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Abstract

Duchenne Muscular Dystrophy (DMD) is a fatal muscle wasting disease manifested in

young boys, for which there is no current cure. We have shown that the amino acid taurine is

safe and effective at preventing dystropathology in the mdx mouse model for DMD. This

study aimed to establish if treating growing mdx mice with a higher dose of taurine was more

effective at improving strength and reducing inflammation and oxidative stress. Mice were

treated with a dose of taurine estimated to be 16 g/kg/day, in drinking water from 1–6 weeks

of age, after which in vivo and ex vivo muscle strength was assessed, as were measures of

inflammation, oxidative stress and taurine metabolism. While the dose did decrease inflam-

mation and protein oxidation in dystrophic muscles, there was no improvement in muscle

strength (in contrast with benefits observed with the lower dose) and growth of the young

mice was significantly restricted. We present novel data that a high taurine dose increases

the cysteine content of both mdx liver and plasma, a possible result of down regulation of

the taurine synthesis pathway in the liver (which functions to dispose of excess cysteine,

which is toxic). These data caution that a high dose of taurine can have adverse effects and

may be less efficacious than lower taurine doses. Therefore, monitoring of taurine dosage

needs to be considered in future pre-clinical trials, in anticipation of using taurine as a clinical

therapy for growing DMD boys (and other conditions).

Introduction

Duchenne Muscular Dystrophy (DMD) is a lethal, X-chromosome linked muscle disease

affecting about 1 in 3500–6000 boys worldwide (Reviewed in [1, 2]). DMD is caused by muta-

tions in the dystrophin gene resulting in the loss of functional dystrophin protein in muscle,

which leads to increased susceptibility of sarcolemmal damage and necrosis after muscle con-

traction [3, 4]. Consequently, dystrophic muscle undergoes repeated cycles of myofibre necro-

sis, associated with subsequent inflammation, fibrosis and regeneration: where this damage

persists over many months and years in DMD boys it results in the replacement of muscle
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with fat and fibrotic tissue [5, 6]. The severe loss of muscle mass and function in DMD boys

leads to premature death often due to respiratory or cardiac failure (reviewed in [1, 7]). While

much effort has been dedicated to developing genetic or molecular therapies to replace the

missing dystrophic protein [8, 9], there is no cure yet for DMD: the standard drug treatment

using corticosteroids is limited in efficacy and associated with severe side effects [10, 11]. Con-

sequently, there is considerable interest in developing safe and efficacious therapeutic drug or

nutritional interventions that can prevent or slow the progression of DMD (reviewed in [12–

14]).

The semi-essential amino acid taurine (2-aminoethanesulfonic acid) has been investigated

as a pharmacological intervention, using the mdx mouse model of DMD [15–21]. In these

studies, administration of taurine to mdx mice prevented myofibre necrosis, improved both in
vivo and ex vivo muscle strength, increased fatigue resistance and decreased other indices of

mdx pathology such as inflammation and oxidative stress. Recently we showed that an oral

dose of approximately 4 g/kg/day (2% in drinking water, from 18 days until 6 weeks of age)

had benefits on many indices of dystropathology (with improved in vivo and ex vivo muscle

strength and decreased inflammation and oxidative stress) in mdx mice [19]. Research by De

Luca and colleagues in 2003 established that treating male mdx mice aged 4 weeks (until 8

weeks) with a high dose of taurine (up to 400 mg per mouse per day, equivalent to about 16 g/

kg/day calculated for a mouse weighing 25 g) was highly effective at reducing exercise induced

muscle weakness [16].

We propose that one important mechanism of action of taurine in protecting mdx muscle

from necrosis relates to effects on neutrophils (inflammatory cells that rapidly arrive at sites of

damage). Specifically, taurine scavenges hypochlorous acid (HOCl), a highly reactive oxidant

that is produced by the interaction of hydrogen peroxide and myeloperoxidase (MPO), a heme

protein secreted by neutrophils [22]. HOCl can cause irreversible oxidative damage to pro-

teins, as well as cause reversible protein thiol oxidation, which can dramatically modify protein

function [23]. The scavenging of HOCl by taurine results in the formation of taurine chlora-

mine, a molecule that itself exerts anti-inflammatory effects such as inhibiting the production

of pro-inflammatory cytokines and nitric oxide (NO), and the inhibition of NF-κB activation

by the oxidation of IκB-α [22, 24]. We have previously shown that muscle from the Golden

Retriever Muscular Dystrophy (GRMD) dog model of DMD undergoes excessive neutrophil

infiltration, leading to increased MPO content and HOCl production, which is associated with

increased protein oxidation [25]. Likewise, we show that increased MPO content and protein

thiol oxidation in mdx muscle is ameliorated in mice treated with a taurine dose of 4 g/kg/day

(as discussed above) [19]. Therefore, the effects of a higher dose of taurine, estimated to be

about 16 g/kg/day, on neutrophil and MPO content and protein thiol oxidation in mdx muscle

were examined in the current study.

The aim of this study was to test if a high dose of taurine (16 g/kg/day) in young growing

mdx mice was highly effective at reducing dystropathology, specifically for improving muscle

strength and decreasing inflammation and protein thiol oxidation and to discern if these bene-

fits were associated with decreased neutrophil and MPO content. Since we have shown previ-

ously that taurine metabolism (including synthesis of taurine in the liver from cysteine) is

perturbed in mdx mice [26], we also assessed the effects of this high taurine dose on the con-

tent of taurine and cysteine in the liver, plasma and muscle of mdx mice, and examined taurine

synthesis in the liver.

Materials and methods

All reagents were obtained from Sigma-Aldrich unless otherwise specified.

Beneficial effects of high dose taurine treatment in mdx mice are offset by growth restriction
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Taurine treatment

All animal experiments were conducted in strict accordance with the guidelines of the

National Health and Medical Research Council Code of practice for the care and use of ani-

mals for scientific purposes (2004) and the Animal Welfare act of Western Australia (2002)

and were approved by the Animal Ethics committee at the University of Western Australia.

All experiments were carried out on dystrophic mdx (C57Bl/10ScSnmdx/mdx) and non-

dystrophic control C57 (C57Bl/10ScSn) mice (the parental strain for mdx). Mice were

obtained from the Animal Resource Centre, Murdoch, Western Australia. Mice were main-

tained at the University of Western Australia on a 12-h light/dark cycle, under standard condi-

tions, with free access to food and drinking water.

Mothers (and pups) were given either no treatment or taurine (delivered by 8% in the

drinking water) from 7 days after birth, and taurine treatment continued after weaning (at 21

days) until they were sampled at 6 weeks. There were 9 mice in the C57 group, 10 in the

untreated mdx group and 8 in the taurine treated group, however 8 mice of each group were

randomly chosen for biochemical analysis. Several mice were removed from the ex vivo force

measurements because the mice died under anaesthesia before the muscle could be removed.

Both male and female pups were used in the study with equal numbers of both gender in

each group. There were no significant effects of gender observed, except for liver (C57) and

quadriceps (untreated mdx) weights (see S1 Table). Water ingestion and body weights were

monitored twice weekly for all mdx treatment groups. There was no difference in water con-

sumption of untreated and taurine treated mdx mice (averaging 3.2±0.5 and 4±2.3 ml per

mouse per day respectively). The approximate consumption of taurine, based on water con-

sumption, was about 16 g/kg/day.

Grip strength

The grip strength of all mice was measured using a Chatillon Digital Force Gauge (DFE-002)

and a triangle metal bar, as per the TREAT-NMD recommended standard protocol “Use of

grip strength meter to assess limb strength of mdx mice– M.2.2_001 “http://www.treat-nmd.

eu/downloads/file/sops/dmd/MDX/DMD_M.2.2.001.pdf”. In brief, the mouse was placed on

the front of the triangle bar (attached to a force transducer) and pulled gently until released.

Each mouse underwent 5 consecutive grip-strength trials; the grip strength value for each

mouse was recorded as the average of the three trials with the highest force. Average grip

strength was presented as total force (g) and also normalized for body weight [Force (g)/BW

(g)]. Grip strength measurements were performed on three separate occasions during the final

week of treatment to accustom mice, however only data from the final testing session was used

for analysis.

Tissue collection

Mice (at 6 weeks of age) were anaesthetized via an intraperitoneal (IP) injection of sodium

pentobarbitone (40 mg/kg body weight). Anaesthetized mice were placed on a heated plate at

37˚C to maintain core body temperature. Following dissection of the EDL muscle (for physio-

logical measurements of contractile function), blood was removed via cardiac puncture and

other tissues, including the quadriceps muscle and liver, were removed and snap frozen for

further analysis.

Ex vivo muscle function testing was performed as per [27]. In brief, the EDL tendons

were tied with non-absorbable black braided surgical silk (Dysilk, Dynek Pty Ltd) and

mounted in an in vitro muscle test system (805A In Vitro Force Transducer System, Aurora

Scientific Inc.) filled with mammalian ringer solution (containing (in mM) NaCl (121); KCl
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(5.4); MgSO4.7H2O (1.2); NaHCO3 (25); HEPES (5); glucose (11.5) and CaCl2 (2.5)), bubbled

with Carbogen and maintained at 25˚C. The muscle was stimulated with 0.2 ms square wave

pulses (701B High Power Bi-phase Current Stimulator, Aurora Scientific Inc.) via parallel elec-

trodes situated on both sides of the suspended muscle.

Ex vivo measurement of force

At the start of each experiment the muscle was set to the optimal length (Lo) by manually

adjusting the lever arm and recording the twitch force response. The length at which the maxi-

mum twitch force was recorded was taken as Lo. All subsequent measurements of contractile

function were performed at Lo. The optimal fibre length (Lf) in the EDL was calculated from a

pre-defined fibre-length to muscle-length ratio of 0.44 [28]. The force frequency relationship

was evaluated by recording the force responses at stimulation frequencies of 5, 10, 20, 30, 50,

80, 100, 120 and 150 Hz. Each stimulus was separated by a two minute interval to avoid induc-

ing muscle fatigue. The stimulation that produced the greatest force throughout the experi-

ment was recorded as the maximum tetanic force.

Force recordings were normalized relative to muscle cross sectional area (CSA) and pre-

sented as specific force (N/cm2). CSA was estimated by dividing the wet muscle mass (g) by Lf

and the density of mammalian skeletal muscle (1.056 mg / mm3).

Inflammation

Neutrophil presence in quadriceps muscles was measured using immunoblotting, as described

below. MPO catalyses the production of hypochlorous acid from hydrogen peroxide and chlo-

ride [29] and hypochlorous acid reacts with 2-[6-(4-aminophenoxy)-3-oxo-3H-xanthen-9-yl]

benzoic acid (APF) to form the highly fluorescent compound fluorescein, that is measured in

this method, as described previously [19]. Briefly, frozen muscle was ground using a mortar

and pestle under liquid nitrogen and homogenised in 0.5% hexadecyltrimethylammonium

bromide in PBS. Samples were centrifuged and supernatants diluted in PBS. Human MPO was

used as the standard for the assay (Cayman Chemical). Aliquots of each experimental sample

or MPO standard were pipetted into a 384 well plate, before the addition of APF working solu-

tion (20 μM APF and 20 μM hydrogen peroxide in PBS) was added. The plate was incubated at

room temperature (protected from light) for 30 minutes, with fluorescence measured every

minute using excitation at 485 nm and emission at 515–530 nm. The rate of change of fluores-

cence for each sample was compared to that of the standards and results were expressed per

mg of protein, quantified using the DC protein assay (Bio-Rad).

Quantification of protein thiol oxidation

Reduced and oxidized protein thiols were measured in quadriceps muscle using the 2 tag tech-

nique as described previously [19]. In brief, frozen tissue was crushed under liquid nitrogen,

before protein was extracted with 20% trichloroacetic acid (TCA)/acetone. Protein was solubi-

lized in 0.5% sodium dodecyl sulphate (SDS) with 0.5 M Tris at pH 7.3 (SDS buffer) and pro-

tein thiols were labeled with the fluorescent dye BODIPY FL-N-(2-aminoethyl) maleimide

(FLM, Invitrogen). Following removal of the unbound dye using 100mM cysteine, oxidized

thiols were reduced with tris(2-carboxyethyl)phosphine (TCEP) before the subsequent unla-

beled reduced thiols were labeled with a second fluorescent dye Texas Red C2-maleimide

(Texas red, Invitrogen). The sample was washed in acetone and re-suspended in SDS buffer.

Samples were read using a fluorescent plate reader (Fluostar Optima) with wavelengths set at

excitation 485 nm, emission 520 nm for FLM and excitation 595 nm, emission 610 nm for

Beneficial effects of high dose taurine treatment in mdx mice are offset by growth restriction
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Texas red. A standard curve for each dye was generated using ovalbumin and results were

expressed per mg of protein, quantified using the DC protein assay (Bio-Rad).

HPLC analysis of taurine and cysteine

Taurine and cysteine levels in liver, plasma and quadriceps muscle were measured using

reverse phase high performance liquid chromatography (HPLC) as previously described [30].

In brief, frozen tissues were crushed using a mortar and pestle under liquid nitrogen and

homogenized in 25 times 5% TCA. Plasma samples were precipitated by addition of 10 times

by volume of 5% trichloroacetic acid (TCA). After centrifugation, supernatants were removed

and stored at -80˚C until analysis. Analytes were separated using HPLC with fluorescent detec-

tion, with pre-column derivatisation with o-phthalaldehyde (OPA) and 2-mercaptoethanol

(2ME). OPA reacts rapidly with amino acids and sulfhydryl groups to yield intensely fluores-

cent derivatives, and 2ME, a reducing agent, prevents the OPA reagent from oxidising. Super-

natants were mixed with iodoacetamide, dissolved in 5% TCA, to a final concentration of 25

mM. An internal standard, o-phospho-dl-serine, dissolved in 5% TCA was added to a final

concentration of 5 mM. Sodium borate was used to adjust the pH to 9. Samples were placed in

an autosampler, which was maintained at 4˚C. Samples were mixed on a sample loop with a

derivitising solution containing 40 mM OPA and 160 mM 2ME in 100 mM sodium borate,

pH 12, for 30 seconds before injection onto the column. Separation was achieved with a C18

column (5 μl, 4.6 x 150 mm, Phenomenex) using a Dionex Ultimate 3000 HPLC system.

Mobile phase A consisted of 50 mM potassium phosphate buffer and tetrahydrofuran (97:3).

Mobile phase B consisted of 90% methanol, with a gradient increase in B from 0 to 25%. Fluo-

rescence was set at 360 nm and 455 nm for excitation and emission respectively. The protein

content of liver and muscle samples were quantified by solubilising the pellet in 0.5 M sodium

hydroxide, before incubation at 80˚C for 15 minutes. Once fully dissolved, protein concentra-

tions of supernatants were quantified using a Bradford protein assay (Bio-Rad).

Protein extraction and immunoblotting

Frozen livers and quadriceps muscles were crushed using a mortar and pestle under liquid

nitrogen and homogenized in 1 ml ice-cold 1% NP40, 1 mM EDTA in phosphate buffered

saline (PBS), supplemented with complete EDTA free protease inhibitor tablets and Phos-

STOP phosphatase inhibitor tablets (Roche), and centrifuged at 10,000 g for 10 min. The pro-

tein concentrations of supernatants were quantitated using the DC protein assay (Bio-Rad).

Samples were resolved on 4–15% SDS-PAGE TGX Stain-Free gels (Bio-Rad) and transferred

onto nitrocellulose membrane using a Trans Turbo Blot system (Bio-Rad), after imaging for

total protein using the Stain-Free imaging program on the ChemiDoc MP Imaging System

(Bio-Rad). Immuno-blotting was performed with rabbit polyclonal antibodies to neutrophil

elastase (ab68672, Abcam), cysteine dioxygenase type 1 (ab53436, Abcam) and cysteine sulfi-

nate decarboxylase (ab101847, Abcam) all dissolved 1:1000 in 5% bovine serum albumin

(BSA). HRP-conjugated goat anti-rabbit secondary antibodies were from Thermo Fisher Sci-

entific. Chemiluminescence signal was captured using the ChemiDoc MP Imaging System

(Bio-Rad). Resultant images were quantified using ImageJ software [31]. A common sample

was loaded onto each gel to normalise for detection efficiencies across membranes, and all

bands were standardised to total protein for that lane [32].

Cysteine dioxygenase activity

Cysteine dioxygenase activity was measured by quantification of cysteine sulfinate from sub-

strate cysteine, as per [33], with some modifications. In brief, frozen livers were crushed using
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a mortar and pestle under liquid nitrogen and homogenized in 10 times 200 mM 2-(N-Mor-

pholino)ethanesulfonic acid (MES) at pH 6.1. After centrifugation, supernatants were removed

and aliquoted into two tubes (one labelled blank). Remaining supernatant was retained and

the protein concentration quantitated using the DC protein assay (Bio-Rad). To both other

tubes, a mixture containing 2.5 mM ferrous sulphate, 10 mM NAD+ and 25 mM hydroxyl-

amine hydrochloride at pH 5.9 was added. To both tubes, a mixture containing 40 mM cys-

teine and 0.50 mM bathocuproinedisulfonic acid was added. 20% sulfosalicylic acid was

immediately added to the blank tubes, and all samples were incubated for 5 minutes. 20% sul-

fosalicylic acid was added to the rest of the tubes, and samples were incubated on ice for 15

minutes before centrifugation to remove the precipitated protein. Supernatants were removed

and stored at -80˚C before analysis. Analytes were separated using HPLC with fluorescent

detection, with pre-column derivitisation with OPA and 2ME as per analysis of taurine and

cysteine as above. Activity of cysteine dioxygenase was determined to be the amount of cyste-

ine sulfinate formed per minute, by subtracting the cysteine sulfinate content of the sample

with cysteine substrate added minus the cysteine sulfinate content of the sample without cyste-

ine substrate, divided by 5 (samples were incubated for 5 minutes).

Statistics

Data were analysed using GraphPad Prism software. One-way ANOVA tests with post-hoc

(LMS) comparisons were used to identify significant differences between experimental groups.

Two-way repeated measures ANOVAs were used to analyse data for the force-frequency pro-

tocols. Statistical significance was accepted at p<0.05. Phenotype and force data are presented

as mean ± SEM, all data points are presented ± SEM for all other measures.

Results

Phenotype data

Body, muscle and liver weights were measured at 6 weeks of age to identify potential detrimen-

tal effects of treatment with taurine in young growing mdx mice. While body weights were

similar for C57 and untreated mdx mice, taurine treatment reduced mdx body weight by 22%

(Table 1). Liver weights were similar across all groups. Quadriceps and EDL muscles were

heavier in untreated mdx mice compared with C57 mice (44% and 18% respectively). Taurine

treatment reduced mdx quadriceps and EDL muscle weight by ~30% (Table 1). Tibia length

Table 1. Phenotypic data of untreated C57, untreated mdx and taurine treated mdx, including body and liver and quad and EDL weight (wt), tibia

length and EDL cross sectional area (CSA).

Untreated

C57

Untreated

mdx

Taurine

mdx

Body wt (g) 19.95 ± 0.52 20.56 ± 0.65 16.06 ± 0.59$

Liver wt (g) 1.00 ± 0.05 1.05 ± 0.09 0.93 ± 0.06

Quad wt (mg) 95.5 ± 4.5 137.9 ± 4.5* 99.1 ± 5.2$

EDL wt (mg) 5.6 ± 0.4 6.6 ± 0.3* 4.6 ± 0.3$#

Tibia length (mm) 16.8 ± 0.16 17.0 ± 0.3 15.2 ± 0.3$#

EDL CSA (mm2) 1.35 ± 0.07 1.34 ± 0.06 1.01 ± 0.05$#

Symbols for significant differences (p<0.05) are-

* = between untreated mdx and C57

$ = between untreated mdx and taurine treated mdx and

# between taurine treated mdx and C57. Data are presented as mean ± SEM and n = C57 (9), mdx (10) and taurine treated (8).

https://doi.org/10.1371/journal.pone.0187317.t001
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was similar for C57 and mdx mice (Table 1), and taurine treatment reduced mdx tibia length

by 12%. EDL cross sectional area (to which force recordings were normalised) was similar for

C57 and mdx mice (Table 1), however, taurine treatment reduced the mdx EDL cross sectional

area by 25%. These data indicate that treating juvenile mdx mice with a high dose of taurine

(16 g/kg/day) causes growth restriction.

Grip strength and ex vivo muscle strength

The grip strength test is a non-invasive in vivo measure of mouse limb strength. Mdx mice had

weaker (15%) normalised (to body weight) grip strength (Fig 1A) and total grip strength (Fig

1B), compared with C57 mice. Although taurine treatment of mdx mice had no effect on nor-

malised grip strength (Fig 1A), there was a 15% reduction in total grip strength (Fig 1B).

Mdx EDL muscle produced lower specific tetanic forces ex vivo at stimulation frequencies

of 30 Hz and above (Fig 2A), and lower total tetanic forces at stimulation frequencies of 40 Hz

and above (Fig 2B), compared with C57 EDL muscle. While taurine treatment had no effect

on specific tetanic force of mdx EDLs (Fig 2A), there was a reduction in total tetanic force at

stimulation frequencies of 40 Hz and above (Fig 2B). These data show that the high taurine

dose did not improve either in vivo or ex vivo muscle strength.

Inflammation and protein thiol oxidation

Neutrophil content was 250% higher in mdx muscle compared with C57 muscle (Fig 3A), and

taurine treatment reduced, by 70%, neutrophil content of mdx muscle back to C57 levels.

MPO content was 440% higher in mdx muscle compared with C57 muscle (Fig 3B), and tau-

rine treatment reduced, by 50%, MPO content of mdx muscle. Protein thiol oxidation was

20% higher in mdx muscle compared with C57 muscle (Fig 3C), and taurine treatment

reduced, by 20%, protein thiol oxidation in mdx muscle, back to levels in C57 mice. Overall,

the high dose taurine had striking benefits on these parameters in the dystrophic mdx muscles.

Taurine and cysteine content of liver, plasma and muscle

Taurine content was similar for C57 and mdx liver (Fig 4A), and taurine treatment led to a

200% increase in taurine content of mdx liver. Taurine content was similar for C57 and mdx

plasma (Fig 4C), and taurine treatment increased taurine content of mdx plasma by 1100%.

Fig 1. Fore limb grip strength of untreated C57, untreated mdx and taurine treated mdx mice. Data are presented as

both force normalised to body weight (A) and total force (B). Symbols for significant differences (p<0.05) are- * = between

untreated mdx and C57, $ = between untreated mdx and taurine treated mdx and # between taurine treated mdx and C57. Data

are presented as mean ± SEM and n = C57 (9), mdx (10) and taurine treated (8).

https://doi.org/10.1371/journal.pone.0187317.g001
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Muscle taurine content was similar for all groups (Fig 4E). Cysteine content was 20% lower in

mdx liver compared with C57 (Fig 4B), and taurine treatment increased, by 30%, cysteine con-

tent of mdx liver, back to C57 levels. Cysteine content was 35% lower in mdx plasma compared

with C57 (Fig 4D), and taurine treatment increased cysteine content of mdx liver by 100%,

with cysteine content of taurine treated mdx plasma being also 33% higher than C57 plasma.

Muscle cysteine content was similar for C57 and mdx groups; however cysteine content of tau-

rine treated mdx muscle was 30% lower that C57 muscle (Fig 4F).

These data indicate that delivery of the high dose of taurine (16 g/kg/day) in the drinking

water to mdx mice is highly effective at increasing levels of taurine in the liver and plasma;

however, this high dose taurine causes a (potentially toxic) build-up of cysteine.

Liver cysteine dioxygenase and cysteine sulfinate decarboxylase

Immunoblotting quantification of protein levels of enzymes related to cysteine metabolism

showed that cysteine dioxygenase protein was 140% higher in livers of untreated mdx mice

compared with C57 (Fig 5A), and taurine treatment reduced, by 60%, cysteine dioxygenase

content of mdx liver back to levels of C57 liver. Measurement of enzymatic activity showed

that cysteine dioxygenase activity was 60% higher in mdx liver compared with C57 (Fig 5B),

and taurine treatment dramatically decreased, by 80%, the cysteine dioxygenase activity of

mdx liver, to well below the activity of C57 livers. Cysteine sulfinate (the metabolite intermedi-

ary between cysteine and taurine) content was similar for all groups (Fig 5C). Cysteine sulfi-

nate decarboxylase was 60% lower in mdx liver compared to C57 liver (Fig 5D), and taurine

treatment reduced cysteine sulfinate decarboxylase content of mdx liver by 97%.

These data show that treating juvenile mdx mice with a high dose of taurine likely causes a

down-regulation of taurine synthesis in mdx liver, leading to a build-up of cysteine in mdx

liver and plasma.

Discussion

The key novel observation in this study is that delivery of high dose taurine in drinking water,

estimated to be about 16 g/kg/day, caused growth deficits in young mdx mice. We propose

Fig 2. Force frequency curves of untreated C57, untreated mdx and taurine treated mdx EDL muscles. Isometric force

produced at frequencies from 5–150 Hz was plotted for both specific force (A) and total force (B). Symbols for significant differences

(p<0.05) are- * = between untreated mdx and C57, $ = between untreated mdx and taurine treated mdx and # between taurine

treated mdx and C57. Data are presented as mean ± SEM and n = C57 (7), mdx (9) and taurine treated (7).

https://doi.org/10.1371/journal.pone.0187317.g002
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that the cause of the growth deficit is an indirect consequence of an increase in cysteine levels

resulting from an inhibition of the taurine synthesis pathway (which disposes of excess cyste-

ine) in mdx mice. Nevertheless, consistent with previous work, there was good evidence that

taurine decreased inflammation and protein oxidation in dystrophic tissue.

We and others have shown that taurine treatment of mdx mice (with doses ranging from 1

to 16 g/kg/day) decreases dystropathology, with an improvement in muscle strength and a

decrease in myofibre necrosis, inflammation and oxidative stress [15–21]. Likewise, we show

in the current study using young juvenile mdx mice that a high taurine dose of 16 g/kg/day

(from 7 days until 6 weeks of age) decreased neutrophil and MPO content of mdx muscle, as

well as protein thiol oxidation, supporting our hypothesis that taurine exerts strong anti-

inflammatory and antioxidants benefits in dystrophic muscle. We propose a likely mechanism

involves scavenging of HOCl by taurine, and subsequent formation of the anti-inflammatory

molecule taurine chloramine [22, 24, 25].

The high dose taurine in the present study resulted in a decrease in total in vivo and ex vivo
force. However this dose did not affect in vivo and ex vivo muscle strength when normalised to

body weight (grip strength) or to cross sectional area calculated from muscle weight (specific

force). This indicates that taurine was not detrimental to the inherent contractile properties of

Fig 3. Quadriceps muscle content of neutrophil elastase (A) and MPO (B) and percentage of protein thiol oxidation

(C) in untreated C57, untreated mdx and taurine treated mdx mice. Symbols for significant differences (p<0.05) are- * =

between untreated mdx and C57, $ = between untreated mdx and taurine treated mdx. Data are presented as mean ± SEM

and n = C57 (8), mdx (8) and taurine treated (8). A representative blot for neutrophil elastase is shown, protein was

standardised to total protein using stain-free gels. From the same stain-free gel image, the loading of actin is shown.

https://doi.org/10.1371/journal.pone.0187317.g003
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muscle(s). Instead, the loss of force can be attributed to smaller body and muscle weights in

taurine treated young mdx mice, relative to age-matched untreated mdx mice.

The decrease in body weight and muscle size was also associated with a decrease in tibia

length of taurine treated mdx mice, indicating that the high dose taurine caused growth

restriction in these young mdx mice. Whilst studies have shown that dietary taurine restriction

can lead to growth restriction [34, 35], evidence that excess taurine can also cause growth

restriction is limited in the literature. One study showed that treating newly weaned pigs for 4

weeks with 3% taurine (in food) significantly reduced the weight gain to feed ratio, suggesting

Fig 4. Liver content of taurine (A) and cysteine (B), plasma content of taurine (C) and cysteine (D) and quadriceps muscle

content of taurine (D) and cysteine (E) in untreated C57, untreated mdx and taurine treated mdx mice. Symbols for significant

differences (p<0.05) are- * = between untreated mdx and C57, $ = between untreated mdx and taurine treated mdx and # between

taurine treated mdx and C57. Data are presented as mean ± SEM and n = C57 (8), mdx (8) and taurine treated (8).

https://doi.org/10.1371/journal.pone.0187317.g004
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some effect of taurine treatment on growth rate, although this did not affect final body weight

[36]. Additionally, feeding juvenile sablefish with a range of taurine concentrations (from

0.25% to 6% in food) resulted in growth restriction at low and high concentrations of taurine,

with optimal weight gain occurring between 0.4% and 4.2% dietary taurine [37].

Our data indicate that a high dose of taurine may not be an effective or safe treatment for

very young growing mdx mice. In contrast, De Luca and colleagues did not observe any delete-

rious effects of taurine when treating mdx mice aged 4 weeks (until 8 weeks) with an equiva-

lently high dose of taurine (up to 400 mg per mouse per day, which is comparable with our

dose of 16 g/kg/day). Their dose was also highly effective at improving strength of exercised

mdx muscles, and was more beneficial than treatment with prednisolone, the current gold

standard treatment of DMD boys [16]. There are a number of possible explanations for the dis-

crepancy between our study and that of De Luca. In the De Luca study, mice underwent

chronic treadmill exercise, which may have had effects on metabolism or protein turnover that

may have ameliorated any toxic effects of high taurine. Additionally, taurine treatment of

young mdx mice in the De Luca study began at 4 weeks, while in the current study mice had

Fig 5. Liver content (A) and activity (B) of cysteine dioxygenase, content of cysteine sulfinate (C) and cysteine sulfinate

decarboxylase (D) in untreated C57, untreated mdx and taurine treated mdx mice. CD = cysteine dioxygeasne, CS = cysteine

sulfinate, CSD = cysteine sulfinate decarboxylase. Symbols for significant differences (p<0.05) are- * = between untreated mdx and

C57, $ = between untreated mdx and taurine treated mdx and # between taurine treated mdx and C57. Data are presented as

mean ± SEM and n = C57 (8), mdx (8) and taurine treated (8). Representative blots are shown, proteins were standardised to total

protein using stain-free gels. From the same stain-free gel image, the loading of albumin is shown.

https://doi.org/10.1371/journal.pone.0187317.g005

Beneficial effects of high dose taurine treatment in mdx mice are offset by growth restriction

PLOS ONE | https://doi.org/10.1371/journal.pone.0187317 November 2, 2017 11 / 15

https://doi.org/10.1371/journal.pone.0187317.g005
https://doi.org/10.1371/journal.pone.0187317


access to taurine enriched water from 7 days of age. The growth phase of mice is relatively very

short, with rapid growth up until 6 weeks before a marked decline of growth until almost

ceases by 10–12 weeks [38]. By treating mice from 1–6 weeks of age, we captured a greater por-

tion of their period of maximal growth, whereas mice aged 4–8 weeks in the De Luca study

missed the important earlier intense growth phase, with associated age-related changes in

metabolism. Regardless of the speculative causes for the discrepancy, results from the current

study indicate that taurine treatment regimes can have unforeseen side effects. The usefulness

of taurine as a treatment for dystrophy would benefit from further research into the circum-

stances (e.g. dosing, exercise) in which the side-effects are manifested.

We propose that the detrimental effects of taurine on growth are an indirect effect caused

by increased cysteine levels in the liver and plasma. Excess cysteine is considered toxic

(reviewed in [39]) and excess dietary cysteine is known to reduce growth rates [40]. We have

previously shown that treating mdx mice with the cysteine precursor OTC from weaning to 6

weeks led to growth restriction [19] similar to that observed in this current study. In the pres-

ent study the high dose of taurine increased cysteine levels in mdx liver and plasma and it

seems likely that this resulted from a down-regulation of taurine synthesis in the liver, which

functions to dispose of excess cysteine [41].

Cysteine is catabolised by the enzyme cysteine dioxygenase to cysteine sulfinate, which is

decarboxylated by the enzyme cysteine sulfinate decarboxylase to form hypotaurine, which is

then oxidised to taurine [42]. We found that the high dose of taurine decreased cysteine dioxy-

genase content and activity, and dramatically decreased cysteine sulfinate decarboxylase con-

tent in mdx liver. The activity and levels of these enzymes are highly sensitive to cysteine liver

content and dietary intake of cysteine, as the body pool of cysteine requires tight regulation.

While cysteine is toxic at high levels, adequate levels are required for protein and glutathione

synthesis [39].

Our observation that taurine exerts a strong feedback effect on this pathway appears to be

novel. Although a high protein diet has also been shown to affect activity and levels of these

enzymes, this response was suggested to be wholly dependent on the sulfur containing amino

acids cysteine and methionine within the protein diet [43–46]. One relevant study showed that

cysteine sulfinate decarboxylase was subject to end-product feedback inhibition, since dietary

taurine supplementation in healthy rats caused a significant decline in activity [47]. We were

not able to locate any studies that suggested that taurine could cause toxicity as a result of

excess cysteine. Taurine therapy in adult humans has been reported to be safe and non-toxic,

with no adverse effects reported (with the exception of minor gastrointestinal issues) [48]. Our

observations are in mdx mice only, and we have previously shown that taurine synthesis is dys-

regulated in mdx mice [26] and there appear to be different metabolic demands in dystrophic

mdx mice [49]. Such differences may render mdx mice more sensitive to cysteine toxicity

(caused by a taurine treatment), compared with other mouse strains; this is supported by

research [21] showing that while taurine treatment (3% in drinking water) decreased weight of

adult mdx mice, C57 mice were not affected. Further research is required to establish if high

doses of taurine are unsafe in other animal models and humans.

We and others have provided strong data from pre-clinical studies to support the use of tau-

rine as a highly promising and inexpensive therapeutic nutritional intervention for DMD. The

issue of growth restriction with high taurine dosage in very young dystrophic animals adds a

cautionary note. We propose that this concern can be addressed by carefully monitoring levels

of metabolites of taurine and cysteine in the blood and urine of growing animal models and

DMD boys. As a consequence, further research is required to identify the dosing range of tau-

rine that maximises the protective benefits of taurine while minimising the likelihood of

growth restriction, before considering clinical translation to young DMD boys.
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