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Nowadays, the implementation of Artificial Intelligence (AI) in medical diagnosis has attracted major attention within both the
academic literature and industrial sector. AI would include deep learning (DL) models, where these models have been achieving a
spectacular performance in healthcare applications. According to the World Health Organization (WHO), in 2020 there were
around 25.6 million people who died from cardiovascular diseases (CVD). *us, this paper aims to shad the light on cardiology
since it is widely considered as one of the most important in medicine field. *e paper develops an efficient DL model for
automatic diagnosis of 12-lead electrocardiogram (ECG) signals with 27 classes, including 26 types of CVD and a normal sinus
rhythm.*e proposed model consists of Residual Neural Network (ResNet-50). An experimental work has been conducted using
combined public databases from the USA, China, and Germany as a proof-of-concept. Simulation results of the proposed model
have achieved an accuracy of 97.63% and a precision of 89.67%. *e achieved results are validated against the actual values in the
recent literature.

1. Introduction

Nowadays, the medical field requires new techniques and
technologies in order to evaluate information objectively.
According to data from the World Health Organization
(WHO), cardiovascular diseases (CVD) represent the
leading cause of death globally, where the CVDs account for
more than 30% of global mortality each year, and it is es-
timated to reach around 130 million people by 2035 [1].
*erefore, researchers are developing new methods for
preventing, detecting, and treatment of diseases related to
the CVD. *ere are many types of cardiovascular abnor-
malities, while this study focuses on 26 anomalies, which will
be cited later.

*e electrocardiogram (ECG) is a recording of the
electrical activity of the human heart, which is deemed as a

noninvasiveness and real-time exam. It is still one of the
essential pillars of the diagnosis of cardiac problems. In
recent years, the methods of analysing CVDs have been
strengthened by the introduction of imaging procedures,
especially the echocardiogram. However, this does not
change the importance and usefulness of ECGs, and the
parameters could be extracted from this signal. *e number
of leads on a typical ECG acquisition equipment divides it
into 1-lead, 3-lead, 6-lead, and 12-lead ECG. *e 12-lead
ECG is the most often utilized kind in clinical practice due to
its ability to concurrently capture the potential changes of 12
sets of electrode patches attached to the body in standardized
places [2]. When comparing to other types of ECG acqui-
sition equipment, 12-lead ECG provides more information
on cardiac activity and is frequently utilized in hospital for
diagnosis and treatment. In fact, many essential parameters
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can be extracted from the ECG signal; for instance, the
duration and patterns of the various waves, which are in-
dicative of specific cardiac abnormalities.

Professional doctors frequently make ECG analysis and
interpretation [3], which is heavily reliant on training,
qualifications, experiences, and expertise; thus it is difficult
to extract all information from ECG signals [4, 5]. In
practice, manual detection of characteristic waves of the
ECG signal and classification of heartbeats are difficult and
tedious tasks, especially to analyse long-term recordings as
Holter examination or ambulatory cases for continuous
monitoring in intensive care and resuscitation wards.

With the progress of physical hardware technologies and
algorithm, computer-assisted medical diagnoses (CAMD)
have become vital in diagnosing CVDs. CAMD based on
ECG signals can give professional suggestions or decide
instantly by searching for characteristic patterns. It can help
doctors make diagnoses and appears to be required due to
the huge number of patients in critical care units where they
need continuous monitoring. *is is how CAMD looked to
use the ECG signal to help in cardiac diagnosis. *ese
systems should be easy to set up, upgradeable, accurate,
durable, and dependable. *e authors of [6] emphasised the
importance of using optimization techniques to enhance
efficiency for prediction in healthcare applications.

Over the past decades, many techniques for detecting
CVDs have been proposed, where some of them are based on
signal processing techniques and classification algorithms
like support vector machines (SVMs). Deep neural network-
based machine learning (ML) and convolutional neural
networks (CNN) methods have lately emerged as efficient
tools in large applications such as computer vision and
natural language processing. Noticeably, coupling ML and
DL with healthcare has brought up massive advantages and
researchers are striving to find more innovative solutions.

*is work aims to classify 27 classes, with ECG signals
containing 26 types of CVDs and normal sinus rhythm.*is
classification where we used four databases contains 42511
ECG records to train, validate, and evaluate models such as
CPSC 2018, CPSC 2018-Extra [7], PTB-XL [8], and Georgia
[7]. *e used dataset contains ECG 12-leads signals, which is
a typical ECG set used in clinical cases and hospitals. It is
trained with a model based on Residual Neural Networks-50
(ResNet-50) from CNN methods, which is known as one of
the most efficient models in classification.

*e rest of this paper is structured as follows. Section 2
presents an overview of related works in the literature;
Section 3 represents background information on the in-
terpretation of an ECG. Section 4 describes the proposed
model and our simulation workflow. *e proposed ECG
classification model results are discussed in Section 5. Fi-
nally, Section 6 presents the conclusion and future works.

2. Related Work

DL is a subdivision of ML; ML is a subdivision of AI and AI
is enabling the machine to act like a human. ML is a way for
achieving AI using algorithms trained on data, while DL is
inspired by the structure of the human brain or also known

as an artificial neural network.*e features in ML are picked
out with an expert in the domain, whereas in DL they are
detected by the neural network without human intervention.
*at is why DL needs much higher volume of data to be
trained to obtain best performance. AI has been shown in
numerous experiments to be capable of automatically
identifying anomalies registered by an ECG.

Generally, the databases used in papers about ECG di-
agnosis are public. *e first one is from PhysioNet, Mas-
sachusetts Institute of Technology-Beth Israel Hospital
(MITBIH) [9] which contained only 49 recordings with 30-
minute length of each subject, including five classes, normal
(N), ventricular ectopic (V), supraventricular ectopic (S),
fusion (F), and unknown (Q). Enabio et al. [10] used
MITBIH as a database for ECG classification [11–16]. *e
second database largely used is Physiological Signal Chal-
lenge 2018 (CPSC) [7] which is a public too. It comprises
687,712 lead ECG recordings including eight arrhythmias
IAVB (1st degree AV block), AF (atrial fibrillation), LBBB
(left bundle branch block), PAC (premature atrial con-
traction), RBBB (complete right bundle branch block), and
SNR (sinus normal rhyme) [17–19]. *e third one is
Physikalisch Technische Bundesanstalt (PTB) [20] diag-
nostic database, which contains 54,912 lead ECG records
from 290 individuals [21–23]. Selvalingam et al. [24] used
private databases to predict ventricular arrhythmias with a
DLmodel, CNN. In addition, Smith et al. [25] collected their
data to interpret ECG arrhythmias.

Some studies instead have used more than one. For
example, Li et al. [26] used five databases (FANTASIA,
CEBSDB, NSRDB, STDB, and AFD). However, they do not
combine the data to categorize ECG; instead, they test their
model for each data set separately. Zhang et al. [27] used four
databases, Acharya et al. [28] constructed 4 sets from a
combination of three databases (MITBIH [9], FANTASIA
[29], and BIDMC [30]). *e study varied on using balanced
and imbalanced ones. Wang et al. [31] used two databases
(MIT-BIH [9], CPSC2018 [7]) to classify ECG with a re-
current neural network (RNN) model. Table 1 lists the
different databases used in classifying the ECG signals.

In fact, in their workflows, ML methods consider four
fundamental steps:

(i) Signal preprocessing, which includes resampling,
noise removal (e.g., band-pass filters), and signal
normalization/standardization.

(ii) Heartbeat segmentation, which entails detecting the
R-peak (e.g., QRS complex) using algorithms like
Pan and Tompkins algorithm [32], the open-source
GQRS software supplied by the PhysioNet
community.

(iii) Feature extraction, which entails converting raw
signals into features that are most suited to the job at
hand (e.g., classification, prediction, and
regression.).

(iv) ECG signal analysis using traditional machine
learning approaches such as multilayer perceptron
(MLP) and decision trees.
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Even though traditional ML algorithms with hand-
crafted features have achieved good results for ECG analysis,
deep neural network (DNN) methods with the power of
automated features extraction and representation learning
have demonstrated human-level performance in analysing
biomedical signals [33].

DL approaches, on the other side, need a large quantity
of data and many parameters to be learnt. Furthermore,
most of the suggested methodologies and workflows for
evaluating ECG signals are specific to the task, at hand, and
cannot be applied to other biomedical topics. Various
studies have classified ECG data using a DL approach.
Ribeiro et al. [34] created an end-to-end DNN that is capable
of identifying six ECG anomalies with a database of
2,322,513 ECG records. *e detection accuracy ranges from
83.3% to 100%. *is DL model achieves an overall accuracy
of 97.57% for the prediction of CVDs. Ahsanuzzman et al.
[35] investigated the classification and prediction of a single
arrhythmia class, atrial fibrillation (AFib), using ECG sig-
nals. A hybrid long short-time memory (LSTM) and RNN
was used for this task. Obeidat et al [36] classified six ECG
beats classes using a hybrid DL model that combines CNN
and LSTM. *e hybrid model achieves accuracy and pre-
cision of 98.22% and 98.27%, respectively. Further, [37]
stressed on utilizing an optimization method to improve
efficiency in healthcare applications.

Adedinsewo et al. [38] constructed a CNN model for
classifying arrhythmia type left ventricular systolic dysfunc-
tion (LVSD) where the attaining accuracy was 85.9%. Xiong
et al. [39] decided to train 8528 ECG records fromCPSC data,
with ResNet-16 model achieving an accuracy of 82%. Zhang
et al. [17] used CPSC2018 database, which contained 6877
ECG recordings to build a 34-layer ResNet 1Dmodel in order
to detect 9 distinct arrhythmias in 12-lead ECG signals. *is
model had a classification accuracy of 96.6% for ECG signals.

It can be said that the number of records used is a bit small
to train a model of DL; however, as mentioned above, DL
needs a much higher volume of data. In this study, we choose
to combine four public databases to confirm the efficacy of the
model proposed. In this paper, the proposed model has
succeeded to diagnose the majority of 27 classes, including 26
CVDs and normal sinus rhythm, which will assist domain
experts in identifying patient records, while other researches
used ECG to classify just one or two anomalies [35, 38].

3. Background Knowledge

It is critical to comprehend electrical cardiac function, since
the heart is a mechanical organ that ensures periodic con-
traction and relaxation. Cells grouped at the nodal level are

responsible for an electrical flow that spreads to nearby heart
cells (myocardial). Following that, it recontacts to be able to
expel blood from other organs.

3.1. ECG Principal. *e ECG is a recording of the electrical
activity of the heart, which is usually shown as a graph of
voltage values vs. time. Electrodes are used to detect electrical
changes caused by cardiac muscle cell depolarization and
repolarization at a distance from the heart, through the skin.
To note, an electrocardiograph is used in this examination.
Figure 1 represents a simplified diagram of the conductive
elements of the heart, which consists of conductive tissues
which are the bundle of His, Bachmann’s bundle, the left and
right bundle branches, the Purkinje fibres, and cardiac
myocytes themselves. Contractile tissues are the atrial and
ventricular wall myocytes. *is figure is vital in showing the
main components of the heart, so extracting data and signals
can be done in more accurate way.

3.2. 7e Foundation of ECG Interpretation. ECG interpre-
tation includes an assessment of the morphology (appear-
ance) of the waves and intervals on the ECG curve.
*erefore, ECG interpretation requires a structured as-
sessment of the waves and intervals. Figure 2 shows a de-
polarization/repolarization phase of the heart that are
represented electrocardiographically by various P waves,
QRS, and T waves.

(i) P wave: *is is a result of atrial depolarization,
which is initiated by the sinus node. Pacemaker cells
at this node carry the signal to the right and left
atria. *e ECG demonstrates abnormal atrial
repolarization.

(ii) QRS complex: *is is the average of the inner
(endocardial) and outer (epicardial) cardiomyocyte
depolarization waves. A typical QRS pattern is
formed when endocardial cardiomyocytes depo-
larize somewhat earlier than the outer layers.

(a) *e Q wave is the first negative deflection fol-
lowing the P wave. *e Q is missing if the first
deflection is not negative.

(b) *e R wave is the positive deflection.
(c) *e S wave is the negative deflection that occurs

following the R wave.

(iii) T wave: It indicates the ventricular repolarization.
During the T wave, there is no action in the heart
muscle.

Table 1: Overview of various databases using ECG classification.

Database Subjects Records Duration Frequency (Hz) Leads References
MITBIH [9] 47 48 30min 360 2 [10–13]
CPSC 2018 [7] 6877 6877 6–60 sec 500 12 [14–16]
PTB [19] 290 549 Not specified 1000 12 [18–20]
Fantasia [29] 40 40 120min 250 Not specified [23–25]
BIDMC [30] Not specified 53 8 min 125 2 [26]
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Pathologies or abnormalities in ECG analysis are dis-
covered and categorized based on their departure from
normal cardiac rhythm. Normal sinus rhythm (NSR) refers
to normal cardiac activity in which there is no deviation or
change in the morphology of the ECG signal.

*is paper focuses on classifying 27 classes of ECG signal;
the classes are 1st DegreeAVBlock (IAVB), LowQRSVoltages
(LQRSV), Right Axis Deviation (RAD), Atrial Fibrillation
(AF), Nonspecific Intraventricular Conduction (NSIVCB),
Atrial Flutter (AFL), Bradycardia (Brady), Complete Right
Bundle, Branch Block (CRBBB), Incomplete Right Bundle
Branch Block (IRBBB), Left Anterior Fascicular Block (LAnfb),
Pacing Rhythm (PR), Right Bundle Branch Block (RBBB),
Premature Atrial Contraction (PAC), Premature Ventricular
Contractions (PVC), Sinus Arrhythmia (SA), Sinus Brady-
cardia (SB), Sinus Rhythm (SNR), Sinus Tachycardia (Stach),
Supraventricular Premature Beats (SVPB), Left Axis Deviation
(LAD), Prolonged Pr Interval (LPR), Prolonged Qt Interval
(LQT), T Wave Abnormal (Tab), T Wave Inversion (Tinv),
Left Bundle Branch Block (LBBB), Qwave Abnormal (Qab),
and Ventricular Premature Beats (VPB). Figure 3 shows
samples from each of the 27 ECG signal classes.

4. Proposed Model

*is paper proposes a ResNet model with four databases to
classify ECG signals. *is section starts by presenting the
architecture of model proposed and then highlighting our
working method.

4.1. ProposedModelArchitecture. In this paper, ResNet-50 is
the proposed model for features extraction. In fact, it
combines convolutional neural network for ECG diagnoses.
Figure 4 illustrates an overview of the model architecture.
Making the model training tractable has been assured by the
residual blocks with shortcut connections. As input, the
model takes an ECG signal x ∈Rnsamples×12. As outputs, the
result of the multilabel classification is ~y ∈R1×27.

A 1D convolution layer (conv1D) was applied to these
inputs, a batch normalization layer (BN), a rectified
linear unit activation layer (ReLU), and a Max Pooling
layer. Also, 16 residual blocks have been used to extract
deep features. *ere are two types of residual blocks as
follows:

Atrioventricular
(AV) node

Sinoatrial
(SA) node

Bundle of His

Le� bundle
branch

Le� anterior
division

Le� posterior
division

Purkinje fibres

Right bundle 
branch

Figure 1: *e conductive elements of the heart.

P wave QRS Complex T wave

P T

Q S

R

Figure 2: Depolarization/repolarization phases of the heart that are represented electrocardiographically by various P waves, QRS, and T
waves.
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Figure 3: Continued.
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(i) Res_Block_1 is composed of three Conv1d layers,
three BatchNorm1d layers, and two ReLU activation
layers. On the one hand, one Conv1d layer and one
BatchNorm1d layer are used to match dimensions
and skip connections on the other.

(ii) Res_Block_2 is composed only of three Conv1d
layers, three BatchNorm1d layers, and two ReLU
activation layers.

*e Conv1d layers are used for extracting features and
the BatchNorm1d layers are used to make the model faster
and stable. *e ReLU layers are introduced to perform
nonlinear activation. *e features extracted by the residual
blocks are pooled using Average Pooling, where the pooling
results are collected and sent to the output layer, which uses
the sigmoid activation function to produce predictions.

4.2. Dataset Characteristics. *e used dataset in this work
combines four public databases containing 42,511 recordings
of 12-lead ECG. *is type of ECG is the most used in clinical
cases because of the large amount of information that it
generates. *ese recordings are sampled at a frequency of
500Hz. Table 2 describes the characteristics of each database.

*e used dataset in this work contains 27 classes, where
26 classes are of CVDs and a class represents a normal heart
state. Figure 5 shows the distribution of these classes on each

database. Figure 6 illustrates an overview of its distribution
in the dataset where a problem of data imbalance and data
insufficiency are noticed.

4.3. Simulation Workflow. Figure 7 illustrates the workflow
of the proposed method that has been implemented in our
study. Each step of this workflow will be explained in the
following subsections.

4.3.1. Data Preprocessing. *e length of the signals of the
four databases varies from 6 seconds to 60 seconds.
*erefore, it has been decided to uniform all the lengths n
samples. Since the common length is 10 seconds, we set 5000
samples (10 s, 500Hz as sampling rate). For ECGs recordings
having a duration superior to 10 seconds, the first 10 s was
kept. Otherwise, signals will be zero-padded until having 10 s
as a duration. Figure 8 describes this preprocessing tech-
nique, where in this step, for the signal counting less than
5000 samples will be zero-padded to obtain 5000 samples.
For signals containing more than 5000, samples above this
value will be discarded.

Figure 9 demonstrates in more detail the technique of
uniformly reducing the length of an ECG signal, in which we
have a signal with a length of 7500 reduced to 5000 to train our
model. Data preprocessing is explained as per Algorithm 1.
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Figure 3: Samples of each class of ECG.
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4.3.2. Data Augmentation. As shown in Figures 4 and 5, the
problem of data insufficiency and data imbalance is serious
for CVDs. To deal with this issue, amplitude scaling was
applied as a data augmentation technique. *e creation of
realistic data to prevent data scarcity is known as data

augmentation. Practically, it enhances the model robustness
and lessens the fitting concerns against similar examples
[14]. Amplitude scaling is the multiplication of ECG signals
by a random factor α. *is technique aims to compress or
stretch the magnitude. *e factor α is sampled from normal

Table 2: Description of each database’s characteristics.

Database Sources Number of ECG recordings Length of ECG recordings

CPSC 2018 [7]

China Physiological Signal Challenge in 2018

6877
(i) M: 3699
(ii) F: 3178

6 s–60 s

CPSC 2018 EXTRA [7]
3453

(i) M: 1843
(ii) F: 1610

6 s–60 s

PTB-XL [8] Physikalisch Technische Bundesanstalt
21,837

(i) M: 11,379
(ii) F: 10,458

10 s

Georgia [7] Georgia
10,344

(i) M: 5551
(ii) F: 4793

10 s
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Figure 5: Pathologies distribution in each database.
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DATA 
Preprocessing

Model 
Training

Model
Evaluation

DATA

Training
DATA

Validation
DATA

Test
DATA

DATA 
Augmentation Results 27 classes 

Figure 7: Work methodologies.

0 0 0 0 0Padding

Trancated

5000

Discard

Figure 8: Preprocessing technique.

Computational Intelligence and Neuroscience 9



distribution N (1, 0.1). *e algorithm of amplitude scaling
algorithm is shown in Algorithm 2.

4.3.3. Data Split (Train, Validation, Test). As mentioned in
Section 4.2 the dataset used comprises 42,511 ECG records.
First, dataset has been split into two sets: test set and training
and validation set in the ratio of 0.75 : 0.25. After this, 10-fold
stratified cross-validation approach on the training and
validation set was applied.*is will return 10 stratified folds.
*ese folds will be made by preserving the percentage of
samples for each class. *is forces the class distribution in
each data split to match the distribution in the whole
training dataset.

Generally, the training data is dedicated to train the
model. *e validation data is reserved for optimizing the
model. *erefore, a search for the best parametrization
without using the test data is done to measure the model
performance and allow us to evaluate the model general-
ization ability. Finally, we obtain a test set and training and
validation with 10,627 and 31,884 ECG records, respectively.
In addition, the shapes of each training fold and validation
fold are 25,507 and 6377 ECG records, respectively. Fig-
ure 10 illustrates an overview of this proposed method.

4.3.4. Training and Evaluation. *e trial-and-error ap-
proach is used to determine the hyperparameters. In essence,
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Figure 9: Preprocessing example.

Input: Training data
Output: Training data pre-processed

(1) X=ECG signal
(2) l = length (X)
(3) if l < 5000
(4) for I from l to 5000 do
(5) X [i] = 0
(6) end for
(7) else X=X [:5000]
(8) end if
(9) return X
(10) END

ALGORITHM 1: Data preprocessing.

Input: Training data pre-process
Output: Training data pre-process augmented

(1) α= 0.1
(2) X=ECG signal
(3) ScalingFactor = random.normal (loc = 1.0, scale =α, size = (1, X.shape [1]))
(4) Noise =matmul (ones ((X.shape [0], 1)), scalingFactor)
(5) return X ∗ Noise

ALGORITHM 2: Amplitude scaling.
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Adam with a learning rate of 10-3 is employed as the op-
timizer. *e binary cross-entropy loss function was used.
*e optimal values of the hyperparameters of the deep
neural network are as follows: the length of the 12-lead ECG
input is set to 5000, the batch size is 32, and the number of
epochs is equal to 100.

To reduce the learning rate, we used the learning rate
scheduler with the following schedule:

lr �
lr, epoch< 10,

lr.e− 0.1
, epoch≥ 10.

 (1)

4.4. Evaluation Metric. In multiclassification problems,
precision and accuracy are commonly used to assess the
model’s performance. *e performance of an algorithm is
often measured in terms of four variables for each record.
*ese two performance indictors (accuracy and precision)
can be calculated in equations (2) and (3)

Accuracy �
TP + TN

TP + TN + FP + FN
, (2)

Precision �
TN

TN + FP
, (3)

where TP denotes True Positive, FP denotes False Positive,
TN denotes True Negative, and FN denotes False Negative.

5. Results and Discussion

*is section presents visual and descriptive discussion based
on the proposed model. Additionally, a comparative table
has been introduced to compare the proposed work against
other studies cited in related works as per Table 3. To note,
OVH Cloud has been used with the following characteristic,
to train the proposed model.

(i) Memory: 45 Go
(ii) vCore: 8
(iii) GPU: NVIDIA Tesla V100 16 Go

Precision and accuracy are generally used as two per-
formance indictors to evaluate model performance in
multiclassification model. In our situation, precision rep-
resents the probability that the model makes the correct
prediction, while accuracy is defined as the ratio between the
proportion of correct predictions made by the model and the
number of total predictions.

In the training and validation phase, the obtained ac-
curacy is 97.63% and 97.58%, respectively. In terms of
precision, we obtained 89.67% and 88.85%, respectively. *e
loss value indicates how well or poorly the proposed model
performs after each iteration. For the loss, 3.10−3 and
1.27.10−2 for each phase were reached as can be seen in
Table 4.

Because of using stratified 10 folds in the data-splitting
step, in the transition from fold to another, the model
undergoes a disorder until the stabilization in the last fold.
We can observe that, after the 60th iteration, the model
progressively converges to reach a stable accuracy, precision,
and loss at the 100th iteration. Figures 11–13 demonstrate
the evolution of these performance metrics.

It is important for disease diagnosis to improve per-
formance metrics for the correct classification of car-
diovascular diseases. ResNet-50 shows better
classification performance in comparison to the other
studies cited in related works as can be seen in the
comparative Table 3.

In the evaluation of the proposed model performance, a
normalized confusion matrix was created as can be seen in
Figure 14, where each row refers to an actual class, while
each column represents a predicted class. *e proposed
model performs well for NSR, RBBB, STach, TInv, AF,
IRBBB, and LBBB classes. In effect, their percentage of
correct predictions is higher than 80%. It performs mod-
erately for CRBB, Brady, SA, PAC, PVC, and SB classes. Next
comes NSIVCB, IAVB, LanFB, AFL, and RAD where the
percentage of correct predictions is higher than 60%. For the
rest of the classes, like QAb, LAD, and LPR, PR, the model
performs badly. *is problem of lower predictions is due to
the data imbalance even though an amplitude scaling was
applied.

Fold 1

All DATA

Training and validation Set Test Set

StratifiedKFold

Training DATA
Validation DATA

Fold 2

Fold 3

Fold 10

Figure 10: Split data method.
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Table 3: Results obtained by different research in relation to the proposed work.

Author Year Number of records Model Preprocessing Number of classes Accuracy (%) Precision (%)
Antonio et al. [34] 2020 2,322,513 DNN No 6 92.36
Ahsanuzzman et al. [35] 2020 48 LSTM and RNN Yes 1 97.57
Obeidat et al [36] 2021 2000 CNN and LSTM Yes 6 98.22 98.26
Adedinsewo et al. [38] 2020 6613 CNN No 1 85.9 74
Xiong et al. [39] 2020 8528 ResNet-16 Yes 4 82
Dongdong et al. [19] 2021 6877 ResNet-34 Yes 9 96.6
Proposed work 2021 42,511 ResNet-50 Yes 27 97.63 89.67

Table 4: Results of the proposed method.

Performance
Results

Training phase Validation phase
Accuracy 97.63% 97.58%
Precision 89.67% 88.85%
Loss 3.10−3 1.27.10−2
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Figure 11: Evolution of training and validation accuracy.
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Figure 12: Evolution of training and validation precision.
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Figure 13: Evolution of the loss in the training and validation.

Table 5: Test results by the model proposed.
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Table 5 shows the test results of the proposed model
including the incorrect samples (Tests 1 and 2) and
correct (Tests 3 and 4) samples that were detected by our
model, as well as its prediction and the current state of the
ECG.

6. Conclusion and Future Work

An effective DL approach based on ResNet-50 has been
presented in this paper to classify CVDs. *e number of
classes that have been considered were 27, where 26 belong
to heart anomalies and 1 belongs to normal state.*e dataset
used in this study combines four datasets collected from
three different countries. *e achieved results proved the
feasibility and the efficiency of the proposed model. *e
results, also, have been compared and validated against
values in the recent published literature. However, the
proposed model suffers from high computational com-
plexity and low range of interpretability. *us, as future
research, the proposed approach will be improved to be
ideally adapted for wider range of different healthcare
applications.
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