
INTERNATIONAL JOURNAL OF ONCOLOGY  55:  1194-1212,  2019

Abstract. The assessment of the risk of biochemical recurrence 
(BCR) is critical in the management of males with prostate cancer 
(PC). Over the past decades, a comprehensive effort has been 
focusing on improving risk stratification; a variety of models 
have been constructed using PC-associated pathological features 
and molecular alterations occurring at the genome, protein and 
RNA level. Alterations in RNA expression (lncRNA, miRNA 
and mRNA) constitute the largest proportion of the biomarkers 
of BCR. In this article, we systemically review RNA‑based BCR 
biomarkers reported in PubMed according to the PRISMA 
guidelines. Individual miRNAs, mRNAs, lncRNAs and multi-
gene panels, including the commercially available signatures, 
Oncotype DX and Prolaris, will be discussed; details related to 
cohort size, hazard ratio and 95% confidence intervals will be 
provided. Mechanistically, these individual biomarkers affect 
multiple pathways critical to tumorigenesis and progression, 
including epithelial‑mesenchymal transition (EMT), phospha-
tase and tensin homolog (PTEN), Wnt, growth factor receptor, 
cell proliferation, immune checkpoints and others. This variety 
in the mechanisms involved not only validates their associa-
tions with BCR, but also highlights the need for the coverage of 
multiple pathways in order to effectively stratify the risk of BCR. 
Updates of novel biomarkers and their mechanistic insights are 
considered, which suggests new avenues to pursue in the predic-
tion of BCR. Additionally, the management of patients with 

BCR and the potential utility of the stratification of the risk of 
BCR in salvage treatment decision making for these patients are 
briefly covered. Limitations will also be discussed.
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1. Introduction

Prostate cancer (PC) is the most commonly diagnosed cancer 
affecting males in developed countries and a major cause 
of cancer‑related mortality among males (1). The disease is 
highly heterogeneous and progresses with a large degree of 
disparity. PC evolves from high‑grade prostatic intra‑epithe-
lial neoplasia (HGPIN) to local carcinoma; some local tumors 
will develop into metastatic disease with bone as the prefer-
ential site (2). Primary tumors are managed through watchful 
waiting (active surveillance) and curative therapies: Radical 
prostatectomy (RP) or radiation therapy (RT) (3‑6). The 
disease may relapse in the form of biochemical recurrence 
(BCR) with elevations in serum prostate-specific antigen 
(PSA) levels of >0.2 ng/ml following RP and >2 ng/ml above 
the nadir following RT (7). Approximately 30% (20‑40%) of 
patients following RP (8-10) and 30-50% of males treated with 
RT will experience BCR (11,12) within 10 years posy‑therapy. 
BCR represents a major progression and is associated with 
a significantly increased risk of PC metastasis; 24‑34% 
of patients with BCR will develop metastasis (13,14). The 
standard treatment for metastatic PC remains androgen depri-
vation therapy (ADT); however it is largely a palliative care 
as metastatic castration‑resistant PCs (mCRPCs) commonly 
develop (15). Although multiple treatment options are 
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currently available for mCRPCs, these therapies only margin-
ally prolong the median overall survival (OS) and resistance 
develops rapidly. This is the major challenge with therapies 
targeting mCRPCs using docetaxel (16,17) or the second 
generation anti-androgens (abiraterone and enzalutamide) 
approved by the FDA in 2011 and 2012 (18,19). Collectively, 
with this knowledge of PC development and the current 
limitations in treating metastasis, the most beneficial manage-
ment of prostate cancer is through the accurate stratification 
of patients with PC with a low risk of BCR progression 
from those with a high risk. This capacity of BCR risk 
stratification is of particular relevance to patients with low‑ 
and intermediate‑risk PCs; low‑risk and intermediate‑risk 
PCs are defined by the European Association of Urology 
(EAU)‑European Society for Radiotherapy and Oncology 
(ESTRO)‑International Society of Geriatric Oncology (SIOG) 
as PSA <10 ng/ml, Gleason score (GS) <7, cT1-2a, and local-
ized (low risk) and PSA levels of 10-20 ng/ml or GS 7 or cT2c 
and localized (intermediate risk) (3).

The current stratification of the risk of BCR in clinical 
practice remains poor; improvement in this capacity remains 
a major focus of the research community. Attributing to this 
massive effort and the involvement of complex networks 
affecting BCR progression, there are enriched data for BCR 
risk classification for localized tumors following primary 
curative treatments, particularly RP. The risk stratification is 
based on two general aspects of PC: Clinical characteristics 
and molecular properties or biomarkers. The latter includes 
alterations in gene expression at both the gene and protein 
level. Due to the overwhelming amount (search for ‘prostate 
cancer AND biomarkers AND biochemical recurrence’ in 
PubMed resulted in 2,500 articles) and the heterogeneity of 
the data, in this review, we focus on RNA-based biomarkers, 
which can be effective in nature. We also briefly discuss other 
types of BCR biomarkers to make this review comprehensive. 

2. Stratification of BCR risk: An update

Assessment of BCR risk using clinical information. The clin-
ical and tumor characteristics have long been investigated for 
the estimation of the risk of BCR. By using pre‑treatment PSA, 
the GS, clinical T stage, the percentage of biopsy cores positive 
for cancer, and age in 1,493 patients treated with RP between 
1992 and 2001, the University of California, San Francisco 
Cancer of the Prostate Risk Assessment (UCSF-CAPRA or 
CAPRA) was developed in 2005 to appraise the BCR risk; 
this is a score system with scale of 0‑10 and higher scores 
represent a higher risk of BCR (20). Up to 2017, CAPRA has 
been validated on BCR risk stratification following RP and RT 
by 12 investigations carried out in the USA, Germany, Japan, 
Australia, Korea and Canada; these studies involved a total 
of 17,457 patients and demonstrated that CAPRA classifies 
the risk of BCR with a concordance index (c-index) ranging 
from 0.67 to 0.81 (20). The status of CAPRA has recently 
been updated by Brajtbord et al (21); the modified version, 
CAPRA‑S, was subsequently developed by the same group in 
2011 and independently validated (21,22). Prior to CAPRA, 
the D'Amico classification of the risk of BCR was generated by 
D'Amico et al in 1998 (23). The CAPRA score system seems 
superior to the D'Amico classification (21).

While approximately 30% of males undergoing RP will 
experience BCR within 10 years (8‑10), two‑thirds of these 
recurrences occur during the first 2 years (24‑26). Early recur-
rence is associated with a higher risk of metastasis (27,28). 
To assess early BCR, the Walz nomogram was constructed in 
2009 (29), which has recently been updated with 13,797 patients 
who had undergone radical prostatectomy from Hamburg 
(2005-2016) and validated using 5,952 males treated with 
RP in Vienna (30). The validation using the Vienna dataset 
revealed the best estimation of BCR risk by the updated 
nomogram in comparison to the Walz nomogram, MSKCC 
nomogram, and CAPRA-S (30). The nomogram estimates 
BCR risk at 12 and 24 months post-RP based on PSA, GS, pT 
stage, surgical margin status and lymph node status (30).

Stratification of BCR risk based on protein expression. 
Abnormalities in the regulation of cell proliferation are typical 
of cancer (31). Of note, alterations in the expression levels of 
proteins related to cell cycle regulation have been extensively 
examined for biomarker values in the classification of the 
BCR risk. These proteins include Ki-67, MYC, ETS-related 
gene (ERG), as well as the tumor suppressors phosphatase and 
tensin homolog (PTEN) and p53; their biomarker potentials 
have recently been reviewed (32,33). In brief, Ki‑67 is an 
established cell proliferation marker (34) with increases in its 
expression being associated with adverse features of PC (33); 
however, its association with BCR remains uncertain (35).

MYC plays multiple roles in tumorigenesis, which includes 
the regulation of cancer metabolism (36,37). It is upregulated 
in PC (38) and contributes to PC progression in part via telom-
erase overexpression and the loss of PTEN (39,40). While 
increases in MYC protein expression are associated with 
higher a GS and T-stage, an association between MYC and 
BCR remains unclear (33).

The overexpression of ERG in PC results from the fusion 
of the androgen target gene transmembrane serine protease 
2 (TMPRSS2) with ERG (TMPRSS2‑ERG) (41). The ERG 
protein can be detected in PC by immunohistochemistry 
(IHC) (42). In a systemic review, the overexpression of the 
ERG protein was shown to be modestly associated with BCR 
with P-values of 0.04, 0.006, or 0.002 (33).

In a study of 52 males with PC, an association of p53 expres-
sion with BCR was demonstrated (P=00097) (43), which was 
corroborated by another small cohort involving 86 patients 
with PC (P<0.01) (44). Collectively, IHC‑detected p53 protein 
expression is associated with BCR (33). In a systemic review 
published in 2018 on the IHC-based detection of BCR (33), 
the loss of PTEN was found to be associated with BCR in 8 
investigations.

Nonetheless, while IHC-detected protein expression can 
display significant associations with BCR, the associations are 
modest in most cases and their applications in clinical practice 
are limited. This is likely attributed to the limited number 
of proteins that can be simultaneously detected by IHC; the 
examination of the expression status of a panel of proteins or 
signatures consisting of multiple factors is critical to effec-
tively stratify the risk of BCR.

Genomic alteration‑based biomarkers. While the impact of 
genomic alterations on PC progression will not be covered 
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in this review, it is important to summarize the recent devel-
opments related to the impact of germline mutations on PC 
progression. A family history is a well‑recognized risk factor 
of PC (45); nonetheless, hereditary PCs, which constitute 
approximately 9% of all PCs, do not differ from spontaneous 
PCs based on the 2016 EAU-ESTRO-SIOG guidelines (3). 
Thus, it was generally accepted that germline mutations do 
not promote PC progression and are thus without prognostic 
value. The exception was first observed with BRCA2 germ-
line mutations that increase the incidence of PC along with 
the risk of PC progression (46,47); these mutations drive the 
evolvement of PC by causing genomic instability (48). In line 
with this concept, germline mutations in other factors regu-
lating the DNA damage response (DDR) also increase the 
risk of PC progression, including ATM, CHEK2, BRCA1, 
RAD51D and PALB2 (49). The observation that BRCA1/2 
germline mutations are associated with the risk of PC and 
PC progression provides additional support for the similari-
ties between PC and breast cancer. This is consistent with a 
recent study demonstrating that PCs can be grouped into 
PAM50‑based luminal A and luminal B subtypes (50), the 
well‑known subtypes of estrogen receptor‑positive breast 
cancer (51).

It will thus be of interest to investigate the contributions 
of mutations in BRCA2, ATM, CHEK2, BRCA1, RAD51D 
and PALB2 in a variety of combinations in the assessment 
of the risk of BCR. Of note, genomic alterations in 9 DDR 
pathways involving 17 gene sets are able to classify the risk 
of BCR [population size, n=545; hazard ratio (HR), 1.89; 95% 
confidence interval (95% CI), 1.44‑2.48; P=5.01e‑6] (52).

Among the PC-associated genomic abnormalities, the 
TMPRSS2‑ERG fusion is the most common event; it occurs in 
approximately 50% of Caucasian Americans, 31% of African 
Americans (53) and 18.5% of Asians (54). While the fusion 
gene is modestly associated with T‑stage [T3‑T4 vs. T1‑T2; 
odds ratio (OR), 1.4; 95% CI, 1.33‑1.48] and metastasis (M1 
vs. M0; OR, 1.35; 95% CI, 1.02‑1.78), TMPRSS2‑ERG is not 
associated with BCR (55). Collectively, the current evidence 
does not support genomic alterations being robust predictors 
in the assessment of the risk of BCR.

3. Searching methods for RNA‑based BCR biomarkers

In accordance with the PRISMA guidelines (56,57), we 
performed a systemic literature search through the PubMed 
database using the terms ‘prostate cancer’ AND ‘biomarker’ 
AND ‘gene expression’ AND ‘biochemical recurrence’. A 
total of 258 manuscripts were retrieved. We examined all 
abstracts and eliminated those i) with population sizes (tumor + 
non‑tumor tissues) <100 cases; ii) that focus on DNA methyla-
tion and epigenetic regulation without a clear examination of 
gene expression; iii) that primarily use the immunohistochem-
istry approach; iv) those yielding values of P≥0.05. We thus 
selected and discussed 50 articles in this review (Fig. 1). These 
papers cover two general aspects of RNA-based biomarkers: 
mRNAs and microRNAs (miRNAs or miRs).

In light of the important function of long non-coding 
RNAs (lncRNAs) in preventing miRNA-mediated mRNA 
degradation via competing or sponging, we also discuss the 
association of lncRNAs with BCR.

4. Gene expression‑based biomarkers

miRNA‑based biomarkers for the stratification of BCR risk. 
Alterations in individual miRNAs have been observed to 
be associated with BCR (Table I). In a total of 585 patients 
consisting of 388 non-recurrences and 197 recurrences, using 
the median expression level as the cut-off point, PCs with high 
levels of miR-301a were found to be at risk of BCR progres-
sion with an adjusted HR of 1.42 (P=0.002) (58). PCs positive 
for miR‑21, defined by its median expression level, were 
also found to be associated with a rapid kinetic of BCR (59). 
Upregulations in the levels of miR-128 (60) and 130b (61) have 
also been found to be associated with a reduction in BCR-free 
survival (Table I). Downregulations in the expression of 
miR-30C (62), miR-145 (63), miR-195 (64) and miR-16 (64) 
facilitate BCR development (Table I).

These miRNAs affect BCR by regulating different path-
ways (Fig. 2), a concept that is consistent with the involvement 
of complex pathways in BCR occurrence. miR‑301a likely 
promotes the recurrence of PC at least in part via the induction 
of epithelial‑mesenchymal transition (EMT), evidence by the 
downregulation of E-cadherin in LNCaP cells overexpressing 
miR-301a (58). EMT is a major mechanism contributing to 
cancer stem cells (CSCs) (65). Cumulative evidence supports 
an essential role of CSCs in cancer progression, including 
PC (66). miR-21 reduces PTEN expression with the concurrent 
upregulation of PI3K and AKT, suggesting its role in inhibiting 
PTEN function in PC (67). miR‑30c downregulates EMT by 
inhibiting the Snail-TGF-β1 connection in other settings (68) 
and is reduced in PC (69); miR‑145 is a tumor suppressor (70) 
and is downregulated in PC (71,72). Both miR-195 and miR-16 
inhibit programmed death‑1 ligand 1 (PD‑L1) expression, and 
thus downregulate PD‑L1‑mediated actions of immune check-
points (64); reductions of either likely promote BCR.

Importantly, individual miRNAs commonly regulate 
multiple targets (73). This information may enhance the 
biomarker values of miRNAs, as BCR is certainly regu-
lated by complex networks; however, it may also attenuate 
their biomarker potential if individual targets have different 
effects on BCR. For instance, by a functional screening of 
1,129 miRNAs for their effects on the proliferation, viability 
and the apoptosis of 5 PC cell lines, miR-130b was among the 

Figure 1. Systemic literature searching conditions and selection of articles 
for the review.
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14 miRNAs selected from the screen; it affects cell prolifera-
tion and is the only miRNA exhibiting an association with a 
reduction in BCR-free survival (Table I) (61). The number 
of predicted targets for miR-130b is approaching 600 with 
approximately one‑third being upregulated (61). Among the 
two most frequently affected genes, GLYATL1 was upregu-
lated and PARVA was downregulated; and only decreases in 
PARVA expression are associated with the occurrence of BCR, 
which is consistent with the effect of miR-130b on BCR (61). 
The numerous downstream effectors of these miRNAs may 
contribute to their ineffectiveness in the classification of the 
risk of BCR (Table I); this limitation should be considered 
when using miRNAs for the assessment of the risk of BCR.

Single mRNA‑based biomarkers. Progression to BCR is 
regulated by multiple pathways, including Wnt signaling (74), 
cell proliferation regulations (75), the inhibition of immune 
checkpoints (76,77) and others. The secreted frizzled-related 
protein 4 (SFRP4) regulates Wnt signaling and displays onco-
genic properties in PC (78). In a study of 9 cohorts, elevations 
in SFRP4 mRNA expression were found to be a risk factor for 
BCR in 7 cohorts of 1,404 patients with the HR ranging from 
1.3‑2.18 (Table II); however in 2 cohorts (patients, n=374), 

SFRP4 was not found to be significantly associated with 
BCR (79). In another investigation of 536 males with PC, the 
increase in SFRP4 expression was found to be associated with 
BCR (HR, 1.35; P=0.009) (80).

The AXIN2 protein plays a role in canonical Wnt 
signaling (81) and is expressed in tissue stem cells and 
CSCs (82‑84). The single nucleotide polymorphism 
(guanine/adenine) rs2240308 is associated with a decrease in 
the risk of PC (OR, 0.377; 95% CI, 0.206‑0.688; P=0.001) (85). 
Of note, the downregulation of AXIN2 mRNA expression has 
been found to be a risk factor of BCR (Table II) (86).

An increase in platelet-derived growth factor receptor 
(PDGFR)‑β expression in the stroma significantly enhances 
BCR (Table II) (87). An elevated stromal PDGFR‑β expres-
sion has been shown to be associated with a poor prognosis in 
both breast and prostate cancer (88). 

The downregulation of metallothionein 1E (MT1E) is a 
risk factor for BCR in association with promoter methyla-
tion (89). MT1E belongs to the metallothionein (MT) family 
consisting of cysteine‑rich small proteins that regulate 
metal homeostasis (90). In addition to PC, MT1E is also 
downregulated in endometrial carcinoma (91), intrahepatic 
cholangiocarcinoma (92), melanoma (93), non-small cell 
lung cancer (94), papillary thyroid carcinoma (95) and renal 
cell carcinoma (96); in the majority of these cancer types, 
the reductions are associated with hypermethylation (90). 
However, the upregulation of MT1E has been reported in 
estrogen receptor-negative breast cancer (97) and it also 
facilitates glioma progression (98,99).

Increases in KLK15 mRNA expression predict BCR 
(Table II) (100). KLK15 is a member of kallikrein-related 
peptidases with KLK3 being the most well-known PSA. 
KLK15 has been reported to exhibit biomarker value in 
ovarian, breast, prostate and testicular cancer (101).

An elevation in neuropilin-1 (NRP1) mRNA expression 
is associated with BCR following RT (Table II) (102). This 
transmembrane glycoprotein can activate PDGFR‑β (103) and 
contributes to the stemness of breast CSCs via the activation 
of Wnt signaling (104). NRP1 has been reported to be upregu-
lated in PC (105) and may contribute to BCR in part through 
the regulation of endothelial cell functions (106).

Table I. Associations of individual miRNAs with BCR defined by univariate Cox analysis.

Identity Cohort size (n) Follow‑up HR (95% CI) P‑value (Refs.)

miR-301ab 585 180 M 1.42 (1.06-1.90) 0.002 (58)
miR-21b 169 84 M NA <0.001 (59)
miR-128c 128 100 M 3.96 (1.02-8.12) <0.001  (60)
miR-30cc 103 125 M 0.31(0.19-0.51) <0.001 (62)
miR-145c 137 72 M 3.21 (1.07-9.62)a 0.007 (63)
miR-195c 131 150 M NA 0.0092 (64)
miR-16c 131 150 M NA 0.0031 (64)
miR-130bc 188 120 M NA 0.004 (61)

aHazard ratio (HR) was determined on mi‑R145 downregulations; bincreases and cdecreases in expression associated with BCR. 
M, months; CI, confidence interval; NA, not available; BCR, biochemical recurrence.

Figure 2. MicroRNAs affecting BCR through multiple pathways. BCR, 
biochemical recurrence; EMT, epithelial‑mesenchymal transition; PTEN, 
phosphatase and tensin homolog; PD‑L1, programmed death‑1 ligand 1.
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Increases in sterile alpha motif domain containing 5 
(SAMD5) mRNA expression display biomarker values in 
predicting BCR (Table II) (107). SAMD5 facilitates small 
cell lung cancer cell proliferation (108), is upregulated in 
cholangiocarcinoma (109) and is associated with the response 
to chemotherapy in rectal cancer (110). SAMD5 facilitates 
the Eph receptor tyrosine kinase signaling (111), suggesting 
a mechanism mediating SAMD5 oncogenic potential and its 
association with BCR.

Consistent with SMAD4 as a tumor suppressor in the inhi-
bition of PTEN inactivation-induced PC progression (112), a 
reduction in SMAD4 mRNA expression enhances the risk of 
BCR (113).

The downregulation of pleomorphic adenoma gene like-2 
(PLAGL2) mRNA expression is a risk factor of BCR (114). 
PLAGL2 is a transcription factor that has been shown to 
activate Wnt/β‑catenin signaling through unidentified mecha-
nisms in colorectal cancer (115) and gliomas (116). PLAGL2 
also contributes to hematopoietic tumorigenesis (117,118); 
however, its involvement in PC has not yet been fully inves-
tigated.

In an analysis of 7,826 prospectively collected RP tissues 
and 1,567 retrospectively obtained samples, while PD‑L1 did 
not exhibit prognostic values, an increase in PD‑L2 expres-
sion was associated with a decrease in BCR-free survival 
(Table II), distant‑free metastasis survival (HR, 1.25; 95% CI, 
1.05‑1.49; P=0.01) and PC‑specific survival (HR, 1.45; 95% CI, 
1.13‑1.86; P=0.003) (119). These observations are in line with 
the actions of the immune checkpoint in the downregulation of 
immunoresponses to cancers. Nonetheless, these associations 
are not particularly robust.

RNase khas been shown to be downregulated in PC 
(n=111) in comparison to benign prostatic hyperplasia (BPH); 
the downregulation was associated with BCR (Table II) (120). 
The contributions of RNase k to tumorigenesis in general 
remain unclear (121).

An upregulation of glioma tumor suppressor candidate 
region gene 1 (GLTSCR1) in PC vs. normal prostate tissues has 
been reported; the upregulation is a risk factor of BCR (122). 
Evidence suggests an oncogenic role of GLTSCR1 in oligo-
dendrogliomas (123). Although the functionality of GLTSCR1 
in tumorigenesis remains unclear, recent evidence indicates its 
role in chromatin remodeling (124), implying GLTSCR1 may 
contribute to BCR progression via epigenetic regulations.

Butyrylcholinesterase (BChE) was recently reported 
to display a biphasic alteration in PCs in both the MSKCC 
(n=140) and TCGA (n=245) databases; elevations in BChE 
mRNA expression have been shown to be associated with 
BCR in both cohorts (P=0.008 for MSKCC and P=0.04 for 
TCGA) (Table II) (125). BChE has been shown to hydrolyze 
butyrylcholine (126), succinylcholine (127) and ghrelin (the 
hunger hormone) (128‑131), and thus may play a role in PC 
metabolism.

Collectively, the above individual mRNAs stratify BCR 
risk through different pathways, including the Wnt pathway, 
growth factor receptor-mediated cell proliferation, androgen 
signaling, cytokines, immune checkpoints, RNA metabolism 
and others (Table II). While this is in accordance with the 
complex nature of BCR progression, it also reveals the chal-
lenge of using individual mRNA to effectively predict BCR 
risk and the calls for developing multigene sets or signatures 
for assessing BCR development.

Multigene sets of mRNAs in assessing BCR risk. To enhance 
the accuracy of predicting BCR risk, there have been 
numerous efforts made towards the construction of multigene 
panels; the rapid accumulation of cancer genomic data owing 
to technology advances in DNA sequencing [next generation 
sequencing (NGS)] greatly facilitates this exploration. Among 
these multigene panels, only three are commercially avail-
able to assist patient management. The 22‑gene Decipher is 
intended to predict metastasis following RP (132‑134); both 

Table II. Associations of individual mRNAs with BCR defined by Cox analysis.

mRNAs Patients (n) Pathways HR (95% CI) P‑value (Refs.)

SFRP4a 1,404+536 Wnt 1.3-2.18c 0.022-1.88e-7c (79,80)
AXIN2b 951 Wnt  0.13 (0.02-0.67)d 0.02 (86)
PDGFR‑βa 535 Proliferation 1.58 (1.18-2.13) 0.002 (87)
MT1Eb 108 Metal homeostasis NA <0.001 (89)
KLK15a 150 Serine protease 3.44 (1.35-8.75) 0.01 (100)
NRP1a 130 Androgen signaling NA 0.0002 (102)
SAMD5a 345 NA 2.18 (1.20-3.97) 0.011 (107)
SMAD4b 140 TGF-β 4.61 (2.15-9.89) <0.001 (113)
PLAGL2a 104 Wnt   3.97 (1.21-13.00) 0.023 (114)
PD‑L2a 9,393 Immune checkpoint 1.17 (1.03-1.33) 0.01 (119)
RNase kb 111 RNA metabolism 0.85 (0.77-0.91) 0.002 (120)
GLTSCR1a 499 Chromatin remodeling 2.28 (1.28-4.05) 0.005 (122)
BChEa 385 Hydrolyzing ghrelin and bioactive esters NA 0.008‑0.04c (125)

a and b, increases and decreases in expression are associated with BCR, respectively; crange of HR or p‑values; dodds ratio (97.5% CI). 
HR, hazard ratio; NA, not available; BCR, biochemical recurrence.
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the 17‑gene Oncotype DX [Genomic Prostate Score (GPS)] 
and the 31‑gene Prolaris [Cell Cycle Progression (CCP)] 
stratify patients at risk of PC recurrence at the time of diag-
nosis (135‑139) and following RP (140,141). Herein, we briefly 
review Oncotype DX GPS and CCP and discuss other multi-
gene panels regarding their potentials and limitations.

Oncotype DX prostate cancer assay (GPS) and prolaris 
(CCP). Oncotype DX Prostate Cancer Assay was developed by 
Genomic Health Inc. as an assay in the Oncotype DX assays for 
multiple cancer types. Oncotype DX GPS is a RT‑PCR assay on 
12 cancer-related and 5 reference genes (ARF1, ATP5E, CLTC, 
GSP1 and PGK1) using biopsy tissues (135); the 12 genes 
function in 4 aspects of PC tumorigenesis, including a stromal 
process (BGN, COL1A1 and SFRP4), cellular organization 
pathway (FLNC, GSN, TPM2 and GSTM2), androgen signaling 
(FAM13C, KLK2, AZGP1 and SRD5A2) and cell proliferation 
regulation (TPX2) (135). They were selected from 732 candidate 
genes, which were narrowed down from an initial set of 1,082 
nominating candidates, through a variety of processes involving 
multiple data-mining models (136). PGS in the scale of 0-100 
can be calculated based on the normalized expressions of 12 
cancer-related genes with increased scores indicating eleva-
tions in BCR risk (136). In patients with low-risk (GS 6) or 
intermediate‑risk (GS 3+4) PC, GPS predicts BCR (n=382; HR, 
2.73; 95% CI, 1.84‑3.96; P<0.001) (140). In a recent validation 
study, GPS classified PCs at risk of BCR (n=259; HR, 2.5; 95% 
CI, 1.28‑3.03; P=0.002) (142). Furthermore, in a late multiple 
institutional investigation involving 1,200 males with very 
low-, low- and intermediate-risk PCs, GPS predicted adverse 
pathological features of PC (143). Although GPS has been inde-
pendently validated for the better management of patients with 
low‑ and intermediate‑risk PC, the system could be improved. 
For instance, GPS does not significantly predict BCR in patients 
who are <56 years old (n=100) (140); the cellular organization 
group score, 3 of 4 component genes of this group, and the prolif-
eration group score do not individually predict BCR risk (140), 
which reduces the biomarker value of GPS. Although the 12 
cancer-related genes were selected via a thorough and complex 
process from 732 candidates (136), it is of concern whether too 
many manipulations may not produce the best model.

Genes regulating CCP possess prognostic potential in 
assessing cancer progression (144). Of note, a panel of 31 CCP 
genes has been selected from 126 cell cycle progression genes, 
which together with 15 housekeeping genes form the Prolaris 
(CCP) multigene panel (Myriad Genetics Int.) (137). Prolaris is 
a RT‑PCR based assay on formalin‑fixed paraffin‑embedded 
tumor tissues and provides risk assessment of BCR progres-
sion (137). The risk stratification has been validated 
(Table III) (141,145-147). Evidence also indicates its utilization 
in the risk stratification of PC fatality (n=349; HR, 2.02; 95% CI, 
1.62‑2.53; P<1e‑9) (148). However, variations in the effective-
ness of BCR risk stratification of some studies were apparent; 
for instance, in the study involving 236 patients (Table III), 
HR was modest and the lower HR in the 95% CI range was 
marginal (Table III). Additionally, it remains uncertain whether 
the Prolaris CCP test will have an impact on PC death and is 
unlikely to facilitate treatment decision; the cost of test is also 
high (149). Nonetheless, both Oncotype DX GPS and Prolaris 
CCP are commercially available to assess BCR risk.

Other multigene signatures with biomarker values in BCR 
risk assessment. Even with the construction of Oncotype DX 
GPS and Prolaris CCP multigene panels, there is clearly a need 
to improve the assessment of BCR. To fulfill this need, there 
are numerous additional multigene sets reported (Table IV), 
including a 6‑differentially expressed gene (DEG) panel (150), 
an 8-gene panel with its risk scores predicting BCR at 
P=5e‑7 (151), and a 10‑gene panel HDDA10 (152) (Table IV).

Hypoxia is well known to promote PC progression 
via multiple pathways, including inflammation and notch 
signaling (153,154). To examine the prognostic values of 
hypoxia‑induced events in PC progression, Yang et al derived a 
28‑gene hypoxia‑related prognostic signature from 848 differ-
entially expressed genes that were identified in human PC cell 
lines cultured under hypoxic and normoxic conditions (155). 
The signature modestly predicts BCR in RP patients receiving 
post‑operative radiotherapy (155) (Table IV).

Instead of focusing on a particular pathway, a 15‑gene 
signature has recently been formulated from the MUC1 
network (SigMuc1NW) (156); the signature was validated 
in the MSKCC dataset. SigMuc1NW stratifies the BCR risk 
in the MSKCC dataset at P-value 3.11e-15 (156). MUC1 
is the most intensively investigated tumor‑associated 
antigen (157-159) and is an attractive target for developing 
immunotherapies for multiple tumor types (160). MUC1 
upregulation is weakly associated with BCR occurrence 
and PC mortality (161,162). The biomarker potential of 
MUC1 alterations in the classification of BCR risk was 
significantly enhanced in a 9‑gene genomic signature (163). 
The 15-gene SigMuc1NW was derived using the 9-gene 
signature‑associated DEGs (156). SigMuc1NW is an inde-
pendent risk factor of BCR (HR, 2.44; 95% CI, 1.53‑3.87; 
P=1.62e-4) after adjusting for age at diagnosis, GS, surgical 
margin and tumor stage (156). Among its 15 component 
genes, 8 (SLCO2A1, SUPV3L1, TATDN2, MGAT4B, 
VAV2, SLC25A33, ASNS and OIP5) individually predict 
BCR after adjusting the clinical features (156). Another 
attractive feature of SigMuc1NW lies in its novelty; among 
the 15 component genes, 11 have not been reported in PC 
particularly and/or tumorigenesis in general (156). 

The inclusion of Opa interacting protein 5 (OIP5) in 
SigMuc1NW is intriguing; it is a cancer‑testis antigen and thus 
a tumor-associated antigen (TAA) detected in other cancer 
types (164). OIP5 is likely a novel PC‑associated TAA. More 
appealingly, recent developments revealed an essential role of 
OIP5 in chromosome segregation during cell cycle progres-
sion. OIP5 is also known as Miss18β, that plays a critical 
role in centromere formation during the G1 phase (165,166). 
In accordance with this knowledge, OIP5 is an independent 
risk factor for BCR (HR, 1.94; 95% CI, 1.20‑3.12; P=0.00638) 
after adjusting for age at diagnosis, GS, surgical margin and 
tumor stage (156); OIP5 promotes bladder cancer metastasis 
and chemoresistance (167), glioblastoma metastasis (168), it 
displays a biomarker potential in clear cell renal cell carci-
noma (169), and it is upregulated in colorectal and breast 
cancer (170,171). 

In line with the concept of the involvement of multiple path-
ways in BCR progression and the robustness of SigMuc1NW in 
the classification of BCR risk (Table IV) (156), our recent anal-
ysis revealed the signature's 15 component genes (Table IV) 
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being grouped into 5 clusters using Kendall, Spearman's and 
Pearson correlation (Fig. 3). Collectively, evidence supports 
SigMuc1NW as a novel and robust multigene signature. 
Nonetheless, its biomarker value has not been independently 
tested.

Evaluation of BCR risk using lncRNAs. While the mecha-
nisms underlying the lncRNA‑mediated regulation of gene 
expression remain incompletely understood, they are likely 
regulated through complex actions at the genome (chromatin 
remodeling), mRNA and protein levels (172). Of these, its 
function as miRNA sponges is emerging as a prevalent mecha-
nism (172,173). In this regard, this section reviews the current 
evidence for lncRNAs as classifiers of BCR risk. For a compre-
hensive review, we first searched PubMed for ‘lncRNA’ AND 

‘prostate cancer’ AND ‘biochemical recurrence’, and retrieved 
15 articles. With exclusion of one non-accessible publication 
and three articles in which the association of lncRNAs with 
BCR was not clear, 11 manuscripts are included (179) and 
Tables V and VI.

A set of PC‑associated lncRNAs (n=54) have been recently 
reviewed (174); they are involved in PC initiation and progres-
sion. A well‑known lncRNA in PC is PCA3. It is robustly 
upregulated in PC compared to prostate tissues (175) and 
is the second biomarker used in the clinic for PC detection, 
particularly in decision making for repeat biopsies (176‑178). 
Several lncRNAs have been demonstrated to predict the risk of 
BCR either individually or in a panel; this has been reviewed 
in 2017 by Ma et al (179) and Wu et al (180). In this section, we 
provide an update of the topic with current research. 

Table III. Prolaris predicts BCR risk.

Cohort (n) HR (95% CI), P-valuea HR (95% CI), P-valueb (Refs.)

366  1.89 (1.54-2.31), 5.6e-9 1.77 (1.4-2.22), 4.3e-6 (137)
413 2.1 (1.6-2.9), <0.001  2.0 (1.4-2.8), <0.001 (141)
141   2.55 (1.43-4.55), 0.0017  2.11 (1.05-4.25), 0.034 (145)
582    1.6 (1.35-1.90), 2.4e-7   1.47 (1.23-1.76), 4.7e-5 (146)
236 1.46 (1.06-2.10), 0.002  1.41 (1.02-1.96), 0.039 (147)

aUnivariate analysis; bmultivariate analysis. HR, hazard ratio; BCR, biochemical recurrence.

Table IV. Multigene sets with the potential to assess BCR risk.

Gene set Components Cohort (n) HR (95% CI), P-value (Refs.)

6 DEG SMIM22, NINL, NRG2, 358 3.815 (2.1‑6.932), P<0.001 (150)
 TOP2A, REPS2, TPCN2
8 genes CHST1, ACOX1, CTBS,  308 NA, P=5e‑7 (151)
 CNPNAT1, NAGLU, LPIN3, 
 ASRGL1, HMGCS2
HDDA10 FRZB, LEF1, SDCBP, WNT2, 758 2.08 (1.2‑3.6), P=0.008 (152)
 ING3, ANK3, MEIS2, ANXA4, 
 PLA2G7, CHD5
28‑Gene ADAMTS4, ATF3, BHLHE40,  130 2.81 (1.33‑6.0), P=0.007 (155)
hypoxia‑related BTG2, CSRNP1, CYR61, 
prognostic signature EGR1, EGR2, EGR3, FOSB, 
 FOSL2, GEM, JUNB, KLF10, 
 KLF6, LIF, MCL1, NR4A3, 
 PPP1R15A, RHOB, SELE, SIK1, 
 SLC2A14, SLC2A3, SOCS3, 
 THBS1, TIPARP, ZFP36
SigMuc1NW SLCO2A1, CGNL1, SUPV3L1,  490 4.16 (2.74‑6.36), P=5.54e‑11 (156)
 TATDN2, MGAT4B, VAV2, 
 SLC25A33, MCCC1, ASNS, 
 CASKIN1, DNMT3B, AURKA, 
 OIP5, CTHRC1, GOLGA7B

HR, hazard ratio; BCR, biochemical recurrence.
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Prediction of BCR risk with individual lncRNAs. Elevations 
in the levels of lncRNA LOC400891 have been observed in 
tumors vs. prostate tissue (181). The upregulation increases 
BCR risk in patients (Table V); its overexpression and knock-
down accordingly enhance and inhibit PC cell proliferation 
in vitro. There is evidence to indicate a role of LOC400891 
in the activation of the PI3K pathway (181). Nonetheless, the 
involvement of LOC400891 in PC and other cancer types has 
yet to be further investigated.

Similar observations have also been reported in 
lncRNA‑ATB (Table V) (182). lncRNA‑ATB is upregu-
lated in TGF-β-induced EMT (183). The upregulation of 
lncRNA-ATB and its oncogenic activities have been reported 
in multiple cancer types, including hepatocellular carcinoma 
(HCC), gastric cancer, colorectal cancer (CRC), renal cellular 
carcinoma, breast cancer and others (184). Collectively, the 
association of lncRNA-ATB with BCR warrants further inves-
tigation, which should be conducted in context of the pathways 
(such as TGF-β) affected by lncRNA‑ATB in the course of 
BCR development.

Increases in the levels of lncRNA LINC01296 are 
associated with BCR (Table V) (185). LINC01296 was first 
reported as a biomarker of CRC (186); its oncogenic activities 
and association with cancer progression were subsequently 
observed in bladder cancer (187,188), gastric cancer (189), 
cholangiocarcinoma (190), breast cancer (191), non-small cell 
lung cancer (192), and others (193). LINC01296 facilitates 
tumorigenesis in part by sponging miR122‑5P in HCC (194) 
and miR-5059 in cholangiocarcinoma, leading to MYCN 
activation (190).

Second chromosome locus associated with prostate-1 
(SChLAP1; LINC00913) is upregulated in PC and promotes 
tumor invasion and metastasis (195). In a multicentre 

study involving 937 patients, SChLAP1 overexpression 
was associated with lethal PC (196). Of note, elevations in 
SChLAP1 expressoin have been shown to predict PSA relapse 
(Table V) (197), an event which has also been observed by 
others (179), and PC metastasis (198). While SChLAP1 has been 
reported to prevent the association of the SWI/SNF complex 
with chromatin and thereby inhibiting the complex‑associated 
tumor suppression in PC (195), late development revealed a 
SWI/SNF-independent action of SChLAP1 in PC tumorigen-
esis (199); the mechanisms through which SChLAP1 affects 
PC require further investigation.

The lncRNA urothelial carcinoma-associated 1 (UCA1) 
marginally predicts the risk of BCR (200). The prediction 
is consistent with the associations of UCA1 with reduc-
tions in the 5‑year disease‑free survival in PC (n=130; HR, 
2.88; 95% CI, 1.36‑6.21; P=0.007) (200) and in overall 
survival (n=40, P<0.001) (201). Additionally, the upregula-
tion of UCA1 has also been shown to be a risk factor for 
the progression of ovarian cancer (202), gastric cancer (203), 
melanoma (204), pancreatic cancer (205), glioma (206) and 
others (207). Mechanistically, UCA1 facilitates PC at least 
in part through upregulations of ATF2 and CXCR4 by 
sponging miR‑204 (208,209). Intriguingly, UCA1 sequesters 
miR-204, leading to EMT in glioma, TGF-β signaling in oral 
cancer and Sox4 actions in esophageal cancer (207); UCA1 
also sponges other miRNAs in promoting tumorigenesis in 
other cancer types (207). In this regard, the association of 
UCA1 with BCR could be strengthened by consideration of 
UCA1-regulated oncogenic factors.

The downregulation of the lncRNA prostate cancer-asso-
ciated transcript 7 (PCAT7) is an independent factor 
predicting BCR (Table V) (210), consistent with its reduc-
tions following advance in GS and its downregulations 
independently predicting metastasis (210). Similar clinical 
associations were also confirmed by a multicenter study, in 
which PCAT14 was found to be an independent risk factor of 
metastasis (n=910; HR, 0.56, 95% CI, 0.41‑0.71; P=1.09e‑6), 
prostate cancer‑specific survival (HR, 0.53; 95% CI. 0.39‑0.72; 
P=6.54e‑5) and overall survival (HR, 0.67; 95% CI, 0.54‑0.83; 
P=0.00019) (211). Apart from these two investigations, the 
involvement of PCAT14 in PC and other cancer types has not 
yet been thoroughly examined; the potential mechanisms of 
PCAT14 downregulation and its impact on PC progression 
have yet to be reported. Nonetheless, it appears that PCAT14 
affects tumorigenesis in a complex manner; in HCC, PCAT14 
is upregulated and promotes HCC cell proliferation and inva-
sion (212). 

Stratification of BCR risk with multi‑lncRNAs (lncRNA 
panels). Multi‑lncRNA panels have been constructed to stratify 
the risk of BCR, including a 4-lncRNA (213), 5-lncRNA (214), 
7‑lncRNA (215) and 8‑lncRNA panels (Table VI) (216). All 
these studies were bioinformatics analyses of the TCGA 
dataset using different modules and sub‑datasets. Differentially 
expressed lncRNAs (DE‑lncRNAs) in the setting of PCs vs. 
prostate tissues were derived, followed by selection for their 
associations with BCR using either univariate Cox anal-
ysis (213,215,216) or the LASSO (least absolute shrinkage and 
selection operator) Cox regression (214); DE‑lncRNAs with 
significant associations with BCR constituted the individual 
lncRNA panels (Table VI). Risk scores of these panels were 

Figure 3. Hierarchical clustering of SigMuc1NW. The RNA sequencing data 
of the 15 component genes of SigMuc1NW (Table IV) were retrieved (156) 
and clustered using Kendall, Spearman's and Pearson's correlation with 
similar results being obtained. The results based on the Spearman's correla-
tion are shown.
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used to stratify the risk of BCR; the scores were calculated 
based on the following formula: Risk scores=sum (coefi x 
DE‑lncRNA i), where DE‑lncRNA i is the ith DE‑lncRNA 

expression (i=1, … n) and coefi is the Cox coefficient of 
DE‑lncRNAi (213‑216).

These lncRNA panels (Table VI) are novel. In the 
4‑lncRNA panel, only LINC01123 was reported in a 
prognostic lncRNA panel of head and neck squamous cell 
carcinoma (217). The lncRNA colorectal neoplasial differen-
tially expressed (CRNDE) of the 5‑lncRNA panel (Table VI) 
has been relatively well studied (n=72 in PubMed under 
‘CRNDE’ AND ‘Cancer’). CRNDE is upregulated in CRC, 

glioma, HCC, lung cancer, ovarian cancer, breast cancer and 
others; it may play a role in cell proliferation, migration, inva-
sion and apoptosis (218). Apart from CRNDE, other lncRNAs 
of the 5‑lncRNA panel have not yet been reported, at least to 
the best of our knowledge.

In the 7‑lncRNA panel (Table VI), small nucleolar 
RNA host gene 1 (SNHG1) was reported to upregulate 
CDK7 by sponging miR‑199‑3p, thereby enhancing PC 
cell proliferation (219); its involvement in cancer has been 
widely investigated (n=64 in PubMed under ‘SNHG1’ AND 
‘Cancer’). In addition to PC, SNHG1 is upregulated in CRC, 
liver cancer, lung cancer, gastric cancer and others; the 

Table V. Associations of lncRNAs with BCR.

lncRNAs Cohort (n) HR (95% CI) P-value (Refs.)

LOC400891 81 2.12 (1.23-3.64)a 0.007 (181)
lncRNA-ATB 57 1.75 (2.31-14.25)a <0.001 (182)
LINC01296 70 6.58 (1.95-22.22)b 0.002 (185)
SChLAP1 157 2.34 (1.29-4.27)b 0.005 (197)
UCA1 209 2.73 (0.97-7.63)b 0.056 (200)
PCAT14 585 0.64 (0.49-0.84)a 0.00126 (210)

aMultivariate Cox analysis; bunivariate Cox analysis. HR, hazard ratio; BCR, biochemical recurrence.

Table VI. lncRNA panels predict BCR risk.

lncRNA panels Components Cohort (n) HR (95% CI), P-value (Refs.)

4-lncRNA RP11-108P20.4 291 3.33 (1.59-6.97)a, P=0.01 (213)
 RP11-757G1.6
 RP11-347I19.8  3.13 (1.45-6.78)b, P=0.004
 LINC01123  
5-lncRNA RP11-783K16.13 457 0.44 (0.27-0.72)a,c, P<0.05 (214)
 RP11-727F15.11
 PRKAG2-AS1 343c 0.22 (0.09-0.56)a,d, P<0.05
 AC013460.1 141d

 CRNDE 
7-lncRNA SNHG1 457 0.32 (0.2-0.52), P<0.001 (215)
 CRNDE
 CTC-296K1.4
 UBNX10‑AS1
 PART1
 CTC-296K1.3
 PGM5-AS1
8-lncRNA PCAT7 307 2.19 (1.67-2.88)a,c, P<0.0001 (216)
 SLC12A9-AS1
 RGMB-AS1 184d 2.19 (1.49-3.22)b,c, P<0.0001
 PCAT1 123d

 AP002992.1 
 AC025265.1  1.37 (1.09-1.71)a,d, P=0.006
 LINC00593  1.67 (1.06-2.63)b,d, P=0.027
 AC005632.2 

aUnivariate Cox analysis; bmultivariate Cox analysis; cdiscovery set; dvalidation set. HR, hazard ratio; BCR, biochemical recurrence.
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upregulation correlated with adverse features of cancer (220). 
For PART1, PubMed has listed 16 articles related to ‘PART1’ 
AND ‘Cancer’. The lncRNA prostate androgen‑regulated tran-
script 1 (PART1) facilitates the progression of prostate cancer 
through the Toll‑like receptor pathway (221) and non‑small 
cell lung cancer via the JAK‑STAT pathway (222); it displays 
oncogenic activities in bladder cancer (223). The lncRNA 
PGM5‑AS1 has been limitedly studied (n=4 in PubMed under 
‘PGM5‑AS1’). Evidence suggests PGM5‑AS1 suppresses 
esophageal squamous cell carcinoma by facilitating PTEN 
actions though sponging miR-466 (224). Apart from SNHG1, 
CRNDE, PART1 and PGM5‑AS1, the others in the 7‑lncRNA 
panel (Table VI) have not yet been reported, at least to the best 
of our knowledge

In the 8‑lncRNA panel (Table VI), the lncRNA PCAT7 
has been investigated in 3 articles based on PubMed; evidence 
suggests that it enhances non-small cell lung cancer progression 
by inhibiting miR‑134‑5p (225). For the lncRNA PCAT1, there 
are 31 publications listed under PubMed that are related with 
‘PCAT1’ and ‘Cancer’, in which 20 articles are PC‑related. In 
PC, PCAT1 is a disease risk factor (226) and enhances CRPC 
by activating the AKT and NF‑κB signaling (227). PCAT1 
was mapped to 8q24, a well-studied cancer (including PC) 
risk region (228). In line with this notion, PCAT1 promotes 
esophageal squamous cell carcinoma through sponging 
miR-326 (229), is a risk factor of CRC (230), and is associ-
ated with a poor prognosis in endometrial carcinoma (231). 
Apart from PCAT7, PGM5-AS1 and PCAT1, the others in the 
8‑lncRNA panel have not yet been reported, at least to the best 
of our knowledge. 

Evaluation of BCR risk using lncRNAs: Perspectives 
and limitations. Since the discovery of the lncRNA H19 in 
1991 (232) and Xist in 1992 (233), a large number and complex 
sets of lncRNAs have been identified; the discovery rate has 
been significantly accelerated since 2013 (174). Although the 
field of lncRNA is new, it is clear that lncRNA affects tumori-
genesis via complex mechanisms at the genome, RNA and 
protein levels (172,174). With respect to gene expression, the 
actions of lncRNA are likely complex. For instance, a preva-
lent mechanism is to associate with miRNAs, which prevent 
miRNAs from inhibiting mRNAs (172,173). miRNAs are 
known to affect the expression of a large number of genes. Of 
note, miR-130b target genes are approaching 600 (61). It will 
thus be important to illustrate the major mechanisms, pathways 
and factors through which lncRNAs predict the risk of BCR; 
this will facilitate the formulation of lncRNA signatures with 
enhanced accuracy to stratify the risk of BCR. As an emerging 
and rapidly developing field, the biology of lncRNAs and the 
mechanisms mediating their biological actions have not been 
thoroughly investigated. In this regard, their potential as clas-
sifiers of BCR risk has yet to be fully recognized.

5. Management of patients with biochemical recurrence

PSA relapse offers the early identification of patients with 
failure following initial curative therapies with RP and RT. 
While BCR precedes clinical disease recurrence, the manage-
ment of males with PSA relapse needs to consider multiple 
factors including tumor recurrence (234,235). The nature of 
BCR is heterogeneous with local and distant recurrence (236). 

Additionally, not all patients with BCR will progress to 
lethal disease (13). In addition to these variations are the 
improvements in risk stratification of BCR and metastasis as 
well as advances in salvage treatment. The heterogeneity of 
BCR along with the aforementioned advances complicates 
the management of patients with BCR. This topic has been 
recently discussed by several recent reviews (236‑238). We 
also highlight the recent advances and suggest improvement 
on management of these patients in the context of BCR risk 
stratification using RNA‑based biomarkers.

Detection of clinical recurrence following BCR. Recent devel-
opments have improved the diagnosis of clinical recurrence 
following BCR using the prostate‑specific membrane antigen 
(PSMA)‑based positron emission tomography (PET) imaging 
in comparison to conventional imaging modalities: Computed 
tomography (CT), magnetic resonance imaging (MRI) and 
bone scan (239,240). PMSA (glutamate carboxypeptidase II) 
is an enzyme encoded by the folate hydrolase 1 (FOLH1) 
gene (https://en.wikipedia.org/wiki/Glutamate_carboxypep-
tidase_II) (241). It is mainly expressed in the prostate with 
weaker expressions detected in the brain, salivary gland 
and small intestine (242). PSMA expression is markedly 
upregulated in PC and the level of overexpression is associated 
with PC progression, including castration-resistant prostate 
adenocarcinoma (242-245). Nonetheless, its expression is 
suppressed in neuroendocrine prostate cancer (NEPC) (246), 
which will produce false negativities. False positivity is also 
a concern (246). Nonetheless, PSMA-PET has higher sensi-
tivities in detecting recurrent sites at BCR in comparison to 
other imaging modalities (247). In a recent single-arm clinical 
trial on patients with BCR (n=635) to assess the accuracy of 
68Ga-PSMA-11 PET in detecting recurrent PCs, the overall 
detection rate was 75% (475/635) and the PET-positive rates 
in different PSA groups were 38% for <0.5 ng/ml, 57% for 
0.5-<1.0 ng/ml, 84% for 1.0-<2.0 ng/ml, 86% for 2.0-<5.0 ng/ml, 
and 97% for ≥5.0 ng/ml respectively (248). In a recent diag-
nostic study of 100 patients with BCR using 18F-PSMA-1007 
PET/CT, the PET-positive rate was 86, 89, 100 and 100% for 
patients with PSA levels ≤0.5, 0.51‑1.0, 1.0‑2.0, and ≥2.0 ng/ml, 
respectively (249).

Clinical recurrence in the setting of BCR can also be at 
distant sites or metastasis. The diagnosis of metastasis can be 
facilitated using the Decipher test (GenomeDx Bioscience), 
a 22-gene genomic classifier (GC). This is an RNA-based 
gene panel consisting of coding and non-coding transcripts 
that function in multiple pathways including cell prolifera-
tion, adhesion, immune response, cell cycle progression and 
others (132). The Decipher GC predicts metastasis in patients 
following RP (132‑134). In a recent multicenter study on 561 
males with adverse pathological features, GC independently 
stratified the risk of prostate cancer‑specific mortality 
(PCSM) following RP (250). The prediction was improved 
by combining GS with CAPRA‑S (251) a classifier of BCR 
risk following PR (21,22). In this regard, it would be expected 
that combination of GS with those RNA-based biomarkers 
discussed herein may strengthen the accuracy in predicting 
PCSM in the setting of RP; this will facilitate management of 
patients with BCR with respect to decision making on salvage 
treatment selection.
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Other biomarkers could also be considered. RP produces 
excellent outcomes in patients with localized low- and inter-
mediate-risk PCs. However, the biochemical relapse rates for 
high‑risk localized disease [PSA>20 ng/ml, GS>7, or cT2c (3)] 
can increase to 50-80% (252). Males with high-risk tumors 
can be managed with adjuvant therapy following RP; in a 
small group of patients (n=127) treated with adjuvant hormone 
therapy, high level of PDL1 expression is an independent risk 
factor of BCR (253). The PDL1 expression status could facili-
tate the diagnosis of BCR following RP.

Salvage therapies following BCR. Treatment selection for 
patients with BCR depends on the site of recurrence and the 
extent of progression; this information will be derived using 
imaging and other assessment including biomarker-based 
(such as GS) risk evaluation and PSA changes (236). Life 
expectancy, quality of life (QOL) and the time span of 
approximately 8 years for metastatic progression from 
BCR (7,13) are among the factors that affect treatment deci-
sion making (237,254).

Salvage radiotherapy (SRT) to the prostate bed is 
commonly used in patients with BCR following RP; it controls 
biochemical failure in approximately 50% cases, reduces 
distant metastasis and improves PCSM (236,255,256). 
The PSA status can guide local salvage treatment. 
EAU‑ESTRO‑SIOG recommends surveillance and delayed 
SRT in males exhibiting an increase in PSA with a favor-
able prognostic setting [≤pT3a; time to BCR, >3 years; PSA 
doubling time (DT), >12 months; and GS ≤7], and beginning 
SRT at PSA <0.5 ng/ml (7). On the other hand, the National 
Comprehensive Cancer Network (NCCN) recommends the 
initiation of SRT with confirmed increasing PSA levels, and 
many favor SRT at PSA 0.2 ng/ml (238). For patients with BCR 
following RT, salvage RP is an option with confirmed local 
recurrence according to EAU-ESTRO-SIOG guidelines (7). 
Similarly, the prostate cancer guidelines from the European 
Association of Nuclear Medicine (EAU-EANM)-European 
Society of Urogenital Radiology (ESTRO‑ESUR)‑SIOG 
classify males with BCR into a low‑risk [PSA‑DT >1 year 
and pathological GS (pGS) <8 or International Society of 
Urological Pathology (ISUP) grade <4] and high‑risk group 
(PSA‑DT ≤1 year, pGS 8‑10 or ISUP grade 4‑5) for biological 
recurrence following RP or a low-risk [IBF (interval from 
primary therapy to biochemical failure) >18 months and 
biopsy GC (bGS) <8 or ISUP grade <4] and high‑risk (IBF 
≤18 months and ) groups (pGS 8‑10 or ISUP grade 4‑5) (254). 
The stratification was recently validated based on the 5‑year 
risk of developing metastasis and PCSM in a large cohort of 
patients with BCR (n=1,040) (257). The guidelines call for 
the surveillance for males with BCR in the low-risk group 
and salvage ADT should not be given to these patients (254). 
It appears that SRT plus hormone therapy (bicalutamide) 
improved the outcome (258,259). The risk of metastasis 
following SRT in patients with BCR can be stratified using 
Decipher GC (260). It is thus possible to assign patients 
with BCR following RP with combination therapy of SRT 
and ADT based on GC scores. Following this logic, whether 
incorporating BCR risk stratification with GS will enhance 
the decision making warrants further investigations in the 
future.

6. Perspectives

BCR precedes clinical disease recurrence and is significantly 
associated with increases in metastasis development and 
CRPC (13,14,261), conditions to which our knowledge and 
ability to intervene remain poor. While more than half of 
patients with high-risk PCs will experience BCR following 
RP (252), the curative therapy yields good results in males 
with low‑ and intermediate‑risk tumors. Accurately predicting 
the risk of BCR is thus highly relevant in the management of 
these patients. In view of the metastasis progression following 
BCR, the stratification of the risk of BCR also contributes 
to the management of males with PSA relapse (please see 
section above entitled ‘Salvage therapies following BCR’). 
Collectively, the effective evaluation of the risk of BCR 
is an essential aspect of patient management. With this 
recognition, a major research focus has been searching for 
biomarkers to robustly assess BCR risk, which is evident by 
2,502 articles listed under ‘prostate cancer’ AND ‘biomarker’ 
AND ‘biochemical recurrence’ by PubMed. However, none 
of these had succeeded in progressing to routine clinical 
application (262); this clearly outlines the challenges in the 
identification of effective biomarkers.

While individual biomarkers, regardless of whether they 
are clinical feature‑, DNA‑, RNA‑, and protein‑based, may 
display a significant association with BCR, it is unlikely that 
they can effectively stratify BCR risk individually. BCR is 
regulated by complex mechanisms, which is likely an attribute 
to the lack of overlapping genes between two commercially 
available multigene panels, Oncotype DX GPS and Prolaris, 
despite both assessing the risk of BCR (135,137). It is thus 
conceivable that multigene panels will certainly enhance the 
effectiveness of BCR biomarkers. In this regard, it will be 
intriguing to systemically analyze Oncotype DX, Prolaris 
and other RNA-based biomarkers along with clinical 
feature‑based (PSA, GS, stage, surgical margin status, lymph 
node status and others) BCR risk classifiers (CAPRA-S, 
Walz nomogram, and others) for the stratification of the 
risk of BCR. This may produce a much more robust system, 
covering essential pathways leading to BCR, in predicting 
the risk of BCR, which will greatly improve patient manage-
ment with prostate cancer.

Another avenue worthy of exploration for the improvement 
of the stratification of the risk of BCR is the process of DNA 
damage response (DDR). Genomic instability is a hallmark 
of cancer and the driving force of cancer progression (263); 
genomic stability is maintained through DDR by coordinating 
checkpoint activation and DNA lesion repairs (264‑266). It is 
surprising that factors in DDR regulation have not been inten-
sively investigated for their biomarker potential. 

The same situation applies to stromal factors. While a 
variety of tumor properties have been examined for prognostic 
purposes, the stromal contributions and the communica-
tions between he stroma and tumor have not been actively 
determined for biomarker purposes. A potential mechanism 
causing stromal alterations is through PC-associated meta-
bolic reprogramming, which results in the accumulation of 
metabolic intermediates (267); these materials affect gene 
expression via epigenetic alterations (268). Metabolic repro-
gramming is a well-established mechanism supporting not 
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only tumorigenesis, but also cancer progression (36,267,268). 
In this regard, PC-associated metabolic alterations will have 
a prognostic potential which has been recently reviewed by 
Lucarelli et al (267). It is of interest that PCs can be grouped 
into two metabolic profiles: Phopho-AKThigh/MYClow or 
phopho-AKTlow/MYChigh with the former and latter affecting 
the glucose-related processes and lipid metabolism, 
respectively (269). Nonetheless, the prognostic potential of 
PC-associated metabolic alterations remains complex. For 
instance, the AKT- and MYC-related metabolic signatures 
are not associated with GS and pathological stage (269); of 
note, neither MYC overexpression nor AKT phosphorylation 
displays a strong prognostic potential in PC (267,270,271). 
While increases in body mass index (BMI) and obesity are 
associated with PC‑related mortality (272), there is also 
evidence to support the reverse association (273). A similar 
situation also applies to the association between cholesterol 
and PC progression. A meta‑analysis of 27 clinical studies 
up to 2012 with a pooled population of 1.8 million males 
revealed a 7% reduction in PC cases and a 20% decrease in 
PC progression in statin users (274). Statins were reported 
to reduce BCR following RT (275) and RP (276). However, 
other studies observed no clinical benefits in males with PC 
who were statin users (277,278) and reported statins having 
no impact on BCR following RP (279). Clearly, the prog-
nostic values of metabolic alterations in PC warrant further 
investigations.

The plasticity of cancer, including PC, presents a major 
challenge not only in cancer therapy, but also in assessing 
the risk of cancer progression. Cancer plasticity is regu-
lated by complex mechanisms, including those functioning 
in CSCs and DDR (280,281). It is noteworthy that BMI1, 
a well-established factor in maintaining CSC (282), also 
compromises genomic instability via attenuating ATM and 
ATR functions (264,283‑285). In this regard, DDR regula-
tions and stroma-cancer cell communications, both of which 
contribute to cancer plasticity, should be actively brought into 
the picture of BCR risk assessment; with these components 
incorporated, the ability to accurately classify BCR risk will 
likely be significantly improved.

PC is associated with high levels of intratumoral and 
intertumoral heterogeneity (286). This aspect has not been 
given sufficient consideration and should be pursued in PC 
biomarker development. Collaborative efforts involving 
multiple institutes in sharing materials and expertise will 
certainly be helpful to achieve this goal.
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