed that offer the
chance to explore phenotypically distinct subpopulations and states that can influence
clinical outcomes, aid treatment strategies, or suggest novel therapeutic options [63,64].

Although considered as one of the latest additions to the family of genomics, it
has already produced groundbreaking discoveries in immunology, neurobiology, and
cancer biology [65–67]. One of the most profoundly influenced field is the study of TME.
For example, a subset of quiescent cancer-associated fibroblasts (CAFs) was found to be
enriched in the tissue culture of intrahepatic cholangiocarcinoma (ICC) after the blockade
of placental growth factor (PIGF) [68]. Such a discovery may have been possible due to
the robustness and granularity that this technique delivers. All these studies will prove to
be an invaluable reference for future mechanistic research and the advancement of new
immunotherapeutic or combinatorial strategies.

2.2. Image Analysis and Immunohistochemistry
2.2.1. Quantitative Image Analysis Using Immunohistochemistry

Assessing biomarkers of (tumor) specimens on protein level using immunohistochem-
istry (IHC) has a long history, especially for routine diagnostics [69]. Advances in tissue
processing using standardized automated staining devices allowed results of increasing ac-
curacy and reproducibility [70]. Automated quantification techniques have been shown to
provide increasing accuracy while decreasing inter- and intra-observer variabilities [71–73].

In parallel, the complexity to assess biomarkers of immune response has increased.
PD-L1, the ligand of PD-1 that is one of the few biomarkers that may reveal response
to immunotherapy in subpopulations, is assessed following strict criteria: membranous
staining, staining of all intensities, staining of immune cell populations in certain proximity
to cancer cells [74–76]. Here, assessing IHC biomarkers using sophisticated image analysis
can greatly increase the granularity of this technology [77,78], with more intensity levels
and (spatial) distributions without intra-/or interobserver variabilities. This information
may then be used in combination with patient information and genetic data to identify risk
categories or select patients for individual treatment options [79,80].

2.2.2. Advanced Image Analysis Using Deep Learning

The emerging field of deep learning has revolutionized data science and image analy-
sis in particular [81–83]. This has led to the emergence of radiomics, a field of radiology,
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where deep learning is used to detect genetic alterations by analyzing regular radiolog-
ical data to predict patient and treatment outcome [84,85]. On the contrary, analyzing
histopathological image data captures data of even higher granularity. Here, H&E is the
standard staining used for tissue samples that is applied in daily routine pathological diag-
nostics. Detection of cancer traits, including relevant prognostic information, molecular
subtypes and even origins of cancers have been proposed as proof-of-concepts using regu-
lar H&E brightfield images [86–89]. Images may be used to detect cellular features, like cell
types and (anatomical) structures, that may be illustrated to a human reader or provided
as prognostic biomarkers or as decision support algorithms [90,91]. What seems especially
interesting is that the visual confirmation of results is of high interest to specialties like
pathology, to mimic their working routine of interpretation of histological images [92]. In
detail, regions-of-interest are highlighted, and therefore the algorithm is used to provide
information where an observer can make an informed decision. However, there are also
classifications that may assign classes to virtual-whole-slide imaging objects for histological
subtypes and mutational status [86].

2.2.3. Spatial Multiplex Analyses

Previous multiplexing fluorescent dyes allowed a given assay to assess a handful of
antibodies in combination to phenotype subpopulations of cell types. Recently, with the
advancement of technology, almost hundreds of antibodies may be combined. Technically,
high-plex multicolor FACS machines may be used to identify cell populations from blood
sample, including circulating tumor cells.

Several technologies have been developed to uncover spatial resolutions of cell types,
which are a great resource to resolve immunological host responses to solid tumors [93].
Co-detection by indexing (CODEX), which uses DNA-conjugated antibodies, allows si-
multaneous overview of up to 60 markers in situ [94]. However, these data may need to
be captured, stored, and analyzed in combination. On one hand, this requires analytical
pipelines to identify cellular subpopulations, but also specific datatypes, embedded in
medical data warehouses [95,96].

2.2.4. The Important Role of Digitalization in the Medical Field

As the COVID-19 pandemic has revealed within multiple medical disciplines, digital-
ization is the key to allow a rapid exchange of relevant information. Given the emerging
role of cancer diagnostics in pathology, where specific genetic alterations are revealed to
guide treatment options at an individual level, it is puzzling that within this discipline
there appears to be a lack of fundamental concepts in digitalization and standards of data
formats [97]. Despite the obvious efforts in gathering infrastructural equipment allowing
us to digitize a given histological slide to a virtual microscopy slide, allowing interpretation
on a monitor, there seem to be more challenges ahead. Data and metadata need to be
gathered, centrally, following standards in data formats, enabling them to be processed by
high-performance computing and accessed by different disciplines.

What seems particular worrying is that most pathology departments run information
systems that are not fully integrated into the hospital information system. Therefore,
although information of high granularity may be accumulated, combining them with
medical records requires more advanced data management systems. Although there are
great opportunities for machine learning, results of machine learning models need to be
transferred to pathology reports. However, structured reporting in pathology is still at an
early stage and before translation into daily routine practice [98–102].

3. Translation of Approaches
3.1. Interpretation of Genomic Data

Next-generation sequencing (NGS) entails identifying the genetic sequence of an
individual in millions of reads, which are subsequently put together into a whole sequence.
Potentially millions of alterations can be identified that vary between the tumor and the
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“reference sequence”. As most genetic variants have little to unknown pathogenic impact,
they must be carefully examined and screened to filter out the few that are clinically
significant. Genomic variants are often categorized into a five-point scale from benign to
pathogenic, with intervening scores of likely benign, uncertain, and likely pathogenic, to
indicate the possibility of the mutation being associated with the disease [103]. In general,
benign variants are not reported. If a matching normal sample was used as the reference
sequence, germline variants can also be reported following the guidelines in addition to
the somatic acquired variants [103]. For reliable test findings, the generation of sequence
data, variant calling, and variant interpretation are all crucial procedures.

3.2. Considerations for Data Analysis

Several components need to be considered when analyzing genomics and image
analysis data. Here, we focus on quality issues related to genomics and image analysis
data, which can be broadly divided into two categories: sequencing and image analysis.

3.2.1. Sequencing, Quality and Standardization

Types of sample and the sample quality of genomics data are aspects that must be
accounted for during the analysis process. Samples collected for sequencing include blood,
buccal swab, biopsy or resected tissue [25]. In general, the quality of DNA isolated from
blood is expected to be high. Meanwhile, differing quality could be seen depending on the
origin of tumor tissues, preservation methods (formalin-fixed, snap-frozen), size of tissue,
number of samples collected from a patient (resection/biopsy), tumor cellularity as well as
the presence of necrosis or lymphocyte infiltration [25]. In particular, working with a single
core biopsy significantly increases the risk of misprofiling due to ITH [62], which refers to
the existence of distinct tumor cell populations with differing molecular and phenotypical
characteristics within the same tumor. Unlike traditional bulk-tissue sequencing, single
cell sequencing sampling constitutes for a set of new, unique challenges to be tackled. Due
to the limited quantity of material at disposal for each cell, observations are often fraught
with ambiguity. In order to compensate for this, amplification is employed, eventually
leading to the introduction of technical noise to the data [104]. Additionally, batch effect is
another prominent feature that can arise from sample preparation due to its sequencing
procedures [105].

As for the sample quality, several factors play a role, such as sample collection, han-
dling, storage and isolation methods for DNA/RNA/protein. Isolation method becomes
especially of importance for RNA, as it can result in different RNA quantities. Big data
analyses integrating transcriptomic data from various sources revealed batch variations,
and one contributing factor may have been the type of isolation [106].

As relevant intricacies will significantly impact the results and interpretation of ge-
nomics, it is important for researchers and clinicians to take into consideration of the
important quality parameters, such as sequencing and processing steps, as well as setting
appropriate thresholds and coverage between different systems [22]. For example, various
systematic mistakes can be made in every sequencing platform with the use of differing
chemistries for sequencing, making a propelling case for one to be aware of the different
capacities and limitations of various platforms and sequencers. Illumina platforms gen-
erally show high quantitative power and accurate base calling [107], but may illustrate a
systematic mistake of calling stretches of G’s when sequenced with a two-color chemistry
system [108].

Another parameter that needs to be defined to ensure data quality is the average
coverage. Coverage signifies the number of unique reads that are included in a given
sequence and it can be used to measure the accuracy of the generated data [22]. The general
rule of thumb is that the higher the average coverage of the analyzed data, it will be more
precise and be able to detect certain nucleotide variants that exist in lower allele frequencies,
which should be considered when analyzing different datasets.
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3.2.2. Image Analysis, Quality and Standardization

With the emerging role of machine learning in pathology and its standard H&E
sections at center of deep learning activities, standardization needs to be prioritized,
including data formats, color, quality and analytical approaches [97,109–114]. Once a given
algorithm detects cell types, subcellular structures or quantifies biomarkers, results or
even coordinates may be stored, for instance, using a given file format of convenience
like JSON, HDF5 or XML (Figure 1). However, this could easily increase requirements for
sophisticated data storage and databases. Potentially, results could be stored as metadata
within an image object.
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Figure 1. Schematic of integrative data analysis in oncology. Diagnostic medical disciplines, including Radiology, Nuclear
Medicine and Pathology are gathering data using their different modalities, like computer tomography (CT), magnetic
resonance imaging (MRI), positron emission tomography (PET-CT), as well as tracers that are able to highlight molecules of
interest. While Radiology and Nuclear Medicine share a sophisticated data format of digital imaging and communications
in medicine (DICOM) objects, which includes relevant (pseudonymized) patient (meta) data, other formats from virtual-
whole-slide images and multiplexing techniques may be stored using proprietary vendor formats. The maturing file format
of open microscopy environment tagged file format (OME-TIFF) appears to be especially interesting as future solution, as



Biomolecules 2021, 11, 1310 10 of 18

DICOM objects for virtual-microscopy-images have not yet been broadly accepted by the community [97,112,114]. Cloud
computing services would require specialized structures, like central processing units (CPU) and graphical processing units
(GPU) that meet the desired calculating capabilities. In the near future, several specialized algorithms will be executed
allowing segmentation of regions of interest and classification of image objects, in addition to accurate variant calling
and methylome-based cell of origin determination using epigenetics. The given results of image analysis are stored using
extensible markup language (XML), DICOM objects or JavaScript Object Notation (JSON), together with Hierarchical Data
Format (HDF5). Here, spatial descriptive statistics of cellular and subcellular structures of interest are calculated. Data
formats like variant calling files (VCF) and Mutation Annotation Format (MAF; https://docs.gdc.cancer.gov/Data/File_
Formats/MAF_Format/, accessed on 3 September 2021) may be used to store results of DNA-sequencing. Finally, the data
need to be integrated and visualized [115,116] to allow interpretation in order to allow patient stratification, identifying risk
groups of cancer patients and to predict therapy responses. Given the increasing complexity within oncology, analytical
tools are needed to retrieve current information on drug targets, clinical trials and potential treatment options, which may
need to be integrated in a given workflow [117,118].

3.3. Infrastructural Requirements

As technology advances and more efforts are made to generate precise data, it is only
natural to assume that the amount of raw data increases. One option is to downscale
data, although this may result in a loss of discriminative information, especially in image
analysis, due to the loss of tissue context when using small, high-resolution tiles [100].
Thus, availability of sufficient computational equipment and data storage is one of the
major infrastructural requirements, despite other challenges reviewed elsewhere [119,120].
Institutions would have to invest significant resources for computer servers and facil-
ities, such as sequencers, scanners, and cloud platforms, for effective integration and
exchange of data. Moreover, as the metadata will encompass confidential information,
appropriate security measurements with which the data is encrypted and stored will be of
importance [26,119,121].

Once data has become available for access, management and accurate interpretation of
a huge and complex amount of computational data would be another requirement. Highly
specific skills and knowledge are required for both genomics and image analyses, which
suggests for the development of specialty-specific educational opportunities to be initiated
and promoted (Figure 1).

3.4. Challenges to Data Integration and Econimcal Aspects

In most cases, clinical data are obtained in multiple medical centers and there are no
guidelines as to which patient phenotype should be recorded. As a result, oftentimes the
collected information is inconsistent and inaccurate. Standardized terms and measures
must be actively communicated between clinicians and researchers at an early stage, so
that all retrieved information can be used with the highest relevance. Another suggestion
is for educational efforts to be put into defining phenotypic terms and measurement, such
as following the Human Phenotyping Ontology project guideline [122].

Multiple sequencing techniques/platforms and the vast amount of information ob-
tained using genomics also pose added challenges to data integration [123]. Early inter-
actions between researchers and clinicians would be recommended to first of all select
the best diagnostic test so that all relevant information are covered. Secondly, prioritizing
relevant variants for a specific disease would allow for reduction of enormous amount of
data to a reasonable volume [123,124]. This does not mean that researchers should only
analyze the defined gene sets, for example. Rather, these prioritized gene lists that are
known to be highly relevant to the specific clinical indication would help in guidance for an
in-depth review and determination of coverage of depth. Establishing such communication
lines and procedures would help to ensure that the interpretation is reliable and efficient.

In the event that combined efforts would allow for a more dedicated and integrated
analysis, how would this be incorporated in the current clinical setting for a given patient?
One suggestion would be to carefully examine the patient data before designing an indi-
vidual therapy concept. In detail, the concept of applying these strategies would need to be

https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/
https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/
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integrated into the workflow of the clinical decision making process. At the same time, one
needs to be aware that clinical decision making takes personal interests and reservations
into account.

In summary, in order for efficient exchange and integration of data, standardization of
data for both diagnostic modalities and clinical outcome data must be made. This consistent
and uniform effort would allow for multi-diagnostic approaches, such as genomic and/or
image analysis information, to be directly linked and compared to clinical data.

4. Precision Oncology in Clinical Setting

The concept of precision oncology uses comprehensive biomarker testing to exploit
molecular or immunological vulnerabilities in tumors for selecting the most specific and
effective therapy. Furthermore, clinicians may use precision oncology for identification of
high-risk populations, prevention of cancer, early diagnosis, possibility of specific cancer
diagnoses, exploration of best treatment options and assessment of treatment efficacy [125].

This is best demonstrated in non-small cell lung cancer (NSCLC), where the identifica-
tion of molecular alterations in driver genes, such as EGFR mutations, led to the approval
and rapid development of the small molecule tyrosine kinase inhibitors (TKIs) [126]. The
effective and improved responses compared to those from traditional treatments, such
as chemotherapy, led to the incorporation of precision oncology modalities in daily prac-
tice. As opposed to non-selective chemotherapies, all patients with advanced NSCLC
who are eligible for treatment nowadays require rapid and comprehensive screening of
actionable biomarkers for first-line therapy selection [127]. For actionable biomarkers, such
as ALK rearrangement, IHC and fluorescence in situ hybridization (FISH) are regarded
as the gold standard in routine clinical diagnostic [128]. IHC expands to biomarkers of
immuno-oncology drug response, such as PD-L1 expression or mismatch repair status,
which indicate the eligibility for anti-PD-1/PD-L1 therapy in certain solid tumors [129].

However, as the number of novel predictive markers accumulates (currently to more
than 30 genomic alterations and immune markers in NSCLC) and diagnostic demands
increase, NGS-based approaches, such as DNA- and RNA-sequencing or targeted panels,
have shown to provide a more efficient, cost- and tissue-saving tumor analysis, allowing
assessment of a large number of genes in one assay compared to the traditional single-gene
assessment procedures in routine molecular pathology [130]. These emerging biomarkers,
such as ERBB2 (3%), BRAF (2%), PIK3CA (1%), MAP2K1 (1%), and NRAS (1%), are typically
labelled as “niche alterations”, meaning they occur at a less frequent rate [131]. Neverthe-
less, that is not to say that they are less important than the already established biomarkers.
For instance, a subset of ALK-rearranged NSCLC with TP53 mutations was associated
with higher risk of resistance to ALK inhibitors than those without TP53 mutations [132].
Additionally, KEAP1/NRF2 mutations in stage I-III NSCLC also indicate enhanced risk of
local recurrence after radiotherapy [133]. In parallel, composite biomarkers—a combination
of several biomarkers—identified patients with ALK alterations that may benefit from
immunotherapy [134]. From a regulatory perspective, although individual biomarkers are
approved as companion diagnostics, combination of those as composite biomarkers would
require individual approval [135].

Adding on to the complexity of precision oncology comes into play the integration of
data generated using different diagnostic modalities (histopathological and genomics data)
with non-omics data, such as images (CT, PET-CT, MRI, X-ray, whole-slide) and clinical
data. This is considered to be one of the most challenging tasks to enable the futurist
modules. In order to perform multi-platform data integration, it would require certain pre-
processing steps including normalization, noise filtration and selection of highly relevant
features [136]. One possible solution to this would be to implement artificial intelligence in
order to guarantee better sensitivity, specificity and efficiency. For example, a model that
was trained using deep neural networks could link gene expression with drug response and
predict drug response and survival [137,138]. Furthermore, Yu et al., was able to determine
the patient survival rate by combining NGS data with histopathology data in lung cancer
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cohort [139]. Although artificial intelligence is still at its infancy in the biomedical field, it
has the ability to play a crucial role, not only in the analysis of complex and various data
sets, but in data integration as well.

As exhibited by NSCLC, the significance of checking for potential genetic abnor-
malities paved the way to new diagnostic possibilities. Furthermore, novel emerging
biomarkers, non-omics data and integration of multi-datasets have been explored for
diagnostic purposes. Therefore, it is of importance to note the crucial role of integra-
tion between conventional and novel techniques for both medical decision-making and
screening purposes.

5. Summary, Future Perspectives and Conclusions

Clearly, medical practice in the future will be more personally tailored. Our under-
standing of the genomic and molecular underpinnings of cancer growth, progression and
resistance has been revolutionized fortunately due to the advancement of technology. Al-
though genomic and image data are useful on their own, their integration is a crucial factor
to the future of precision medicine. There are still several hurdles and issues that need to
be addressed to fully receive the benefit of significant advances in genomic and molecular
research in the pursuit of individualized approaches to clinical medicine. Appropriate
measurements and initiation of actions will have to be supported to provide the basic
ingredient of modern oncology.
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