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Abstract

algorithms in terms of different evaluation metrics.

Background: Identifying protein complexes from protein-protein interaction (PPI) network is one of the most
important tasks in proteomics. Existing computational methods try to incorporate a variety of biological evidences to
enhance the quality of predicted complexes. However, it is still a challenge to integrate different types of biological
information into the complexes discovery process under a unified framework. Recently, attributed network
embedding methods have be proved to be remarkably effective in generating vector representations for nodes in the
network. In the transformed vector space, both the topological proximity and node attributed affinity between
different nodes are preserved. Therefore, such attributed network embedding methods provide us a unified
framework to integrate various biological evidences into the protein complexes identification process.

Results: In this article, we propose a new method called GANE to predict protein complexes based on Gene
Ontology (GO) attributed network embedding. Firstly, it learns the vector representation for each protein from a GO
attributed PPI network. Based on the pair-wise vector representation similarity, a weighted adjacency matrix is
constructed. Secondly, it uses the cliqgue mining method to generate candidate cores. Consequently, seed cores are
obtained by ranking candidate cores based on their densities on the weighted adjacency matrix and removing
redundant cores. For each seed core, its attachments are the proteins with correlation score that is larger than a given
threshold. The combination of a seed core and its attachment proteins is reported as a predicted protein complex by
the GANE algorithm. For performance evaluation, we compared GANE with six protein complex identification
methods on five yeast PPl networks. Experimental results showes that GANE performs better than the competing

Conclusions: GANE provides a framework that integrate many valuable and different biological information into the
task of protein complex identification. The protein vector representation learned from our attributed PPl network can
also be used in other tasks, such as PPl prediction and disease gene prediction.
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Background

With the advent of the post-genomic era, the focus of
life science research has shifted from genomics to pro-
teomics. One important task in proteomics is to detect
protein complexes from protein-protein interaction (PPI)
networks. The discovery of protein complexes is not only
critical to reveal the principle of cellular organization and
functions, but also helpful to predict protein functions,
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disease genes and drug-disease associations. With the
advances of high-throughput technologies, many large-
scale PPI networks have been constructed [1, 2]. Hence,
it is highly demanding to develop effective computational
methods for the accurate identification of novel protein
complexes.

In recent years, many computational methods have been
proposed to predict protein complexes from PPI net-
works. A PPI network is usually modeled as an undirected
graph, where the nodes in the graph represent proteins
and the edges represent the interactions between proteins.
Roughly, most of these protein complexes identification
methods are based on the principle that densely linked
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regions in the PPI network correspond to actual protein
complexes [3]. Therefore, the issue of predicting protein
complexes can be formulated as the problem of detecting
densely linked regions in PPI networks.

Existing computational methods for predicting protein
complexes can be approximately divided into two broad
categories [4]: (1) The methods based solely on PPI net-
works. These methods cluster the PPI network into mul-
tiple dense subnetworks only based on the topology of
network [5]. They make use of merging, growing or par-
titioning strategies to detect protein complexes. Here,
we just list a few typical methods in this category [6],
e.g., CFinder [7], MCODE [8], LCMA [9], CMC [10],
HACO [11], ClusterOne [12], MCL [13] and PEWCC
[14]. (2) The methods based on PPI networks and some
additional biological insights [15]. The biological insights
are grouped as: core-attachment structure, evolutionary
information, functional coherence, and mutually exclusive
and co-operative interactions. CORE [16], COACH [17]
and HUNTER [18] detected protein complexes based on
the principle that each complex is composed by a core
and its attachments. ProRank [19], ProRank+ [20] and the
methods proposed by Sharan et al. [21, 22] detected con-
served complexes across species based on the evolution
of PPI networks. RNSC [23] and DECAFF [24] combined
topological and GO information as functional informa-
tion to detect complexes. Ozawa et al. [25] proposed a
refinement method over MCODE and MCL to filter pre-
dicted complexes based on exclusive and co-operative
interactions. Over the years, researchers tried to incor-
porate a variety of biological information to enhance the
quality of predicted complexes [26]. However, it is still a
challenge to integrate various biological evidences into a
unified framework.

Recently, network embedding methods have shown to
be effective in many graph data analysis tasks such as link
prediction and network clustering [27]. Network embed-
ding aims to represent nodes in the network in a low-
dimensional space while preserving the node proximities.
The definition of node proximities depends on the ana-
lytic tasks and application scenarios. According to the
definition of node proximities, the state-of-the-art net-
work embedding methods can be categorized into two
groups: (1) structure-preserved network embedding; (2)
attributed network embedding.

Structure-preserved network embedding methods
focus on preserving the topological structure of the
original network. Motivated by the similar power-law
distribution of the vertices appearing in short random
walk and the words in natural language, DeepWalk [28]
regarded walks as the equivalent of sentences and then
preserved the neighborhood structure of nodes by max-
imizing the co-occurrence probability between a target
node and its context nodes within a truncated random
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walk window. Node2vec [29] proposed a method which
can generate the neighborhoods of nodes using the 2nd
order random walk. The LINE approach [30] solved the
large-scale network embedding effectively by preserving
the first and second order proximities.

Attributed network embedding targets at leveraging
both the topological proximity and node/edge attribute
affinity. MMDW [31] is a semi-supervised version of
DeepWalk, which incorporates the labeling information
into the network embedding. It jointly optimizes a max-
margin classifier and the representation learning model.
By establishing the equivalent relationship between Deep-
Walk and matrix factorization, TADW [32] incorporates
the rich text information into network embedding. AANE
[33] is a scalable and efficient framework which learn a
unified embedding representation by incorporating node
attribute proximity into network embedding. It preserve
the node proximity in both network structure space and
attribute space.

The attributed network embedding method provides a
general framework for incorporating both network struc-
ture information and additional node attribute informa-
tion to generate a unified low-dimensional representation.
This salient feature is particularly desirable in the con-
text of protein complexes identification since using the
additional biological information. The use of additional
biological information sources often boost the identifi-
cation performance significantly. Unfortunately, there are
still no researches that exploit the attributed network
embedding approach for protein complex detection. To
fill this gap, we take the first attempt to investigate the fea-
sibility and advantage of utilizing the attributed network
embedding idea for protein complexes detection.

We propose a new method called GANE to predict pro-
tein complexes based on Gene Ontology(GO) attributed
network embedding. The PPI network is represented as an
attributed network in which the protein nodes are asso-
ciated with GO slims. GANE first learns the vector rep-
resentation for each protein from the GO attributed PPI
network. Then, it uses a clique mining method to generate
candidate cores. Consequently, a set of seed cores are gen-
erated from the set of candidate cores with density-based
clique ranking and redundancy-based clique updating.
For each seed core, its attachments are the proteins whose
correlation score is larger than a threshold. The seed
cliques with attachments are reported as the predicted
protein complexes. In order to evaluate our method, we
compared GANE with six classic protein complex iden-
tification methods, which are COACH [17], CMC [10],
MCODE [8], ClusterOne [12], MCL [13] and PEWCC [14]
on five different yeast PPI networks. Experiment results
show that GANE performs better than the state-of-the-art
methods with respect to different evaluation metrics. We
summarize the contributions of this paper as follows:
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e To our knowledge, although some methods
incorporate several biological information in different
ways, our method is the first piece of work that
incorporates the attributed network embedding idea
into the protein complexes identification problem.

e Our method provides a framework that integrate
many valuable biological information into the task of
protein complex identification.

e The protein vector representation learned from our
attributed PPI network can also be used in other tasks,
such as PPI prediction and disease gene prediction.

The remainder of the paper is organized as follows. In
“Methods” section, we present the GANE method. We
compare GANE with six classic complex identification
methods and show the experiment results in “Results and
discussion” section. Finally, “Conclusions” section gives a
conclusion of this paper.

Methods

The GANE method for protein complex prediction is a
two-step procedure. Firstly, it learns the vector repre-
sentation for each protein from the GO attributed PPI
network. Based on the pair-wise vector representation
similarity, a weighted adjacency matrix is constructed.
Secondly, it uses a clique mining method to generate
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candidate cores. A set of seed cores are generated from
the set of candidate cores with density-based clique rank-
ing and redundancy-based clique updating. For each seed
core, its attachments are the proteins whose correlation
score is larger than a threshold. The seed cores with
attachments are the predicted protein complexes. Figure 1
illustrates the basic pipeline of the GANE method in a
vivid manner. Meanwhile, the major steps of our algo-
rithm are presented in Table 1.

Learning vector representations for proteins

The network embedding technique transforms graph-
structured data into vectorial data by learning the low-
dimensional vector representation for each node in the
network. Among existing network embedding methods,
the AANE [33] aims at preserving both the topological
similarity and node attribute similarity in the transformed
space. Based on the AANE, we learn vector representa-
tions for proteins in the PPI network by preserving the
proximities among proteins with respect to both the topo-
logical structure and GO attributes. The corresponding
representation learning method is described below.

Topological model
In the GANE, a PPI network is represented as an undi-
rected graph G = (V, E), where the nodes in V represent
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Fig. 1 The basic idea of GANE to predict protein complexes from protein-protein interaction networks. The GANE method for protein complex
prediction is a two-step procedure. Firstly, it learns the vector representation for each protein from the GO attributed PPl network. Based on the
pair-wise vector representation similarity, a weighted adjacency matrix is constructed. Secondly, it uses a clique mining method to generate
candidate cores. A set of seed cores are generated from the set of candidate cores with density-based clique ranking and redundancy-based clique
updating. For each seed core, its attachments are those proteins with correlation scores that are larger than a threshold. The seed cores with
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Table 1 Major steps of GANE
Algorithm 1 Protein complex identification algorithm GANE

Input: Graph G = (V, E), GO property matrix O, vector representation
dimension d, threshold value 8

Output: A set of discovered protein complexes
Description:
Constructing a protein attribute affinity matrix S € R7*"
Generating vector representation for each protein ¢ € RA
Constructing a weighted adjacency matrix W/
Initializing Alternative_core, Seed_core, ComplexSet to be &
Generating maximal cliques and put them into Alternative_core
While Alternative_core # &
DescendSort(Alternative_core) by density_score
Alternative_core = Alternative_core — Clique,
Seed_core = Seed_core + Clique;
Pruning and updating remaining cliques in Alternative_core
End while
For core core;j in Seed_core
finding the set of its attachments Att;
ComplexSet=ComplexSet+core; U Att;
End for

Return ComplexSet

proteins and the edges in E represent the interactions
between proteins. In order to preserve the topological
proximity between proteins in the original PPI network, a
loss function is defined as:

=Y "> aj(pi— )’ 1
ieV jeVv

where ¢; and ¢; are the vector representations of protein
i and protein j, the matrix A € R"*” represents the adja-
cency matrix of the PPI network, a;; = 1 only if there is
an interaction between protein i and protein j. Minimiz-
ing the penalty part a;; (¢ — goj)2 means to minimize the
embedding difference between ¢; and ¢; when a; = 1
. Hence, proteins with similar topological structures will
be forced to have similar vector representations. As a
result, this model preserve the topological structures of
the original PPI network.

GO attributed model

Gene Ontology (GO) is currently one of the most com-
prehensive ontology databases in the bioinformatics com-
munity [34]. It provides GO terms to describe three dif-
ferent aspects of gene product features: biological process
(Bp), molecular function (Mf), and cellular component
(Cc). GO slims is the cut-down version of GO, it con-
tains a subset of the terms in the whole GO. They pro-
vide an overview on the ontology content without the
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details of the specific fine grained terms. GO slims give a
comprehensive description on the biological attributes of
proteins. Since GO slims of Cc include some protein com-
plexes information, we only select GO slims of Bp and Mf
as protein attributes.

After getting the attributed information for all the pro-
teins in the PPI network, we generate an attribute matrix
O € R™"™ | where n represents the number of proteins
and m represents the number of GO slims attributes. Each
entry o; in the matrix O describes whether protein i has a
corresponding GO slim j or not with 0;; = 1 or 0. Based
on the matrix O, we construct a protein attribute affinity
matrix § € R"*”. Each entry s;; is calculated as below:

m
o — D k=1 ik X Ojk
Y m 2 m 2 ’
Zk:l O X Zk:l Ok

To preserve the proximity with respect to protein
attributes, a loss function is defined as:

=) > (Sij - <Pi<PjT)2; (3)

i€V jeVv

(2)

where S € R™*" is the protein attribute affinity matrix.
Minimize this loss function means minimize the differ-
ence between the dot product of the vector representation
¢; and ¢; with the corresponding attribute similarity s;;.

Joint model for representation learning

Since topological and biological properties are both
important for protein complexes identification, we use
the topological model and GO attributed model together
to learn the representations of proteins. The final loss
function is defined as:

(= szij ((Pi — (pj)z + AZZ (Sij - </7i</7,'T>2,

icV jeVv eV jeVv
(4)

where A is a parameter that controls the trade-off between
topological and GO attributed properties. Since £ is sep-
arable for ¢;, the corresponding minimization problem
can be reformulated as a bi-convex optimization prob-
lem. T‘he original embedding problem is split into 2n
small convex optimization sub-problems. As shown in
AANE [33], the distributed convex optimization tech-
nique ADMM (35, 36] can be used to solve this optimiza-
tion problem. In each iteration, the n updating steps of ¢;
is assigned to different workers in a distributed way. The
distributed algorithm is guaranteed to converge to a local
optimal point [35]. After solving the optimization problem
of minimizing the loss function in Eq. (4), each protein is
represented as a vector ¢ € R?, where d represents the
length of the embedding representation.
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Weighted adjacency matrix
After obtaining the vector representation of each protein
@ € R4 we generate a weighted adjacency matrix W e
R™ " as below, where cos_sim is the function for calculat-
ing the cosine similarity between two connected proteins
based on the embedding representations.

e — { cos_sim (i, ¢j) ajj =1 5)

7710 aij =0 ’

Clustering based on core-attachment structure
Gavin et al. [37] proposed that a protein complex is usu-
ally composed of two parts, a core and its attachments.
Based on this principle, we detect protein complexes in
two phases. Firstly, a set of seed cores are generated. Sec-

ondly, the attachments are included into each core based
on their correlation strengths.

Generating cores

To generate cores, we use the cliques mining algorithm
proposed by Tomita et al. [38] to enumerate all maxi-
mal cliques with at least three nodes in a PPI network.
These cliques are considered as the candidate cores and
we collected them into a Alternative_core set. Since not
all the cliques in Alternative_core are suitable to be the
cores of protein complexes, we prune the Alternative_core
set to generate the Seed_core set based on the following
procedure:

1 Cliques in Alternative_core are sorted in the
descending order by density_score, denoted as
Cliquey, Cliques, . . ., Clique.. This density_score
function considers both the inside connective density
and biological correlation of each clique.

Z Wij. (6)

i,jeCliquey

density_score(Cliquey) =

2 Remove Clique; from Alternative_core and put it
into the Seed_core set.

3 For any other clique Clique; € Alternative_core that
has an overlap with Clique;, Clique; is updated with
Clique; — Clique; . After that, if |Cliquei| <3
remove Clique; from Alternative_core.

Table 2 The PPI data sets used in the experiment
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This process repeats until Alternative_core is empty. The
cliques in Seed_core are regarded as the core proteins in
protein complexes.

Adding attachments

To detect attachments for each core, we focus on
the strength of topological and biological connectivity
between the core and the corresponding attachments. The
correlation score between a clique in the Seed_core and a
candidate attachment protein is calculated as below:

ZkeClique/ Wik

7
|Cliquej| @)

correlation_score (pi, Cliquej) =
where protein p; is one of the neighbors of the corre-
sponding core Clique;. If the correlation score between
protein p; and Clique; is larger than a threshold value 6,
pi is considered as one attachment of the corresponding
clique.
Finally, each protein complex is generated by combining
the core and its corresponding attachments.

Results and discussion

Datasets

Five yeast PPI networks were used in the performance
comparison: DIP [39], Krogan-core [40], Kroganl4k
[40], Biogrid [41], Collins [42]. The detailed infor-
mation of these five datasets are shown in Table 2.
The GO slim information was downloaded from the
website  https://downloads.yeastgenome.org/curation/
literature/go_slim_mapping.tab. To compare the pre-
dicted results with the reference complexes, we have
constructed a standard complexes set by selecting all the
protein complexes that had at least three proteins from
MIPS, CYC2008, SGD, Aloy and TAPO6. Consequently,
there was a total 789 protein complexes in the reference
set.

Evaluation metrics

To formally evaluate the performance of our method, we

use the same evaluation metrics as other methods [12, 14].
Let P denotes the set of predicted protein complexes

from one method, the performance of this methods is

mainly determined by the number of matched complexes

PPI networks Number of proteins Number of interactions

Average clustering coefficient Average number of neighbors

DIP 4928 17,201
Krogan-core 2708 7123
Krogan14k 3581 14,076
Biogrid 5640 59,748
Collins 1622 9074

0.095 6.981
0.188 5.261
0.122 7.861
0.246 21.187
0.555 11.189

Five yeast PPI networks were used in the performance comparison: DIP (Xenarios et al., 2002), Krogan-core (Krogan et al., 2006), Krogan14k (Krogan et al., 2006), Biogrid (Stark

et al, 2006), Collins (Collins et al.,, 2007)
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between P and the set of gold standard protein complexes
B. To determine if a predicted protein complex p € P
matches a known protein complex b € B, we use the
neighborhood affinity score NA(p,b) defined in in Eq. (8):
V0 V[

|Vp| x [Vl

where V), is the set of proteins in the predicted protein
complex p and V}, is the set of proteins in the reference
protein complex b. Following the previous studies, p and
b are considered to matched if NA(p,b) is larger than 0.25.

Based on the neighborhood affinity score, Ny, is defined
as the number of predicted complexes that match at least
one real complex, and N, is the number of real complexes
that match at least one predicted complex.

Ny = |{plp € P,3b € BNA(p,b) > o},

NA(p,b) = (8)

)

Ny = |{blb € B,3p € P,NA(p, b) > w}|. (10)

In Egs. (9) and (10), w is threshold parameter, which is
typically specified to be 0.25.

The first three measures used in the experiments for
evaluating the performance of different methods are Pre-
cision, Recall and F-score. Precision is the proportion of
predicted protein complexes that match at least one ref-
erence complex. Recall is the proportion of reference
protein complexes that match at least one predicted com-
plex. F-score is the harmonic mean of Precision and Recall.

N, N,

Precision = —X, Recall = ib, (11)
|P| |B]
2 x Precision x Recall

F — score = (12)

Precision + Recall

The other three metrics we used are clustering-wise
sensitivity (Su), clustering-wise positive predictive value
(PPV) and geometric accuracy (Acc). Given |B| reference
complexes and |P| predicted complexes, let Tj; denote the
number of proteins that are found both in reference com-
plex i and predicted complex j, and let N; denote the
number of proteins in reference complex i. Then, Sun, PPV,

Acc are defined as follows:

52 maxl?l {Tij}

Sn = Zl 5 , (13)

3y maxZy {Ti'}

PPV = Py (14)
Acc = ~/Sn - PPV. (15)

Performance comparison

For evaluating the performance of our algorithm, we
compared our algorithm with six state-of-the-art protein
complexes detection methods: COACH, CMC, MCODE,
ClusterOne , MCL and PEWCC. The parameters of these
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methods were set as the default values as mentioned in
their original papers. The embedding dimension d , the
harmonic value A and the threshold value 6 of GANE were
set to be 128, 0.1 and 0.3 respectively. For a fair compar-
ison, we filtered out the complexes whose sizes are less
than 3 in all algorithms. All experimental results were
listed in Table 3 and Fig. 2.

As shown in Table 3, GANE achieved the highest
Precision and F-score on four data sets: DIP, Krogan-
core, Kroganl4k and Biogrid. It did not achieve the best
Precision on the Collins dataset, but had the highest
F-score. GANE did not achieve the highest Recall, prob-
ably because its number of predicted protein complexes
is small. Overall, GANE performed the best with respect
to the overall evaluation metric F-score for all datasets. In
addition, our method reported the highest Acc value on
all datasets except for Krogan-core and Biogrid. For these
two datasets, ClusterOne was the best with respect to
Acc. The ClusterOne method detected protein complexes
based on seeding and greedy growth. So, the protein
complexes detected by ClusterOne generally had more
proteins, and its Acc was higher than that of our method.
But the Precision and F-score of Clusterone were all lower
than our method.

In order to visually observe the comparative results,
Fig. 2 showed the composition score (F-score + Acc) of
each method. In Fig. 2, the y-axis represented the sum
of F-score and Acc. As shown in Fig. 2, our method
always obtained the highest composition score. Therefore,
our method outperformed other algorithms for all five
datasets.

To examine the biological sense of the predicted protein
complexes generated by GANE, we calculated the P-value
by the tool GO:TermFinder [43]. Some of our unmatched
predicted complexes actually had high biological signif-
icance. Due to the gold-standard complex set was still
incomplete, these unmatched predicted complexes might
be the new complexes that had not been discovered.
Table 4 presented some case studies of GO analysis results
from the DIP network. The min P-value represented the
minimum P-value of the matched GO analysis results,
it indicated that the collective occurrence of these pro-
teins in a complex did not occur merely by chance.
Thus, the predicted complex had a high probability to
be real.

Expect GO slims, we also utilized gene expression pro-
file as attribute information for complexes detection. The
performances were shown in Additional file 1: Table S1.

Parameter sensitivity

In this part, we examined the sensitivity of GANE with
respect to three parameters: the length of vector rep-
resentation d, the harmonic value A and the threshold
value 6.
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Table 3 Performance comparison based on six evaluation metrics on the five yeast data
Datasets Methods #predicted complexes #matched complexes Precision Recall F-score Acc
DIP COACH 570 263 0.450 0.620 0.521 0.243
CMC 179 108 0.603 0.394 0477 0.219
MCODE 59 32 0.542 0.118 0.194 0.149
ClusterOne 341 133 0.390 0.343 0.365 0.227
MCL 451 69 0.153 0.172 0.162 0.190
PEWCC 666 413 0.620 0469 0.534 0.230
GANE 324 202 0.623 0.550 0.584 0.254
Krogan-core COACH 348 206 0.592 0.460 0518 0.217
CMC 128 86 0.672 0.304 0419 0.206
MCODE 71 52 0.732 0.198 0311 0.176
ClusterOne 522 190 0.364 0.464 0.408 0.273
MCL 376 126 0.335 0414 0.371 0.262
PEWCC 630 425 0.675 0406 0.507 0214
GANE 208 161 0.774 0436 0.558 0.229
Krogan14k COACH 570 263 0461 0465 0.463 0217
CMC 396 187 0472 0.440 0.455 0.210
MCODE 49 30 0.612 0.112 0.189 0.152
ClusterOne 225 105 0467 0.302 0.366 0.222
MCL 445 133 0.299 0.323 0311 0.233
PEWCC 934 500 0.535 0418 0470 0.217
GANE 247 169 0.684 0442 0.537 0.234
Biogrid COACH 1507 469 0311 0.657 0422 0.276
CMC 1503 236 0.157 0.553 0.245 0.265
MCODE 58 16 0276 0.043 0.075 0.181
ClusterOne 476 187 0.393 0497 0439 0.316
MCL 338 77 0.228 0.219 0.223 0.249
PEWCC 2781 1044 0.375 0.677 0483 0.288
GANE 637 347 0.545 0.664 0.599 0.310
Collins COACH 251 188 0.749 0522 0.615 0.280
CMC 153 104 0.680 0.390 0.496 0.255
MCODE m 94 0.847 0400 0.540 0.254
ClusterOne 195 143 0.733 0.511 0.602 0.290
MCL 183 134 0.732 0.506 0.598 0.286
PEWCC 570 477 0.837 0426 0.564 0.252
GANE 199 163 0.819 0491 0.615 0.293

Both F-score and Acc are overall evaluation metrics, so the highest values of F-score and Acc are set in bold for each dataset

Effect of the embedding vector dimension

In the experiment, the embedding vector dimension d
was varied from 32 to 224. Figure 3a showed that the
performance of our method was not very sensitive to
the dimension parameter. Although the best results on
different datasets were achieved with different dimen-
sion parameters, 128 was relatively a good choice in
practice.

Effect of the harmonic value

The harmonic factor A balanced the contributions of topo-
logical and biological information for GANE. To investi-
gate the impact of A, we varied it from 0.00001 to 1000.
When A was relatively low, topological information con-
tributed much to the performance of our method. With
the increasing of A, biological information contributed
much. As shown in Fig. 3b, different datasets achieved
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Fig. 2 Comparison with six protein complex detection algorithms in terms of the composite score of F-score and Acc. Shades of the same color
indicate different evaluating scores. Each bar height reflects the value of the composite score

optimal solution with different 1. Here, we set A = 0.1 as
default value.

Effect of the threshold value

The threshold value 6 determined whether the neigh-
bors of a core are included as its attachments. When
the value 6 was higher, it was harder for each neighbor
to become an attachment. In other words, internal con-
nections of the resulting protein complex were tighter.
As shown in Fig. 3c, when 0 was less than 0.1, the per-
formance was relatively low. This was because when 6
was small, most of the neighbors can be regarded as the
corresponding attachments. The performance reached
its peak when 6 = 0.3, so we set 0.3 as its default
value.

Table 4 Examples of predicted complexes on the DIP dataset

Conclusions
In this article, we propose an efficient method called
GANE to detect protein complexes from PPI networks.
GANE integrates biological evidences into the detecting
process by learning vector representations for proteins
from GO attributed network. As experimental results
shown, GANE outperforms six protein complex detec-
tion methods on five different datasets. We concluded
that the GO attributed network embedding can effectively
enhance the quality of predicted complexes.

In the future, we will focus on investigating the following
two questions:

1 How to learn the vector representations by
incorporating more biological attributes in the PPI

D Protein complex Matched or not Min P-value GO-Description
1 YLR376C YHLOO6C YIL132C YDR078C No 1.95e-10 DNA recombinase assembly
2 YFRO15C YJL137C YLR258W No 9.79e-07 Glycogen biosynthetic process
3 YLRO78C  YLR026C YDR189W  YDR498C No 1.42e-12 Vesicle fusion
YLR268W YOR075W
4 YDR331TW YMR298W YKLOO8C YHL003C No 3.96e-07 Ceramide biosynthetic process
YGRO60W
5 YLR409C  YER082C  YKRO60W  YJROO2W No 6.24e-23 Ribosomal small subunit
YPR144C YER127W YNL132W YDR299W biogenesis
YNL308C ~ YCLO59C  YJLO69C  YCRO57C
YDR324C YGR145W
6 YOR016C YHR140W YHLO42W YBR106W No 0.00014 Protein localization to

YCR101C YDR414C YELO17C-A YAR028W
YGL259W  YKLO65C  YGL042C  YER039C
YJLOO4C YPL264C

endoplasmic reticulum
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Fig. 3 The sensitivity of GANE with respect to three parameters. a The performance of GANE when embedding vector dimension d was varied from
32 to 224. b The performance of GANE when harmonic value A was varied from 0.00001 to 1000. ¢ The performance of GANE when threshold value
6 was varied from 0.1 to 0.9

network? The incorporation of more biological
evidences will further boost the identification
performance.

2 How to apply the attributed network embedding
methods to other biological networks, such as
drug-drug interaction network and gene-phenotype
network

Additional file

Additional file 1: Table S1. The performances of GANE with different
attribute information. (DOCX 25 kb)
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