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Abstract: Background: Several studies have investigated the implication of air pollution and some
social determinants on COVID-19-related outcomes, but none of them assessed the implication of
spatial repartition of the socio-environmental determinants on geographic variations of COVID-
19 related outcomes. Understanding spatial heterogeneity in relation to the socio-environmental
determinant and COVID-19-related outcomes is central to target interventions toward a vulnerable
population. Objectives: To determine the spatial variability of COVID-19 related outcomes among
the elderly in France at the department level. We also aimed to assess whether a geographic pattern
of Covid-19 may be partially explained by spatial distribution of both long-term exposure to air
pollution and deprived living conditions. Methods: This study considered four health events related
to COVID-19 infection over the period of 18 March and 02 December 2020: (i) hospitalization,
(ii) cases in intensive health care in the hospital, (iii) death in the hospital, and (iv) hospitalized
patients recovered and returned back home. We used the percentage of household living in an
overcrowding housing to characterize the living conditions and long-term exposure to NO2 to analyse
the implication of air pollution. Using a spatial scan statistic approach, a Poisson cluster analysis
method based on a likelihood ratio test and Monte Carlo replications was applied to identify high-risk
clusters of a COVID-19-related outcome. Result: our results revealed that all the outcomes related
to COVID-19 infection investigated were not randomly distributed in France with a statistically
significant cluster of high risk located in Eastern France of the hospitalization, cases in the intensive
health care at the hospital, death in the hospital, and recovered and returned back home compared to
the rest of France (relative risk, RR = 1.28, p-value = 0.001, RR = 3.05, p = 0.001, RR = 2.94, p = 0.001,
RR = 2.51, p = 0.001, respectively). After adjustments for socio-environmental determinants, the crude
cluster shifts according to different scenarios suggested that both the overcrowding housing level and
long-term exposure to largely NO2 explain the spatial distribution of COVID-19-related outcomes.
Conclusions: Our findings suggest that the geographic pattern of COVID-19-related outcomes is
largely explained by socio-spatial distribution of long-term exposure to NO2. However, to better
understand spatial variations of COVID-19-related outcomes, it would be necessary to investigate
and adjust it for other determinants. Thus, the current sanitary crisis reminds us of how unequal we
all are in facing this disease.

Keywords: environmental inequalities; long-term exposure; air pollution; living condition; over-
crowding housing; spatial disparities; COVID-19

1. Introduction

Over the last several months, most countries in the world have been impacted by the
severe pandemic. In December 2019, in Wuhan (China), several pneumonia cases were ob-
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served [1]. These first patients suffered from an infection due to a novel coronavirus named
SARS-CoV-2 for its similarity with the epidemic. Severe Acute Respiratory Syndrome
(SARS) occurred between 2002 and 2003. Patients affected by SARS-CoV-2 infection could
experience serious complications, including pulmonary oedema, severe pneumonia, and
acute respiratory stress syndrome, which, in several cases, could turn into death. Several
risk factors of most severe symptoms, which may turn to intensive care recovery, were
identified as age and existence of comorbidities such as respiratory diseases [2–4]. The
outbreak of the novel coronavirus (defined with the acronym COVID-19) is an ongoing
global epidemic that was declared as a pandemic in March 2020 by the World Health
Organization [5].

Italy was the first country in Europe to be affected by the Covid-19 epidemic [6], which
was followed rapidly by other European countries such as Spain and France. In France, the
epidemic started in February with three main clusters located in Grand-Est, Britany, and
Haut de France regions. Rapidly, the outbreak spread over the national territory, which
lead the French government [7,8] to declare the lockdown of the French population for
two weeks on 16 March, 2020. The lockdown was extended thereafter for two months. As
reported in Italy, the ongoing epidemic revealed strong geographical differences in the
spread of infection with a majority of cases concentrated in Northeast France including
Ile-de-France, Haut-de-France, and Grand-Est regions. This unequal spatial distribution
of the infection spread, combined with the healthcare capacity of each region, lead the
government to classify the French region in two categories (green and red regions) guiding
the un-containment plan started on 11 May 2020.

While many recent studies focused on individuals ‘risk factors of COVID-19 infection,
which constitute the vulnerable population, few analysed the possible role of characteristics
measured at the residential place, including environmental nuisances and socioeconomic
deprivation. During the last few months, a couple of studies investigated the relation-
ship between air pollution and COVID-19 morbidity as well as mortality in different
countries [6,9–14].

A systematic review was recently published to summarize the scientific evidence on
the role of air pollution (PM and Nitrogen dioxide, NO2) in COVID-19 spread and lethal-
ity. The authors revealed that major findings are consistent, highlighting the important
contribution of PM2.5 and NO2 as triggering COVID-19 spread and lethality [15]. More
studies are needed to strengthen scientific evidence and support firm conclusions. The
systematic review describe studies investigating the relationship between air pollution
and COVID-19 morbidity and mortality in different countries [6,9–14]. While some studies
investigated the role of short-term exposure to air pollution [11,12], others explored the
role of chronic-exposure to air pollution [6,9,10].

The authors measured long-term exposure from different periods including two
months prior to the outbreak of COVID-19 in Europe [9], four years (2016–2019) in Italy [6]
while, in US, they considered a longer period from 2000 to 2016 [10,13]. More precisely, the
Italian study [6] revealed that the higher level of air pollution estimated in the north part
of Italy may partially explain the regional differences regarding the COVID-19 infection
between the north and south part of the country. Such a link was already reported during
the 2003 SARS outbreak in China, where Cui et al., 2003, revealed that infected people who
lived in regions with a high air pollution index were twice as likely to die as those living in
regions with a low air pollution index [16]. Overall, these studies suggest that the chronic
exposure to higher levels of air pollution may contribute to COVID-19 severity or to health
events related to COVID-19.

On the other hand, several studies suggest the association of poor housing conditions
with COVID-19 incidence and mortality. The U.S. study revealed that counties with a
higher percentage of households with poor housing had a higher incidence of, and mor-
tality associated with, COVID-19 [17]. Thus, the consideration of long-term exposure to
air pollution and deprived living condition as an environmental hazard may improve our
understanding of the COVID-19 pandemic. Therefore, the question addressed here is: Are
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the rate of health events related to COVID-19 higher among peoples living in a more pol-
luted and more deprived living condition? In other words, is there a socio-environmental
disproportionate distribution of COVID-19-related outcomes? In this context, the aim of the
present study is to investigate whether a geographic pattern of Covid-19 may be explained
by spatial distribution of both long-term exposure to air pollution and a deprived living
condition by assessing the spatial implication of neighbourhood characteristics on a spatial
repartition of a Covid-19-related outcome.

2. Materials and Methods

2.1. Study Area

The study area is the national territory of the France metropolitan, which host about
64 million inhabitants (INSEE, 2020). France is subdivided into 95 departments with
a mean population of about 680,000 inhabitants (varying from a minimum of 76,000
inhabitants in Lozère and more than 2 million inhabitants in Nord, Bouches-du-Rhône, and
Nord departments).

2.2. Health Data

This study considered four health events related to a COVID-19 infection. All indi-
cators were estimated at the French department scale. We used health data collected in
the hospital available from the French government website [18]. The French Public Health
Agency (Santé Publique France) collected all health data of confirmed cases of COVID-19
from all health care systems in order to monitor the pandemic. All anonymized databases
at the department level were available on open access from the health minister website.

Four health indicators were considered, over the period of 18 March and 02 December 2020.

i. the total number of hospitalized persons due to COVID-19 infection,
ii. the total number of severe COVID-19 cases in the intensive health care in the hospital,
iii. the total number of deaths at the hospital caused by COVID-19 infection, and
iv. the total number of hospitalized patients recovered and returned back home.

All number cases as well as the number of deaths have been divided by the department
number of inhabitants to standardize the health indicators by population size. The number
of inhabitants per department are available from the National Institute of Statistics and
Economic Studies (INSEE website [19]).

2.3. Air Pollution Data

Several recent epidemiological studies and scientific evidence suggest the role of air
pollution in COVID-19 spread and lethality [15] including NO2 and PM. The Nitrogen
dioxide (NO2) is a good indicator for traffic-related air pollution and correlated with other
traffic-related air pollution: particulate matter. In addition, the modelled NO2 presents
more spatial variations than other modelled outdoor pollutants [20]. Today, NO2 may be
considered a good proxy indicator of outdoor air pollution. Therefore, Nitrogen dioxide
(NO2) was the pollutant included in this study. This pollutant was known to be a good
marker of the pollution due to road traffic. It was chosen because of the largest spatial
variabilities observed compared to particle matters. The dataset of annual mean of NO2
for each monitoring station was taken from 12 Associations for Surveillance of Air Quality
(AASQA) through the National Association for the Surveillance of Air Pollution (ATMO
France) [21] and from the European Environmental Agency, accessed on 22/05/2020,
EEA, 2020).

We estimated the average of the annual mean of NO2 between 2014 and 2018 for all
monitoring stations (Scenario 0) for background and traffic monitoring stations (Scenario 1)
and for background monitoring stations only (Scenario 2) located within each department
in France. Then, we obtained tree measures of NO2 exposure per department, which reflect
the long-term NO2 exposure of the population.
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2.4. Neighbourhood Deprivation Context

To characterize the deprived condition level, in this study, we used indicators to
characterize the living conditions during the containment: The percentage of household
living in an overcrowding housing. Data are collected by the National Institute of Statistics
and Economic Studies (INSEE) and available on their website [22].

2.5. Descriptive Analysis

First, the Pearson correlation coefficient “r” was produced in order to quantify the
intensity of the relation between each health event and the deprived living condition,
as well as the long-term NO2 exposure separately.

Second, we completed the descriptive analysis by implementing a simple linear
regression to give an order of magnitude of the health rate increase according to the
increase of the covariates (living condition and long-term exposure to NO2).

Finally, in order to explore the existence of a potential interaction between the so-
cioeconomic variable and NO2 exposure, we stratified our analysis in two groups based
on the median of the distribution of the percentage of household living in an overcrowd-
ing housing. Interactions were formally tested by introducing an interaction term in the
linear regression to produce the p-value and conclude the statistical significance of the
modifier effect of overcrowding in relation to air pollution and health events related to a
COVID-19 infection.

2.6. Spatial Analysis

To investigate the geographic pattern of the incidence of a Covid-19 related-outcome
at the department level in France, we used the most appropriate spatial scan statistic ap-
proach [23] implemented in the SaTScan software [24]. This approach is used in an increas-
ing number of applications in the field of spatial epidemiology and public health [25–29].
In our study, its allows the statistical and significant investigation of the presence of a
high-risk Covid-19-related outcome among elderly people during pandemic periods and
their spatial approximate location [30–32].

2.7. Methodological Approach

In this approach, the null hypothesis (H0) tested is that the risk of a Covid-19 health-
related outcome is the same throughout the study area. In other words, the expected
incidence of a COVID-19-related outcome would be randomly distributed in space [28,33].

The alternative hypothesis (H1) is that there is an elevated risk of incidence of a
COVID-19-related outcome within the cluster in comparison with census blocks outside
the cluster.

The Poisson probability model was chosen as a cluster analysis method to detect the
presence of cluster of high risk of a COVID-19-related outcome. More precisely, in our
approach, we used the Poisson-based model where the number of COVID-19 health events
in a geographical area is Poisson-distributed.

The procedure works as follows: a circle or window of a variable radius (from 0% up to
50% of the population size [34]) is placed through an iterative process on one centroid of the
department and moves across the whole study area, to compare the incidence of a COVID-
19-related outcome in the window with incidence expected under a random distribution.

Step 1: Estimate the relative risk (RR) within each circle based on a Poisson model
We, therefore, computed a relative risk (RR) in each department weighted by the

population size living in each department. This RR represents the expected risk of a
COVID-19-related outcome within an area or window divided by the expected risk outside
of the department or window.

We conducted separate analysis for each incidence of a COVID-19 related outcome
(i.e., hospitalization, death, severe form, return back home). This is the estimated risk
within the cluster divided by the estimated risk outside the cluster. It is calculated as the
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observed divide by the expectation within the cluster, which is divided by the observation
expected outside the cluster.

The mathematical notation is described below with Equation (1).

RR =
c/E[c]

(C − c)/(E[C]− E[c])
=

c/E[c]
(C − c)/(C − E[c])

(1)

where:
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I() is equal to 1 when the window has more cases than expected under the null-
hypothesis, and 0 otherwise. Since this analysis is only interested in detecting clusters
with higher than expected rates, I() was equal to 1.

In the first crude model, which is the unadjusted analysis, E[c] is equal to an expected
number of cases within the window under the null-hypothesis. In the second and third
adjusted model, E[c] is a covariate adjusted and expected number of cases.

The likelihood function is maximized over all window locations and sizes, and the
one with the maximum likelihood constitutes the most likely cluster. The identification of
the most likely clusters is based on a likelihood ratio test [34] with an associated p-value
obtained using Monte Carlo replications [33]. We considered a 0.05 level of significance.
Mapping of the clusters was carried out using ArcGIS [35].

2.8. Methodological Strategy

If we detect a significant cluster of high-risk using this method, the next step will be
to explore whether the significant cluster can be explained by suspected risk factors. Thus,
spatial analyses were performed in four stages (step-by-step).

i. Crude analysis (unadjusted) to identify and spatially localize the most likely cluster
of high incidence of a COVID-19 related outcome.

ii. Adjusted analysis for a living deprivation condition.
iii. Adjusted analysis for long-term exposure to NO2.
iv. Adjusted analysis for both the deprivation context and long-term exposure to NO2.

The models were adjusted on one or more co-variables, and, according to the Kulldorff
studies [34], several criteria were used to reject, or not, the H0 hypothesis according to the
cluster’s localization and statistical significance, as well as the likelihood ratio value of
each model (for more detail, see References [25–27,36]).
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3. Results

3.1. Spatial Description

Figure 1a–d presents the spatial distribution of the four health events related to
COVID-19 infection, which reveal a strong spatial pattern with higher health events
counted in Northeast France. The annual mean of NO2 is higher in the north and east
departments of France whatever the scenario (Figure 2). As expected, from the background
monitoring stations (scenario 2), less variabilities of NO2 are observed (Figure 2c). Spatial
clusters of a high percentage of households living in overcrowded housing are visible in
the Ile de France region and in the departments near the Mediterranean Sea (Figure 3).
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in overcrowded housing.

3.2. Descriptive Data

The fours graphics in Figure 4a revealed significant linear associations between the
percentage of households living in overcrowded housing and each of the four health indica-
tors: the correlation coefficients vary between 0.75 and 0.78. All are statistically significant.
In the graphics of Figure 4b, similar results were found with long-term NO2 exposure
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regardless of the monitoring stations included in the calculation of the air pollution indi-
cators (Figure 4b). The NO2 exposure is higher over the long-term, and the rate of health
events is higher. The correlation coefficients vary between 0.68 and 0.735.
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Table 1 presents the association between the overcrowding housing and COVID-19
health events. All measures of associations are highly significant (p < 0.0001), between
overcrowded housing and four COVID-19 related outcomes. The regression coefficients
estimated by a linear varied from 71.8 into 439.4 for cases hospitalized and cases in intensive
healthcare, respectively.

Table 1. Coefficient estimate of linear regression adjusted on the proportion of population aged over
60 years old.

Health Event
Overcrowded Housing *

Beta-Coefficient p-Value

Cases hospitalized 439.4 <0.0001
Cases in intensive healthcare 77.5 <0.0001

Death 71.8 <0.0001
Recovered cases, returned back home 330.6 <0.0001

* Linear regression adjusted on the proportion of population aged over 60 years old.

Table 2 presents the association between long-term NO2 exposure and health events
stratified, according to tertile distribution of the percentage of overcrowded housing.
All measures of associations are highly significant among the department with a high
percentage of households living in overcrowded housing. These findings are in favour of
the existence of an interaction between a deprived living condition and long-term NO2
exposure on intensive healthcare risk, as confirmed by the interaction tests (p = 0.008).
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Table 2. Association between long-term NO2 exposure (scenario 2) and COVID-19-related outcomes according to the tertile
distribution of the percentage of overcrowded housing.

Health Event

Household Living in Overcrowded Housing *
Interaction

Test p-Value
**

Tertile 1 Tertile 2 Tertile 3

Beta-Coefficient p-Value Beta-Coefficient p-Value Beta-Coefficient p-Value

Cases hospitalized 39.6 0.078 61.3 0.032 183.7 <0.0001 0.121
Cases in

intensive healthcare 4.79 0.0814 10.1 0.018 35.5 <0.0001 0.008

Death 7.04 0.090 11.4 0.06 32.2 <0.0001 0.094
Recovered cases,

returned back home 24.0 0.119 41.7 0.031 136.9 0.002 0.312

* Linear regression adjusted on the proportion of population aged over 60 years old. ** p value of the interaction test to evaluate statistical
significance of the modifier effect of overcrowding in relation to air pollution and health events related to a COVID-19 infection.

4. Spatial Distribution

Figure 5 details the department containing the most likely clusters of high risk of
a COVID-related health incidence (hospitalized, intensive health care, death, recovered
cases, returned back home), their spatial location, and the spatial shift of centroid from an
unadjusted cluster to a covariate-adjusted cluster. Table 3 presents the most likely clusters,
the number of departments, the radius of the circle of the cluster, and the relative risk (RR,
the ratio of the observed-to-expected number of new patients in each department estimated
by SaTScan) for each cluster.
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Table 3. Summary statistics of the most likely clusters of COVID-19-related outcomes and spatial relocation resulting from the adjustment analysis.

Analysis Cluster Radius b Number of Departments c No. of Observed Cases d No of Expected Cases e RR LLr Shift f p-Value g

Unadjusted No adjustment (Crude) a

Hospitalization 536.19 43 166,571 116,576.69 2.49 22,089.95 0.001

Intensive healthcare
at hospital 80.27 6 10,549 4267.91 3.05 3906.31 0.001

Death at hospital 536.19 43 27,241 18,229.86 2.94 4642.46 0.001

Recovered and
returned back home 536.19 43 117,321 82,005.68 2.51 15,673.73 0.001

Adjusted analysis for long-term exposure to NO2

Hospitalization 285.12 22 99,987 81,646.92 1.39 3074.93 Yes 0.001

Intensive healthcare
at hospital 16.57 4 8461 5501.48 1.70 825.26 Yes 0.001

Death at hospital 285.12 22 16,731 12,883.78 1.55 855.92 Yes 0.001

Recovered and
returned back home 317.61 25 77,346 63,957.82 1.40 2247.95 Yes 0.001

Adjusted analysis for long-term exposure to NO2 and deprived level (Occupation)

Hospitalization 321.93 37 131,368 115,393.32 1.32 2189.38 Yes

Intensive healthcare
at hospital 16.57 4 8461 5982.79 1.54 555.34 Yes 0.001

Death at hospital 285.12 22 16,731 266.4 1.44 601.95 Yes 0.001

Recovered and
returned back home 285.12 22 71,241 60,053.16 1.33 1605.65 Yes 0.001

RR: relative risk. LLr: log likelihood ratio. a Unadjusted analysis, to identify and localize the most likely cluster(s) of high risk of COVID-19-related outcomes. b Cluster radius is the radius of the spatial circle. c

Number of Department: is the number of departments composed of the most likely cluster. d No. of observed cases: the number of the observed cases within the most likelihood cluster. e No. of expected cases:
the number of the expected cases within the most likely cluster. f Shift: if the cluster is in the same location of the crude, the most likely cluster (in unadjusted analysis). g p value: the statistically significant one of
the most likely cluster.
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Unadjusted Analysis

Figure 5a revealed the location of the most likely cluster. Regardless of the COVID-
19-related outcome, the most likely cluster had a statistically significant high risk of a
COVID-19-related outcome incidence. More precisely, the result reveled that the risk of
a COVID-19 hospitalized incidence was 2.49 greater in the eastern part than the rest of
France (p-value = 0.001, Table 3). The spatial analysis of COVID-19-related death, which
was recovered and returned back home revealed the same most likely clusters located in
Northeast France and composed of 43 departments. The clusters had a risk of death and,
of those recovered and returned back home, 2.94 and 2.51 (respectively) were greater than
the rest of France. A small cluster of intensive healthcare in the hospital was also identified
in Northeast France (p-value = 0.039). The cluster composed of six departments had a risk
of intensive healthcare in a hospital of 3.05 greater than the rest of France (p-value = 0.0001,
Table 3).

Adjusted scan statistical analysis is detailed below according to the variables for which
the model was adjusted.

After adjustment for the percentage of households living in overcrowded housing.
The most likely cluster remained statistically significant and located in the same zone.
However, the likelihood ratio decreasing from 22,089 to 11,756 indicates that the spatial
distribution of overcrowded housing only slightly explains the spatial distribution of a
COVID-19-related outcome (data not shown).

After adjustment for long-term exposure to NO2 (Figure 5b), the cluster was reduced,
the centroid of the cluster was shifted to Northeast France and the likelihood ratio decreased
from 22,089 to 3074 (Table 3). It indicates that the spatial distribution of long-term exposure
to NO2 partially explained the excess risk of COVID hospitalization observed in the
unadjusted analysis.

The cluster of excess risk of death identified in crude analysis in Eastern France was
also reduced from 43 departments to 22 departments, after an adjustment for long-term
exposure to NO2 and the likelihood ratio largely decreased from 4642.46 to 855.92. In the
same pattern, the cluster of excess risk of recovered values and those returned back home
identified in crude analysis in Eastern France was also reduced from 43 to 25 departments
and the likelihood ratio largely decreased from 15,673.73 to 2247.95 (Table 3).

In addition, the cluster of excess risk of intensive health care in a hospital identified in
crude analysis in Eastern France was also reduced: the number of departments decreased
from 6 to 4, after adjustment for long-term exposure to NO2. The likelihood ratio decreased
from 3906.31 to 825.26 (Table 3).

After adjustment for long-term exposure to NO2 and percentage of households liv-
ing in overcrowded housing (Figure 5b)—The most likely significant cluster shifted in
Northeastern France (RR = 1.32) with a relatively larger decrease in the likelihood ratio
from 22,089 to 2189 (Table 3). These results indicated that long-term exposure to NO2 and
percentage of households living in overcrowded housing explained a great part of the
excess risk of COVID-19 hospitalization observed in the unadjusted analysis.

The cluster of excess risk of death identified in crude analysis in East France was
also reduced to 22 departments, after an adjustment for long-term exposure to NO2 and
a deprived conditional level. The Llr value largely decreased from 4642.46 to 601.95.
Similarly, the cluster of excess risk of recovered and returned back home identified in
crude analysis in Eastern France was also reduced to 22 departments and the Llr largely
decreased from 15,673.73 to 1605.65 (Table 3).

In addition, the cluster of excess risk of intensive healthcare in a hospital identified
in crude analysis in Eastern France was also reduced to a cluster of 4 departments. The
likelihood ratio largely decreased from 3906.31 to 555.34 (Table 3).

Taking in to account the long-term exposure to NO2 and the percentage of households
living in overcrowded housing reduced the LLr to a larger degree than long-term exposure
to NO2 alone. These variables also explain a large amount of the excess of a COVID-19-
related outcome.
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Our results indicated that the excess risk of different COVID-19-related outcomes
among a population aged over 60 years old observed in the unadjusted analysis was
explained in a great part, but not entirely, by long-term exposure to NO2 and the percentage
of households living in overcrowded housing.

5. Discussion

Our nationwide study in France revealed a significant correlation between long-term
exposure to NO2 and incidence of a COVID-19-related outcome. To our knowledge, such
a work, exploring spatial implication of long-term exposure to NO2 on geographical
variations of a COVID-19 related outcome, has never been performed. It is one reason why
it is difficult to compare our findings with those of others.

Our study revealed that all the outcomes related to COVID-19 infection investigated
(including: hospitalization, death at hospital, recovered and returned back home, inten-
sive health care in a hospital) were not randomly distributed in France. The increased
COVID-19-related outcome incidence in Eastern France was statistically significant. The
spatial distribution of both long-term exposure to NO2 and overcrowded housing may
be taken into account to fully interpret the spatial distribution of incidence of COVID-19-
related outcomes.

These findings are in line with recent published studies investigating the role of air
pollution in COVID-19 infection, including mortality and morbidity outcomes.

More precisely, our results are consistent with studies carried out in European coun-
tries as well as in US and China, which suggest that people living in a polluted area are
more predisposed to develop severe COVID-19-related events [6,9,10]. In Europe, Ogen
et al., 2020, revealed that 78% of death related to COVID-19 identified in Europe are mainly
concentrated in five polluted regions located in North Italy and Central Spain. More
precisely, the authors found that 83% of all fatalities occurred in the European region where
the maximum NO2 concentrations was above 100 µmol/m2 [9]. In the United States, Wu
et al. suggested that even a small increase in long-term exposure to PM2.5 increase the
COVID-19 death rate: 1µg/m3 in PM2.5 is associated with an 8% increase in the COVID-19
death rate (95CI [2%, 15%]) [10]. All these results enrich the debate of the potential effects
of chronic exposure to air pollution on the COVID-19 severity.

Therefore, we may hypothesize that chronic exposure to a high level of air pollu-
tion and living condition (approximated here by the percentage of households living
in overcrowded housing) could contribute to spatial, disproportionate, severe forms in
COVID-19-related outcomes observed following the different pathways.

(i) the first one acts indirectly by increasing the risk of cardiopulmonary and respira-
tory diseases [37,38] as well as the hypertension and the diabetes [39], which were
identified as one main comorbidity risk factor of COVID-19,

(ii) the second one has a more direct effect by increasing susceptibility of people to
COVID-19 infection.

In addition, our finding suggests that both an overcrowded housing level and chronic
exposure to NO2 could largely explain the spatial distribution of COVID-19-related obser-
vations in a French metropolitan area.

Our finding suggests an unequal impact of COVID-19 including a death, COVID-19
hospitalization, recovered and returned back home, and intensive healthcare in a hospital.
We argue that this unequal geographic pattern is due to a complex interaction between the
outdoor and indoor condition: air pollution and housing condition. Thus, beyond the air
pollution effect, the living condition may contribute to an unequal impact of COVID-19.

As suggested by Patel et al., 2020: “To date, policymakers have targeted people
with multiple comorbidities after identifying them as the most vulnerable. However, this
medical model of disease risks ignoring social factors, which can increase exposure to and
mortality from coronavirus disease 2019 (COVID-19)” [40].

Based on a conceptual model of Singer [41], and the model of the main determinants
of health described by Dahlgren and Whitehead [42], Bambra et al. proposed a theo-
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retical framework of “the syndemic of COVID-19, non-communicable diseases (NCDs)
and the social determinants of health”. His framework aims to explain how inequali-
ties in COVID-19 are related to existing inequalities in chronic diseases and the social
determinants of health” [43]. Thus, the authors argue that, for the most disadvantaged com-
munities, COVID-19 is experienced as a syndemic—a co-occurring, synergistic pandemic
that interacts with and exacerbates their existing NCDs and social conditions [43].

Among the living condition, housing characteristics play an important role in unequal
impact of COVID-19 by following some pathways:

(i) Some studies suggest that people in lower income households are more likely ex-
perience overcrowding and live in overcrowded conditions. Therefore, deprived
living conditions may constitute itself as an additional risk factor of the known un-
derlying clinical risk factors that increase the severity and mortality of COVID-19
(including cardiovascular disease, obesity, diabetes, and hypertension [44]). It sug-
gests that people living in deprived conditions have an increased susceptibility to
COVID-19 mortality.

(ii) The overcrowding combined with poor quality of housing conditions may increase
the vulnerability of people for COVID-19 and the severity of its consequences. These
deprived living conditions including damp housing and overcrowding may induce
some health outcome respiratory disorders, such as asthma and other viral infections.

Our hypothesis highlights the complexity of the mechanisms, which link chronic
exposure to NO2 and living conditions to COVID-19-related outcomes. It suggests that the
combination of outdoor and indoor conditions may interact to explain the geographical
pattern of COVID-19.

Lastly, our findings showed that it remained a significant cluster of excess risk of
COVID-19-related outcomes, not entirely explained by spatial distribution of age, NO2,
and overcrowded housing. This observed cluster cannot be explained by healthcare
access. In France, the access to diagnosis and treatment should not be limited by socio-
economic status. Medical and hospital costs for patients with COVID-19-related outcomes
are completely covered (100%), and the reimbursement is regulated by uniform rates
regardless of whether the patient is treated in the public or private facility.

This observed cluster may be partly explained by the population health status such as
the pre-existing chronic diseases related to the COVID-19-related outcome known as a risk
factor [45].

Interpretation of our findings must consider weaknesses that could affect the strength
of the associations, yield limitations in comparison with other studies, or impede the
formulation of accurate conclusions.

- First, we performed an ecological study with data available at the French department
level. Therefore, our results should be interpreted only in this design context and
should not be interpreted at the individual level.

- Second, our approach based on ecological data, has several limitations. One is the
non-inclusion of gender and presence of pre-existing and background diseases and
comorbidities in the analysis, which is known to be risk factors for COVID-19-related
outcomes. Focusing in further studies on larger risk factors is recommended, and
might produce clearer results to explain the cluster of the excess risk.

- Third, to characterize the chronic exposure to NO2, as recent studies investigated
this issue, we used mean values over five years (2014–2018) from all monitoring
stations located in each French department, including several background, traffic, and
industrial stations. The mean values from each station may vary according to the
type: Background, traffic, and industrial station, and to the area: rural, urban, and
sub-urban. In our study, we used all data available at the French department level
and carried out sensitivity analysis through three scenarios. However, in our study,
using data from a different type of monitoring stations may misclassify the level of
exposure of several French departments. At this time, these were the only available
data for the study period, which covered all departments of France. However, the
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results revealed that the measure of associations as well as the statistical significance
did not vary as much, according to the scenario used (data not shown). Next, studies
need to assess the impact of air pollution on COVID-19 outcomes using modelled
measures of NO2 exposure at a finer spatial scale.

6. Conclusions

Our study quantified the unequal spatial distribution of the COVID-19 related out-
come. The clustering analysis confirmed the higher risk of COVID-19-related outcome
located in Eastern France. In addition, our findings suggest that the geographic pattern of
a COVID-19-related outcome is largely explained by socio-spatial distribution of long-term
exposure to NO2. However, to better understand spatial variations of a COVID-19-related
outcome, it would be necessary to research and adjust for other determinants.

Thus, the current sanitary crisis reminds us how unequal we all are in facing this
disease. Building a healthy environment for all, and especially for the most vulnerable
population, is a crucial issue if we want to design and implement measures for a greener
and more equitable territory.
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