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Abstract: Uremic sarcopenia is a serious clinical problem associated with physical disability and
increased morbidity and mortality. Methylglyoxal (MG) is a highly reactive, dicarbonyl uremic toxin
that accumulates in the circulatory system in patients with chronic kidney disease (CKD) and is related
to the pathology of uremic sarcopenia. The pathophysiology of uremic sarcopenia is multifactorial;
however, the details remain unknown. We investigated the mechanisms of MG-induced muscle
atrophy using mouse myoblast C2C12 cells, focusing on intracellular metabolism and mitochondrial
injury. We found that one of the causative pathological mechanisms of uremic sarcopenia is metabolic
flow change to fatty acid synthesis with MG-induced ATP shortage in myoblasts. Evaluation of
cell viability revealed that MG showed toxic effects only in myoblast cells, but not in myotube cells.
Expression of mRNA or protein analysis revealed that MG induces muscle atrophy, inflammation,
fibrosis, and oxidative stress in myoblast cells. Target metabolomics revealed that MG induces
metabolic alterations, such as a reduction in tricarboxylic acid cycle metabolites. In addition, MG
induces mitochondrial morphological abnormalities in myoblasts. These changes resulted in the
reduction of ATP derived from the mitochondria of myoblast cells. Our results indicate that MG is a
pathogenic factor in sarcopenia in CKD.

Keywords: methylglyoxal; sarcopenia; chronic kidney disease; metabolic alteration; myoblast cell

Key Contribution: Methylglyoxal induces intramuscular metabolic alteration.

1. Introduction

Sarcopenia is a muscle-wasting syndrome characterized by the progressive loss of
total body skeletal muscle mass and strength. Uremic sarcopenia, which is chronic kidney
disease (CKD)-associated sarcopenia, is a serious clinical problem as it results in physi-
cal disability, decreased quality of life, and increased morbidity and mortality [1,2]. The
pathophysiology of uremic sarcopenia is multifactorial. The involvement of factors specific
to CKD patients, such as insulin resistance, increased inflammatory cytokines, increased
oxidative stress, metabolic acidosis, and accumulation of uremic toxins, has been suggested;
however, the details remain unknown [3]. Representative protein-bound uremic toxin
indoxyl sulfate is markedly accumulated in the plasma of patients with CKD [4] and ac-
cumulates in skeletal muscle under CKD conditions [5]. Indoxyl sulfate exerts oxidative
and inflammatory activity, triggers aryl hydrocarbon receptor mediated immune responses,

Toxins 2022, 14, 263. https://doi.org/10.3390/toxins14040263 https://www.mdpi.com/journal/toxins

https://doi.org/10.3390/toxins14040263
https://doi.org/10.3390/toxins14040263
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/toxins
https://www.mdpi.com
https://orcid.org/0000-0002-6998-2909
https://doi.org/10.3390/toxins14040263
https://www.mdpi.com/journal/toxins
https://www.mdpi.com/article/10.3390/toxins14040263?type=check_update&version=2


Toxins 2022, 14, 263 2 of 14

and stimulates the progression of CKD [6–9]. We previously reported that indoxyl sul-
fate accumulates in muscle tissue and induces metabolic alteration as an antioxidative
stress response, resulting in uremic sarcopenia [10]. Recently, Thome T et al. found that
several uremic toxins (L-kynurenine, indole-3-acetate, 3-indoleacetonitrile, aminoadipic
acid, dimethylarginine, and trimethylamine-N-oxide) and numerous potentially novel,
unidentified uremic metabolites accumulated in CKD muscle and strongly associated with
the degree of mitochondrial impairment [11]. Therefore, it is important to investigate the
effects of various uremic toxins on muscle cells, since multiple uremic toxins have the
possibility to be implicated in the development and progression of sarcopenia.

Methylglyoxal (MG), a uremic toxin, is a highly reactive dicarbonyl compound that ac-
cumulates in circulation in patients with CKD, with or without diabetes [12]. The abnormal
accumulation of α-oxoaldehyde metabolites, which is called dicarbonyl stress, is leading to
increased modification of protein and DNA with respect to cell and tissue dysfunction in
diseases. In addition, MG is a precursor of advanced glycation end products (AGEs) [13,14].
Previous reports suggest that MG impairs the insulin signaling pathways [15] and the inter-
action between AGEs and the receptor for AGEs (RAGE) obstructs the muscle development
program [16]. RAGE signaling is important in skeletal muscle physiology, regulating both
the activity of muscle precursors during skeletal myogenesis and the correct timing of
muscle regeneration after acute injury [17]. In addition, animal and clinical studies have
suggested that AGE levels are increased in circulation and are involved in morphological
changes, capillary rarefaction, and mitochondria dysfunction in CKD [18]. In particular,
chronic hyperglycemia enhances AGE accumulation in skeletal muscles, and AGEs are
correlated with decreased grip strength, leg extension, and slow walking speed [19]. MG
plays a role in the development and progression of sarcopenia but the details of the mecha-
nisms, such as whether it induces intracellular metabolic alterations, are not well known.
Thus, we hypothesized that MG induces metabolic changes such as indoxyl sulfate with
ATP reduction or metabolic flow changes to other pathways, such as lipid metabolism in
muscle cells, and contributes to the development of sarcopenia. Since we have previously
evaluated the effect of indoxyl sulfate on myocyte metabolism in mouse C2C12 cell line [10],
we decided to use the same cell line to determine whether MG induces the same changes in
myocyte metabolism as indoxyl sulfate. In the present study, to investigate the mechanisms
of MG-induced sarcopenia development and progression, we used a mouse C2C12 cell
line to examine the effects of MG on muscle cells, focusing on intracellular metabolism and
mitochondrial injury.

2. Results
2.1. The Effects of MG on Proliferation, Muscle Atrophy, and Oxidative Stress in C2C12 Cells

To examine the mechanism underlying MG in the skeletal muscle in uremic sarcopenia,
the mouse myoblast cell line C2C12 and differentiated myotubes were used. We examined
the toxic effects of MG on skeletal muscles using C2C12 cells. Since circulating MG
concentration increases to the µM order during renal failure [4], these concentrations were
selected for the present study. The cell viability of the C2C12 myoblast cells significantly
decreased under MG-treated conditions than under control conditions in a concentration-
dependent manner (Figure 1a); however, the viability of the C2C12 myotube cells was not
significantly different (Figure 1b). We also examined the effect of MG on the expression
of muscle atrophy-associated genes in C2C12 myoblast cells and C2C12 myotube cells.
MG significantly increased the mRNA levels of muscle RING finger 1 (Murf1) and muscle
atrophy F-box (Atrogin-1), a muscle-specific E3 ubiquitin ligase in C2C12 myoblast cells;
however, the levels of these mRNAs were not significantly different in the C2C12 myotube
cells (Figure 1c,d). Next, we examined the effects of MG on myogenic differentiation. MG
significantly increased the mRNA levels of myogenin (Myog) in the C2C12 myoblasts. In
contrast, MG did not affect the mRNA level of myoblast determination protein 1 (Myod)
in the C2C12 myoblast cells. The mRNA levels of Myog and Myod were not significantly
different in the C2C12 myotube cells after MG exposure (Figure 1e,f). Furthermore, we
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examined the mRNA levels of the inflammation marker, Il6, and fibrosis marker, Tgfb, in
C2C12 myoblast cells and C2C12 myotube cells. MG significantly increased the mRNA
levels of Il6 and Tgfb in the C2C12 myoblast cells, although the mRNA level of Tgfb was not
significantly different in the C2C12 myotube cells (Figure 1g,h). MG significantly decreased
the mRNA level of Il6 in the C2C12 myotube cells. Furthermore, we examined the protein
levels of atrogin-1, which is involved in muscle atrophy, and transcription factor nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-kB) involved in its expression,
and nuclear factor (erythroid-2-related factor)-2 (Nrf2), which is the main transcriptional
activator in response to oxidative stress [20] (Figure 1i,j). MG significantly increased protein
level of atrogin-1 for 24 h stimulation, and NF-kB level was increased by MG stimulation
from 1 to 6 h. In addition, MG increased the protein level of Nrf2 in the C2C12 myoblast
cells to a maximum level 24 h after exposure (Figure 1i).

Figure 1. Methylglyoxal (MG) inhibits cell proliferation in C2C12 myoblast cells. C2C12 myoblast
cells (a) and myotube cells (b) were exposed to MG at the indicated concentrations for 24 h; this was
followed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, yellow tetrazole)
assay (n = 8). The mRNA levels in the C2C12 myoblast cells (c,e,g) and the C2C12 myoblast cells
(d,f,h) (n = 6) treated with or without MG for 24 h. The protein levels in the C2C12 myoblast cells
treated with or without MG for 1, 6, 24 h (i,j). A.U.; arbitrary unit. N.S.; not significant, * p < 0.05,
** p < 0.01, difference with control by Student’s t-test.
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Next, we examined the toxic effects of MG on myoblast cells. Because MG is a
highly reactive dicarbonyl compound that is known to trigger oxidative stress, and MG
induced Nrf2 expression, we examined the oxidative stress induced by MG in the C2C12
myoblast cells using dihydroethidium (DHE). Treatment with MG resulted in increased
DHE fluorescence compared to the control (Figure 2a). We then examined the expression of
Nrf2 direct targets, such as glucose-6-phosphate dehydrogenase (G6pd), phosphogluconate
dehydrogenase (Pgd), hemeoxygenase-1 (Hmox-1), and NAD(P)H quinone dehydrogenase
1(Nqo1) in the C2C12 myoblast cells. Consistent with the time course of Nrf2 protein
levels, the expression of G6pd, Pgd, Hmox-1, and Nqo-1 were significantly increased in
MG-treated C2C12 myoblast cells (Figure 2b). These results suggest that MG suppresses
proliferation and induces muscle atrophy, inflammation, differentiation, and oxidative
stress in C2C12 myoblast cells.

Figure 2. Methylglyoxal (MG) induces oxidative stress. (a) Relative fluorescence unit of dihy-
droethidium (excitation/emission: 518/606 nm) in C2C12 myoblast and representative images with
and without MG. (b) Relative expression of nuclear factor erythroid 2-related factor 2 direct tar-
get genes, glucose-6-phosphate dehydrogenase (G6pd), phosphogluconate dehydrogenase (Pgd),
hemeoxygenase-1 (Hmox-1), and NAD(P)H quinone dehydrogenase 1 (Nqo1) in the C2C12 myoblast
cells. A.U.; arbitrary unit. * p < 0.05, ** p < 0.01, *** p < 0.001, difference with control by Student’s t-test.
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2.2. MG Reduced Levels of Tricarboxylic Acid (TCA) Cycle Intermediates and Induced ATP
Shortage in C2C12 Myoblast Cells

Next, we evaluated mitochondrial morphology to examine mitochondrial abnormali-
ties induced by MG, because mitochondrial dysfunction is a key mechanism for atrophy
progression in skeletal muscle. Mitochondrial morphology changed when exposed to MG,
compared to the control. Mitochondrial length in the C2C12 myoblasts was significantly
shortened by MG treatment (Figure 3).

Figure 3. Methylglyoxal (MG) induces mitochondrial abnormality. (a) Representative images of the
mitochondria in C2C12 myoblast cells stained with 200 nM Mitotracker Red for 30 min and exposed
or unexposed to 200 mM MG. The yellow square box is shown enlarged (right and middle). The
yellow line indicates the mitochondrial length (left). (b) Quantitative analysis (mean ± standard
deviation; n = 20) of mitochondrial length. Data are the mean ± standard error, *** p < 0.001, the
difference compared with control as analyzed by the Student’s t-test. (c) Relative mRNA levels of
fission protein 1 (Fis1) normalized with Gapdh. Data are boxplots, * p < 0.05, the difference compared
with control, as analyzed using Kruskal–Wallis test; n = 6.

Furthermore, we investigated the effects of MG on intracellular glucose metabolic
changes in skeletal muscle using C2C12 myoblast cells. Metabolic changes in C2C12 my-
oblast cells treated with or without MG were analyzed using targeted metabolomics with
gas chromatography-mass spectrometry (GC-MS). Figure 4 shows the metabolites in gly-
colysis and the TCA cycle and a heatmap of these metabolites. The levels of metabolites in
glycolysis were not significantly different between the control and MG exposure groups. In
contrast, the levels of the TCA cycle intermediates, citrate, isocitrate, and malate were signif-
icantly decreased in C2C12 myoblast cells exposed to MG for 24 h compared to the control
group, suggesting that the TCA cycle was suppressed, but glycolysis was maintained.
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Figure 4. Metabolic response of C2C12 myoblast cells upon exposure to methylglyoxal (MG). Rela-
tive changes in metabolite levels in glycolysis and tricarboxylic acid cycle comparing non-treated
(blue) and 200 µM MG-treated (24 h, red) C2C12 myoblast cell extracts are shown. Data are the
mean ± standard error of the mean, * p < 0.05, difference analyzed using the Student’s t-test; n = 6.

Thus, we examined the ATP content in C2C12 myoblast cells to determine whether
MG affects only the TCA cycle. To assess the toxicity of MG to mitochondria in myoblast
cells, C2C12 myoblast cells were cultured in the presence of 1 mM–100 mM 2-deoxyglucose
(2-DG), which is a glycolytic inhibitor. In the presence of 10 mM and 100 mM 2-DG, ATP
levels were significantly reduced (Figure 5a). In the presence of 100 mM 2-DG, ATP levels
were reduced to 40% of the control condition, and ATP levels were further reduced with MG
(Figure 5b). Next, to examine the effect of MG on glycolysis in C2C12 myoblast cells, the
cells were treated with 0.001–10 µM antimycin A (AmA), which is a mitochondrial electron
transport blocker. No significant decrease was observed in the 24 h co-culture at any
concentration of AmA (Figure 5c). Co-culture with AmA for 48 h significantly decreased
ATP content at all concentrations compared with the control condition (Figure 5d). In the
presence of 10 µM AmA, ATP levels were reduced to 65% of the control condition, and no
significant difference was observed with MG (Figure 5e). These results suggest that MG
induces mitochondrial damage and ATP shortage, and affects only the TCA cycle, but not
glycolysis in C2C12 myoblast cells.

Next, we investigated why the levels of citrate, isocitrate, and malate were reduced
by MG. Citrate is a major source of cytosolic acetyl CoA required for the biosynthesis of
fatty acids and cholesterol. In the cytosol, citrate is cleaved by ATP-citrate lyase (Acl) into
acetyl CoA and oxaloacetic acid, and acetyl CoA is carboxylated and imported into the
synthesis of fatty acids/cholesterol. Peroxisome proliferator-activated receptor alpha (Ppara)
is a transcription factor and a major regulatory factor of lipid metabolism. Peroxisome
proliferator-activated receptor gamma (Pparg) is a transcription factor that also regulates
fatty acid storage and glucose metabolism. Carnitine palmitoyltransferase 1 (Cpt1) acts as a
rate-limiting enzyme for the transport of long-chain fatty acids into the mitochondria and
subsequent β-oxidation, playing a central role in the regulation of energy metabolism. The
mRNA levels of Acl, Ppara, and Cpt1, but not Pparg, were significantly increased in C2C12
myoblast cells exposed to MG (Figure 6). These results suggest that, after MG exposure,
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glucose metabolic flow is changed to the glycolysis-citrate-fatty acid synthesis pathway
from the glycolysis-TCA cycle-electron transport chain.

Figure 5. ATP contents in C2C12 myoblast cells. (a) Effects of 2-deoxyglucosone (2-DG) on ATP
concentrations of C2C12 myoblast cells. (b) ATP content in the C2C12 myoblast cells exposed to
200 µM MG for 24 h with or without the glycolysis inhibitor, 100 mM 2-DG. (c,d) Time-dependent
and dose-dependent effects of antimycin A (AmA) on C2C12 myoblast cells. (e) ATP content in the
C2C12 myoblast cells with or without mitochondrial inhibitor, 10 µM AmA, treatment for 48 h in
the presence of 200 µM MG for 24 h. Data are the mean ± standard error of the mean, * p < 0.05,
difference using the Student’s t-test; n = 6. N.S.; not significant, * p < 0.05, ** p < 0.01, *** p< 0.001,
difference with 0 by Dunnett’s test (a,c,d) or difference with Kruskal–Wallis test (b,e).

Figure 6. mRNA levels in C2C12 myoblast cells. ATP citrate lyase (Acl), peroxisome proliferator-
activated receptor-γ (Pparg), peroxisome proliferator-activated receptor-α (Ppara), and carnitine
palmitoyltransferase 1 (Cpt1)- expression normalized with that of Hprt. N.S.; not significant, * p < 0.05,
** p < 0.01, difference analyzed using the Student’s t-test; n = 6.

3. Discussion

In the present study, we found that (1) MG reduced viability of the C2C12 myoblast
cells but not of the myotube cells; (2) MG induced the expression of genes related to muscle
atrophy, inflammation, fibrosis, and oxidative stress; and (3) MG induced alteration of intra-
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cellular metabolism with mitochondrial morphological changes and ATP content reduction
in myoblast cells. A novel finding of this study is that MG affects only myoblast cells via
the activation of the muscle atrophy pathway (MuRF1 and Atrogin-1), where it causes
a metabolic change from the TCA cycle to fatty acid synthesis, resulting in a reduction
of ATP levels. These observations suggest that MG may be related to the development
and progression of CKD-associated sarcopenia through the reduction of myoblast cell
population via intracellular metabolic alterations (Figure 7). Although the pathogenesis of
sarcopenia is multifactorial, disruption of the balance between the degradation (catabolism)
and synthesis (anabolism) of skeletal muscle proteins is deeply involved in the develop-
ment and progression of sarcopenia [3]. In uremic sarcopenia, various factors, such as
inflammation and metabolic acidosis, activate the ATP-dependent ubiquitin-proteasome
system (UPS) [2,3]. The ubiquitin ligase (E3) enzymes of the UPS, muscle RING-finger
protein 1 (MuRF1), and Atrogin-1, which play important roles in the strict selection of pro-
teins for degradation, are involved in sarcopenia [21]. The loss of muscle mass, or muscle
atrophy, is a complicated process that occurs as a consequence of a variety of stressors, such
as inflammation, oxidative stress, and abnormal metabolism. Myostatin, a subfamily of
transforming growth factor-beta, binds to activin IIB receptors on myocytes and activates
Smad2/3, transcription factors that bind to DNA and are involved in the regulation of
Murf1 and Atrogin-1 expression [22]. Tumor necrosis factor-α, an inflammatory cytokine,
increases the expression of myostatin via the nuclear factor kappa-light-chain-enhancer of
activated B cells-dependent pathway, and myostatin induces the production of interleukin
(IL)-6 via p38 mitogen-activated protein kinase (MAPK) and MAPK kinase 1 [23]. IL-6
activates various signaling pathways including the muscle atrophy pathway [24], and
a longitudinal study in elderly human subjects has shown that high serum IL-6 levels
increase the risk of muscle strength loss [25]. Thus, our results indicate that MG induces
inflammation and activates ATP-dependent UPS in myoblast cells.

Figure 7. Schematic illustration of the effects of methylglyoxal (MG) in myoblast cells. MG induces
metabolic flow change (such as switching to the glucose-citrate-fatty acid synthesis pathway) and
mitochondrial damage, reactive oxygen species generation, interleukin-6 increase, and activation of
the muscle atrophy pathway.

In our study, mRNA levels of Il6 increased in myoblast cells and decreased in myotube
cells under MG exposure. IL-6 has been recognized as a myokine that plays an essential
role in the skeletal muscle [26,27]. A previous animal study reported that the overexpres-
sion of circulating IL-6 promotes the production and accumulation of free radicals in the
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diaphragm muscle by regulating redox-associated molecular circuits and impinging the
Nrf2 mediated antioxidant response [28]. IL-6 affects myoblast proliferation; however, its
effect on differentiation is still being investigated [26]. Recently, a study revealed that low
IL-6 concentrations induce proliferation, whereas high IL-6 concentrations induce differen-
tiation in both C2C12 mouse myoblasts and primary human myoblasts [27]. Consistent
with previous reports, the expression of Myog increased in myoblast cells in which Il6
expression increased under MG exposure. In muscle injury and wasting skeletal muscle
disease, muscle satellite cells undergo activation, proliferation, and eventual differentia-
tion [29–31]. Several cytokines are considered to be involved in satellite cell activation,
including the IL-6 superfamily. MyoG is eventually expressed when myoblast cells are com-
pletely committed to differentiation, and MyoG expression is thus a late phenomenon [32].
In other words, our study suggested that MG upregulates Il6 expression, inhibits cell
proliferation, and promotes myoblast cell differentiation into myotubes. On the other hand,
Il6 expression is downregulated by MG in myotubes, indicating that it may suppress the
differentiation of myotubes to myofiber; however, the effects of IL-6 on differentiation are
not well understood.

MG increased reactive oxygen species (ROS) and Nrf2 protein levels and the expres-
sion of downstream genes in myoblast cells in the present study. In our previous in vitro
study, it was shown that methyl radicals, oxy-carbon centered radicals, and hydroxyl radi-
cals are generated via non-enzymatic reactions between MG and hydrogen peroxide [33].
In the pathological process of radical generation, methyl radicals are readily oxidized
by dissolved oxygen to form peroxide radicals, which are involved in the peroxidation
reaction. Nrf2 is a well-known transcription factor that regulates intracellular antioxidants
and detoxification enzymes [20,34]. Recently, it was reported that the Nrf2/Keap1 pathway
is important in the MG detoxification mechanism against MG-induced carbonyl stress in
neurons, and Nrf2 activators contribute to the accumulation of carbonyl stress mediators
and the suppression of toxic expression [35]. This suggests that MG generates free radi-
cals and increases ROS levels, and Nrf2 is activated to prevent MG-induced cytotoxicity
and protein modifications in myoblast cells. Mitochondria play very important roles in
skeletal muscle, such as energy supply, ROS production, and calcium homeostasis [36]. In
the present study, MG induced mitochondrial morphological abnormalities in myoblast
cells. Muscle biopsies of patients with CKD-associated sarcopenia showed the reduction
of mitochondrial proteins [37], a decreased mitochondrial volume density, and decreased
mitochondrial biogenesis/mass indices [38]. The association between mitochondrial dys-
function and sarcopenia has previously been reported in both patient and animal models
of CKD [37,39,40]. In addition, when skeletal muscle is damaged, myoblast cells differ-
entiate into myotube cells and fuse to the damaged area for repair to maintain skeletal
muscle [41]. During myoblast differentiation, ATP levels gradually increase and reach 200%
of the baseline levels. Thus, ATP plays an important role in myoblast differentiation into
myotubes. Our metabolomics data of intramuscular cells showed that MG reduced the
levels of citrate, isocitrate, and malate, which are TCA substrates, and caused ATP shortage.
This means, after MG exposure, glucose metabolic flow changed from the glycolysis-TCA
cycle-electron transport chain to the glycolysis-citrate-fatty acid synthesis pathway in my-
oblast cells. Further experiments with glycolytic or mitochondrial inhibitors showed that
MG significantly reduced mitochondrial-derived ATP production in the present study. In
myopathies, including age-related sarcopenia, ectopic lipogenesis commonly occurs [42].
In the pathogenesis of adipose degradation, stem cells present in muscle tissue have been
reported to function as a source of adipocytes [43]. Adipogenesis can be induced by several
types of cells, including satellite cells isolated from the skeletal muscles [44,45]. C2C12
myoblast cells, which were used in the present study, have been reported to be influenced
by several factors such as cytokines [46,47]. Our data did not detect lipogenesis in myoblast
cells following MG exposure; however, metabolic flow occurred through the glucose-citrate-
fatty acid synthesis pathway after MG exposure in myoblast cells. Thus, MG can induce
ectopic lipogenesis in myoblasts. To validate this hypothesis, further studies on lipidomics
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are required. Thus, our work suggests that MG may be related to the development and
progression of CKD-associated sarcopenia through the reduction of myoblast cells via
intracellular metabolic alterations. Therefore, in combination with our previous findings
on the effects of indoxyl sulfate [10], uremic-toxin-induced metabolic changes in myocytes
may play a key role in CKD-associated sarcopenia. Our results suggested that targeting
these alterations may be helpful for the prophylaxis or therapy of uremic sarcopenia. In
the present study, we choose C2C12 cell line, because we have previously studied ure-
mic toxin-induced metabolic alterations using C2C12 cell line [10]. There are more than
130 uremic toxins have been reported until today, and we speculate that each of them has
different effects. Therefore, we used C2C12 cell line to investigate the effects different
uremic toxins. The results of this study were obtained using cells of animal origin and have
research limitations. To validate the findings obtained in the present study, further studies
are required to clarify whether similar alterations are observed in muscle tissues of CKD
animal models and patients with CKD.

4. Conclusions

MG-induced intramuscular metabolic alterations such as metabolic flow change to
fatty acid synthesis and the reduction of TCA cycle substrates yielding ATP shortage are
pathogenic factors for the development of CKD-associated sarcopenia.

5. Materials and Methods
5.1. Cell Culture

The mouse C2C12 myoblast cell line was obtained from the American Type Cul-
ture Collection (Manassas, VA, USA) and grown in Dulbecco’s Modified Eagle Medium
(DMEM) (Thermo Fisher Scientific, Waltham, MA, USA) containing 10% fetal bovine serum,
100 IU/mL penicillin, 100 IU/mL streptomycin, and 1 mM L-glutamine in a humidified
incubator at 37 ◦C with 5% CO2 in the air. Confluent C2C12 myoblasts were differentiated
into myotubes by incubation with DMEM containing 2% horse serum for 4–5 days.

5.2. Cell Proliferation Asay

To assess the effects of MG on skeletal muscle cell growth and viability, the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (V13154; Thermo Fisher Sci-
entific, Waltham, MA, USA) was performed according to the manufacturer’s protocol. Cells
seeded in 96-well plates were treated with different concentrations of MG for 24 or 48 h.

5.3. Polymerase Chain Reaction (PCR) Analysis

Total RNA was extracted using an RNeasy Mini kit (Qiagen, Hilden, Germany) accord-
ing to the recommended protocol. Extracted RNA was reverse transcribed to complemen-
tary DNA (cDNA) using the iScript Advanced cDNA Synthesis Kit for RT-qPCR (Bio-Rad
Laboratories, Hercules, CA, USA) according to the recommended protocol. PCR was per-
formed in a total volume of 1.5 µL containing aliquots of cDNA, 0.45 µL of 10 µM of each
primer, and SsoAdvanced Universal SYBR Green Supermix (Bio-Rad Laboratories, Her-
cules, CA, USA). After heating at 95 ◦C for 3 min, denaturation, annealing, and elongation
were carried out at 95 ◦C for 3 min, 95 ◦C for 5 s, and 60 ◦C for 15 s, respectively. Reactions
were repeated for 39 cycles. Expression of hypoxanthine phosphoribosyltransferase (Hprt)
mRNA was used as an internal control. The genes of interest (Hprt, Gapdh, Trim63; Murf1,
Fbxo32; Atrogin 1, Il6, Tnfa, Tgfb, Hmox1, and Nqo1) were obtained from Takara (Kusatsu,
Japan), and their set IDs were Hprt: MA031262, Trim63: MA056880, Fbxo32: MA155273,
Il6: MA15227, Tnf: MA165780, Tgfb: MA148599, Hmox1: MA141757, Nqo1: MA121914,
Gapdh: MA050371, Myod1: MA128901, and Myog: MA127738. The primer sequences for
Fis1, Pparg, and Acl were as follows: Fis1 Forward: CCGGCTCAAGGAATATGAAA and
Reverse: CCATGCCTACCAGTCCATCT, Pparg forward: ATGGAGCCTAAGTTTGAGTT
and reverse: CAGCAGGTTGTCTTGGATGT; Acl forward, TGGATGCCACAGCTGACTAC;
and reverse, GGTTCAGCAAGGTCAGCTTC.
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5.4. Mitochondrial Morphology Analysis

C2C12 cells were incubated with 100 nM MitoTracker Red CMXRos (Invitrogen,
Waltham, MA, USA) for 30 min. An all-in-one fluorescence microscope (BZ-X800; Keyence,
Osaka, Japan) was used to obtain images.

5.5. ROS Detection

ROS levels were determined using the fluorescent dye DHE (Thermo Fisher Scientific,
D11347, Waltham, MA, USA). C2C12 cells were incubated with 10 µM DHE for 30 min.
An all-in-one fluorescence microscope (BZ-X800; Keyence, Osaka, Japan) was used to
obtain images. Quantitative analysis was performed using a fluorescence plate reader
(SpectraMax iD5, Molecular Devices, San Jose, CA, USA), and data are presented as
fluorescence intensity.

5.6. Biochemical Measurement

The cellular ATP content of C2C12 cells was measured using a luminometric ATP assay
kit (TOYO B-Net Inc., Tokyo, Japan) according to the manufacturer’s protocols. Briefly,
cells were treated with MG for 24 h before 100 µL/well of the ATP reaction mixture was
added to the sample and mixed gently. Luminescence intensity was detected at 23 ◦C
using a SpectraMax L microplate reader (Molecular Devices, San Jose, CA, USA). When
measuring mitochondrial-derived ATP, 100 mM 2-DG was added to the medium with
MG for 24 h. Treatment with 100 mM 2-DG significantly suppressed ATP production in
the C2C12 myoblasts. When measuring glycolysis-derived ATP, 10 µM AmA was added
and incubated for 24 h. Following 24 h of incubation, MG was added and incubated for a
further 24 h, and ATP was measured. Treatment with 10 µM AmA for 48 h, but not for 24 h,
significantly suppressed ATP production in the C2C12 myoblasts.

5.7. Western Blotting

Western blotting was performed according to our previously reported methods [10].
Proteins were extracted using 1X radioimmunoprecipitation assay buffer (Cell Signaling
Technology, Danvers, MA, USA) containing a protease inhibitor (Roche Diagnostics K.
K., Tokyo, Japan), phosphatase inhibitor cocktail (Sigma Aldrich, St. Louis, MO, USA),
and 1 mM phenylmethylsulfonyl fluoride (Thermo Scientific, Waltham, MA, USA). Ten
µM MG132 (Sigma Aldrich, St. Louis, MO, USA) was added into the extraction buffer to
protect it from degradation. Quick Start protein assay (Bio-Rad Laboratories, Hercules,
CA, USA) was used for protein concentration determination. Fifteen µg of protein was
used for each sodium dodecyl sulfate polyacrylamide gel electrophoresis run. The anykD
Mini-Pro TEAN Precast Gel (Bio-Rad Laboratories, Hercules, CA, USA) was used for each
analysis. The protein extracts were transferred onto a polyvinylidene difluoride membrane.
After blocking for 1 h, the membrane was incubated with primary antibodies (anti-NRF2,
1:200, #14596, Cell Signaling or anti-atrogin-1, 1:1000, MK6170ECM Biosciences) overnight
at 4 ◦C. After washing, the membrane was incubated with secondary antibodies (anti-rat
IgG, sc-2032, 1:5000, Santa Cruz or anti-rabbit Ig, MK6170, 1:5000, ECM Biosciences) for 1 h
at 25 ◦C. The expression of β-actin (1:5000, sc-47778, Santa Cruz Biotechnology, Dallas, TX,
USA) was used as an internal control.

5.8. Sample Preparation for GC-MS Measurement

To measure the levels of metabolites in C2C12 myoblasts and myotube cells, an aliquot
(750 µL) of methanol containing 1 mg/mL citrate-d4 was added to 1 × 105 cells to extract
cellular metabolites, and the resultant solution was moved to a 1.5-mL tube. The samples
were vortexed for 5 min and then frozen in liquid nitrogen for 1 min. They were then
dissolved at room temperature for 5 min and sonicated for 5 min. The above process
was repeated a total of three times and samples were then centrifuged at 20,400× g at
4 ◦C for 15 min. The supernatant was collected in a 1.5-mL tube, and the remaining cell
pellet was lysed with 0.25 mL of MilliQ water, vortexed, and placed on ice for 10 min.



Toxins 2022, 14, 263 12 of 14

The cells were then centrifuged under the same conditions as before, and the supernatant
was collected in a 1.5-mL tube. The remaining cell pellet was stored frozen at −80 ◦C for
protein quantification. An amount of 10 µL of 0.5 mg/mL isopropylmalic acid was added
to a 1.5-mL tube containing the supernatant and vortexed. Then, 500 µL was dispensed
from the tube, and the tubes were decompressed and dried in an evaporator. Next, 80 µL
of 20 mg/mL methoxyamine hydrochloride (136-05933; FUJIFILM Wako Pure Chemical
Corp., Osaka, Japan) pyridine solution was added to the sample, which was then sonicated
for 20 min and shaken at 1200 rpm for 90 min at 30 ◦C. Then, 40 µL of N-methyl-N-
trimethylsilyl-trifluoroacetamide (1022-11061; GL Science, Tokyo, Japan) was added, and
the solution was shaken for 30 min at 1200 rpm at 37 ◦C. After shaking, the samples were
centrifuged at 16,000× g for 3 min at 4 ◦C and the supernatant was used as a sample for
GC-MS measurements.

5.9. GC-MS Measurement

This measurement was based on our previously reported methods [48]. GC-MS
analysis was performed using a GC-MS QP2010 Ultra (Shimadzu Corp., Kyoto, Japan) with
a fused silica capillary column (BPX-5; 30 m × 0.25 mm inner diameter, film thickness:
0.25 µm; Shimadzu Corporation, Kyoto, Japan) and a front inlet temperature of 250 ◦C
and helium gas flow rate through a column of 39.0 cm/s. The column temperature was
held at 60 ◦C for 2 min, then raised by 15 ◦C/min to 330 ◦C and maintained for 3 min. The
interface and ion-source temperatures were 280 ◦C and 200 ◦C, respectively. To perform
a semi-quantitative assessment, the peak height of each quantified ion was calculated
and normalized using the citrate-d4 and 2-isopropylmalate peak heights and protein
concentrations. The retention times and selected reaction monitoring conditions of the
derivatized metabolites are summarized in Table S1.

5.10. Statistical Analysis

JMP Pro software version 16.0.0 (SAS Institute Inc., Cary, NC, USA) was used for
statistical analysis. All values are expressed as box plots unless otherwise stated. Differences
were considered statistically significant at p < 0.05. Statistical significance was evaluated
using the Student’s t-test or the Tukey-Kramer test with the analysis of variance for normally
distributed variables and Kruskal-Wallis test for non-normal distributions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxins14040263/s1, Table S1: Measurement conditions for GC-
MS measurements.
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