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ABSTRACT: Herein, N,P-rich carbon/carbon/Co2P2O7 hollow
nanotubes with a multilayered wall structure were successfully
fabricated for the ORR electrocatalyst. The hollow tube structure
catalysts were obtained by carbonizing Co2P2O7/C coated with the
phytate-doped PANI. The Co2P2O7/C was obtained by phosphor-
ylating a basic cobalt carbonate with phytic acid (PA). Onset and
positive half-wave potentials were measured at 0.90 and 0.84 V,
respectively, with a diffusion-limited current density of 4.58 mA/
cm2. Effect of the thickness of polyaniline (PANI) in the
electrocatalyst precursor was also investigated. The specific surface
area as well as the content of graphitic N altered as the time of
PANI polymerization increased, resulting in remarkably different
catalytic activities. This study of hollow nanotube catalysts exhibits
efficient noble-metal-free oxygen reduction reaction electrocatalysts for other chemical systems, which will provide abundant
electrochemical active centers and sufficient energy.

1. INTRODUCTION

Scientists are exploring new energy alternatives, such as solar
energy and electrochemical energy, to combat environmental
pollution and the current energy crisis.1−3 In various
electrochemical energy systems, fuel cells have received a lot
of attention due to their high energy conversion efficiency,
high specific energy, low environmental impact, and high
reliability. Several factors limit the use of fuel cells on a large
scale, including the poor reaction kinetics of the oxygen
reduction reaction (ORR) on the cathode4 and the use of
noble metal catalysts.4−6 Thus, to address the scarcity and high
cost of noble-metal-based catalysts, nonmetallic electro-
catalysts,7,8 nonprecious metal catalysts,9−12 and low noble
metal catalysts13,14 have therefore been investigated and
inspected.
Among the various alternatives, transition-metal phosphates

are regarded as potential alternatives due to their good
electrical conductivity, low price, stable properties, and
environmental friendliness. The performance of pyrophos-
phates of divalent metals with the general formula M2P2O7
(M1/4 Co, Ni, etc.) is expected to be a promising material of
choice for fuel cells.15 Heteroatom codoping (for example,
boron, nitrogen, phosphorus, sulfur, and others) can
considerably improve conductivity and functionality while
disrupting the initial conjugated electron coordination environ-
ment and even achieve metallicity.16−20 Taking Co-based
materials as examples, most zeolite-imidazole framework

(ZIF)-based precursors were used to develop active and
nonvolatile bimetallic ZIF-derived catalysts to enhance the
performance of oxygen reduction. Wang prepared CS Co@
NC-700 and Co@Co4N/MnO-NC catalysts using Zn and Mn
bimetallic MOFs as precursors, respectively, which not only
enhanced the performance of ORR but also acted on Zn-ion
batteries to improve their stability.21,22

As one of the Co−P materials, Co2P2O7 has superior
performance in supercapacitors, magnetism, microwave
absorption, and multiphase catalysis.23,24 In general, Co2P2O7
is mostly used for testing OER mainly stemming from the fact
that the valence electron density within the Co center of
Co2P2O7 decreases significantly when the metal undergoes
carbonization. However, the performance of Co2P2O7 in ORR
catalytic performance was far from expectations. It has been
reported that the catalytic performance of catalytic materials
can be improved through structural design and composition
optimization. Graphene nanocages doped with N,P and
Co2P2O7 act as Mott−Schottky heterojunction electrocatalysts
to enhance their interfacial25 and thus drive their intrinsic
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catalytic activity. The resulting N,P-doped carbon layer having
a metallic nature not only regulates the overfilling of the Co
center, for example, the orbitals occupied by the Co2P2O7
nanorods (NRs) as cocatalysts, but also ensures continuous
and long-term operation.26 However, the smart structure
design and synthesis of heterojunction-based Co2P2O7 and
N,P-codoped carbon nanostates for electrocatalysts with
enhanced performance are problems that urgently need to be
addressed.
Herein, hollow nanotube (HNTs) catalysts of N,P-rich

carbon/carbon/Co2P2O7 (Co2P2O7/C@N,P−C) were suc-
cessfully fabricated by combining the advantages of both
heteroatom-doped carbon materials and transition-metal
phosphides to realize the multifunctionality of the catalyst by
carbonizing the PANI-coated Co2P2O7. The effect of PANI
amount varying by the polymerization time in the catalyst
precursor on the catalytic performance was also investigated.
The as-prepared catalysts exhibited a much higher electro-
catalytic performance and stability for ORR.

2. EXPERIMENTAL SECTION
The steps needed for electrocatalyst syntheses are depicted in
Figure 1. Co2P2O7/C nanorods were fabricated first by PA-
coated chemical Co(CO3)0.5(OH)·0.11H2O carbonization.
The final N,P-rich carbon-coated Co2P2O7/C catalysts were
produced in an in situ reaction through high-temperature
carbonization and PANI polymerization.
2.1. Synthesis of Co(CO3)0.5(OH)·0.11H2O. In 30 mL of

deionized water (DI), dissolution of urea (0.0902 g, 1.5 mmol)
and Co(NO3)2·6H2O (0.1455 g, 0.5 mmol) took place. After 1
h of continuous stirring, the formed light-pink solution was
transferred to a stainless steel autoclave composed of
poly(tetrafluoroethylene) and placed in an electric oven at
120 °C for 12 h. The resulting precipitates were then subjected
to centrifugation followed by washing with DI water after
cooling, and Co(CO3)0.5(OH)·0.11H2O was collected as a
light-pink solid powder after drying in an oven at 60 °C.
2.2. Synthesis of Co2P2O7/C NRs. Co2P2O7/C nanorods

were synthesized by dissolving 0.1 g of Co(CO3)0.5(OH)·
0.11H2O prepared above in 10 mmol/L (50 mL) of PA

solution and stirring at 60 °C for 1 h. The precipitate was then
collected and dried before being annealed in an Ar atmosphere
at 800 °C for 2 h at a heating rate of 5 °C/min from room
temperature. The resultant samples were labeled Co2P2O7/C
NRs.

2.3. Synthesis of N,P-Rich Carbon-Coated Co2P2O7/C
Hollow Nanotubes (HNTs). First, 0.1 g of Co2P2O7/C NRs
was placed in a 50 mL PA 10 mM solution in a bilayer flask.
The temperature of the flask was cooled to 0−5 °C by a
recirculating cooling pump. Then, 0.1 mL of aniline monomer
was injected into the solution. After that, 0.1 g of ammonium
persulfate (APS) as an oxidant was sonicated in 50 mL of a 10
mM PA solution and dropped into the bilayer flask at a
constant rate using a constant pressure drop funnel. The
polymerization reaction was carried out for 3−5 h at 5 °C with
constant stirring. The PANI-coated Co2P2O7 NR product
(PANI-co-Co2P2O7/C) was filtered and rinsed multiple times
with DI before drying in a vacuum at 60 °C. Subsequently, the
PANI-co-Co2P2O7/C was annealed for 2 h at 800 °C in an Ar
atmosphere at a heating rate of 5 °C/min. The resultant N,P-
rich carbon-coated Co2P2O7/C samples were labeled
Co2P2O7/C@N,P−C HNTs. For comparison, the catalyst of
PANI-derived N,P-doped carbon was obtained by paralyzing
the phytate-doped PANI free from the presence of Co2P2O7 at
800 °C for 2 h.

2.4. Material Characterizations. An X-ray diffraction
(XRD) device of the Bruker D8-advance model was used at 40
mA and 40 kV with a 2θ range of 5−90° to analyze the XRD of
the catalysts. The X-ray photon spectra (XPS) were collected
using a JPS-9200 instrument supplemented with the radiation
of Mg Ka. The Bunko−Keiki M30-TP-M setup was used to
perform Raman spectroscopy with a polychromator using
YVO4 532 nm laser for excitation. Investigation of the thermal
stability of specimens was carried out through the Perkin
Elmer Diamond TG/DTA Lab system’s thermogravimetry
(TG). The specimens were heated up to 1000 °C at the rate of
10 °C/min under a constant N2 flow of 50 mL/min.
Transmission electron microscopy (TEM) and scanning
electron microscopy (SEM) were performed under the
JEOL-2010F and JEOL JSM-6510LA instruments, respectively.

Figure 1. Schematic illustration of the formation of Co2P2O7/C@N,P−C.
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Porosity and specific surface area were calculated employing
data from an ASAP-2000 device utilizing the Horvath−
Kawazoe (HK) and Brunner−Emmet−Teller (BET) methods.
The electrical conductivity measurements of the composite
particles were performed using an ST2253 digital four-probe
resistance tester (Suzhou Jingge Electronics Co., Ltd.) at room
temperature.
2.5. Electrochemical Analysis. The electrocatalytic

performance of the as-prepared samples was evaluated with
cyclic voltammetry (CV) and linear sweep voltammetry (LSV)
tests on a Gamry workstation connected with a rotating disc
setup. Rotating discs and rotation ring-disk electrodes
(RRDEs) (PINE) were used to assess the electrochemical
catalytic performance. The electrolyte used in this experiment
was 0.1 mol/L KOH solution, and the working electrode was a
glassy carbon disc with a diameter of about 5 mm equipped
with an electrocatalyst, while the reference and counter
electrodes were an Ag/AgCl solution using 0.1 mol/L KOH
and a platinum wire, respectively. A two-channel Gamry 1010E
constant potential meter was used for the rotating disc ring
device. For testing, a cleaned reaction cell was used and the
electrolyte was passed through oxygen until oxygen saturation;
the working electrode was polished and cleaned, and a drop of
catalyst ink was applied. The catalyst ink was composed of 2
mg of catalysts, ethanol (400 μL), and Nafion (25 μL, 5 wt %).
The working electrode had 0.2 mg/cm2 catalyst loading
density. Also, the specific tests can be found in a previous work
of our group.27 The catalytic electrode was first activated by
CV performed at 0−1.2 V (vs reversible hydrogen electrode
(RHE)) at a 50 mV/s scanning rate in an O2-saturated 0.1 M
KOH solution until a steady curve was observed. LSV was
collected in the 0−1.2 V range (vs RHE) at 10 mV/s rate in
the O2-saturated 0.1 M KOH at 100, 400, 900, 1225, 1600,
2000, 2025, and 2500 rpm. All ORR tests were carried out in
the presence of a constant oxygen gas stream.
The way to prepare the RRED electrode is to apply a

potential of 0.5 V to the Pt ring electrode. Based on the data
obtained by RRED, the number of electrons transferred during
ORR, n, and the H2O2 yield are determined by the following
equations.
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where ID and IR are the disk and the ring currents, respectively,
and N is the current collection efficiency (equal to 0.37).
All of the potential values were measured relative to the Ag/

AgCl potential and were recalculated to the RHE scale using
the Nernst equation below
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3. RESULTS AND DISCUSSION
3.1. Synthesis and Characterization of Co2P2O7/C@

N,P−C HNTs. The hollowed Co2P2O7/C@N,P−C NTs were
synthesized through carbonizing the PANI-coated Co2P2O7,
and the Co2P2O7 was obtained by paralyzing the PA-
surrounded Co(CO3)0.5(OH)·0.11H2O NRs, schematically
illustrated in Figure 1. Specifically, the Co(CO3)0.5(OH)·
0.11H2O clubs with widths of 100−200 nm were first
synthesized from Co(NO3)2·6H2O and urea. Then, PA with
a high P-content was allowed to coat on the surface of
Co(CO3)0.5(OH)·0.11H2O with the help of electrostatic
attraction. Subsequently, the protonated PA will react with
Co(CO3)0.5(OH)·0.11H2O and form the coordination of Co2+

and phytate (Co-phytate). Co2P2O7/C was achieved after
carbonization of phytate/Co(CO3)0.5(OH)·0.11H2O. Then,
PANI was polymerized on the surface of Co2P2O7/C from the
PA-containing solution. Finally, hollow-tube-structured
Co2P2O7/C@N,P−C catalysts are achieved, after calcination,
in which PANI acts as the C,N source, while PA acts as the P
source.
Powder XRD was employed to ascertain the sample’s crystal

structure and phase purity. The XRD outcomes in Figure 2a
indicated that the products for the samples with the PA
cladding pretreatment and PA cladding treatment followed by
PANI were composed of Co2P2O7. Other than the peaks of
diffraction related to Co2P2O7 (JCPDS No. 49-1091), no
impurities could be found in the XRD pattern. The main
diffraction and peaks at 29.6, 30.1, 35.3, 43.7, 49.3 and 58.3°
could be assigned to the (012), (-3̅02), (130), (032), (-424)
and (-1̅34) facets of the Co2P2O7 phase, respectively. Further,
as shown in Figure 2a, the intensity of the Co2P2O7/C@N,P−

Figure 2. (a) Patterns of XRD for Co2P2O7/C, Co2P2O7/C@N,P−C, and Co2P-Co2P2O7/C@N,P−C. (b) Raman spectra of Co2P2O7/C and
Co2P2O7/C@N,P−C.
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C diffraction peak is significantly higher than that of Co2P2O7/
C after the introduction of the conducting polymer. This
indicates that the crystallinity of the nanotubule is improved.
However, it is interesting that, when carbonizing the PANI-PA-
coated Co-(CO3)0.5(OH)·0.11H2O without the PA cladding
pretreatment, the calcination product was composed of
Co2P2O7 and Co2P. The peaks around 40.7, 43.3, 52, and
54.1° are related to the (121), (211), (130), and (002)
crystallographic planes of Co2P, respectively (JCPDS No. 54-
0413). Further, we adopted the solution of bicarbonization to
obtain the hollow-structured Co2P2O7/C@N,P−C NT cata-
lysts.
Figure 2b shows Raman spectra of Co2P2O7/C and

Co2P2O7/C@N,P−C samples. The symmetric stretching
vibrations vs PO3 were attributed to the weak peak at 1033
cm−1, while the POP bridge in Co2P2O7 was related to the
peak at 674 cm−1,28 confirming the formation of Co2P2O7. The
Raman spectrum of the PANI-coated Co2P2O7/C is provided
in Figure S1, in which the Raman shift at 578 cm−1 was
allocated to Co2P2O7 and the other peaks were attributed to
PANI, confirming the successful coating of PANI on Co2P2O7.
After carbonization, as shown in Figure 2b, there are two
distinct Raman peaks: the G-band at 1600 cm−1 and the D-
band at 1350 cm−1,29 exhibiting the coating of carbon layers.
The D-band emerges as a result of the vibration of sp3

hybridized C and is thus typical of a graphitic plane that is
somewhat disordered or flawed. The appearance of the G-band
is due to the E2g vibrations of sp2 hybridized C and hence
shows the degree of graphitization.30,31 The intensity ratio (ID/

IG) of these two peaks is often used to assess the degree of
disorder or defects in graphitic materials.32 Defects will change
the charge distribution of the neighboring carbon, which may
be favorable for electrochemical reactions.33−35 The ID/IG of
Co2P2O7/C @N,P−C at 1.13 is higher than that of the
Co2P2O7/C catalyst (which is 1.05), suggesting a higher defect
degree in Co2P2O7/C@N,P−C. As a result, the N-doped
carbon coated on Co2P2O7/C has a lattice with several defects
and disorders.36

The surface electronic states and composition of the
synthesized catalysts were determined using XPS measure-
ments, and the outcomes are illustrated in Figure 3. The results
showed that Co, P, C, and O elements were present in both
the Co2P2O7/C and Co2P2O7/C@N,P−C samples (see Figure
3a). The phosphorization of the phytate derivatives was
successful because of the presence of P elements. The PANI
resulted in the presence of N in Co2P2O7/C@N,P−C.
Detailed information on the structure and composition of
Co2P2O7/C@N,P−C is revealed by the Co 2p, P 2p, N 1s, and
C 1s XPS spectra (Figure 3). Co 2p3/2 and Co 2p1/2 peaks are
situated at 781.3 and 797.4 eV, and 786.1 and 802.7 eV,
respectively, in the Co 2p spectra of Co2P2O7/C, as depicted in
Figure 3b. Compared to the Co2P2O7/C NRs, the correspond-
ing peaks of Co2P2O7/C@N,P−C in the low-energy direction
of Co 2p3/2 and Co 2p1/2 are shifted slightly (Figure 2b). This
is attributed to the Co electron cloud migration due to the
PANI surface-doped nitrogen species’ strong electronegativity,
which indicates the covalent coupling between Co2P2O7/C
and the PANI support.13−15 There is a close association

Figure 3. (a) Survey of XPS, (b) Co 2p spectra of Co2P2O7/C and Co2P2O7/C@N,P−C samples. C 1s (c) and P 2p (d) spectra of Co2P2O7/C@
N,P−C.
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between these two components, making the catalysts more
conductive and electrochemically active, which aims to
enhance ORR activity.37,38 As shown in Figure 3c, the C 1s

spectrum of Co2P2O7/C@N,P−C contains four distinct peaks,
one for aromatic, aliphatic, and graphitic CC bonds at 284.1
eV, while the peaks at 284.4 and 285.6 eV represent C−C and

Figure 4. (a−c) Images of SEM for the Co2P2O7/C nanorods. (d−f) Images of SEM for the Co2P2O7/C@N,P−C nanotubes.

Figure 5. (a, b) Images of TEM for the Co2P2O7/C@N,P−C nanocages; (c) image of HRTEM for Co2P2O7/C@N,P−C; (d) image of HAADF-
STEM as well as (e−i) element-mapping images of a magnified branched region in Co2P2O7/C@N,P−C nanotubes.
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C−N bonds, respectively, with one disordered peak at 288.1
eV. During the pyrolysis step, we observed carbon bonds
(unsaturated and saturated) in samples, which indicates that
PANI graphitization had been successful. In particular,
compared to Co2P2O7/C, the C−N bond indicates the
successful incorporation of N atoms of PANI into the carbon
matrix.39,40 The P 2p peak of Co2P2O7/C@N,P−C (Figure
3d) demonstrates three peaks at 133.1, 133.9, and 134.9 eV.
The first two peaks correspond to the P 2p3/2 and P 2p1/2
phosphate group central phosphorus atom nuclear levels,
whereas the latter (134.9 eV) is linked to the phosphorus-like
bonding to the carbon lattice structure.41−44 In the P 2p region
of Co2P2O7/C, two distinct P species were introduced (Figure
2d). The first (133.5 eV) is because of P atoms chemically
bound to O atoms, whereas the second (135.2 eV) is due to
P−C coordination. The presence of P−O−P and P−C
bonding is in agreement with the FTIR study in Figure S2,
in which the vibrations of P−O−P and P−C in the infrared
spectrum were attributed to the peaks at 765 and 1076 cm−1,
respectively.28

The morphology and structure of the synthesized catalysts
were then observed with SEM and TEM. The results in Figure
4a−c show that the sample Co2P2O7/C is composed of
carbon-coated wrapping nanobars (Co2P2O7) with a length of
over 1 μm and a diameter of approximately 100 nm. However,
after the pyrolyzation treatment of the PANI-co-Co2P2O7/C
precursor, one-dimensional (1D) hollow nanotube catalysts
were observed, as shown in Figure 4d,e. Interestingly, the
hollow tube structure is more remarkably pronounced with an
inner diameter of around 100 nm. This hollowed structure is
very beneficial to the penetration of the electrolyte and the
transfer of electrons/protons during electrocatalysis. Mean-
while, the rough surface added by the carbon shell provides the
potential for efficient mass transport and ion diffusion.
The shape and microstructure of the catalysts, as well as the

precursors, were further observed with TEM and high-
resolution TEM (HRTEM). The precursor of Co-
(CO3)0.5(OH)·0.11H2O nanowires (solid) with a diameter of
around 100 nm and different lengths of ∼μm can be observed
in Figure S3. Then, after the PA was introduced into the
solution of Co (CO3)0.5(OH)·0.11H2O, PA induced decom-
position of Co (CO3)0.5(OH)·0.11H2O, thus resulting in the
coordination of Co2+ with surface phytate (Co-phytate) with
the help of electrostatic attraction. Figure S3c,d shows that an

organic layer covered the porous substrates with a thickness of
approximately 10 nm, indicating that PA was successfully
covered on the surface of Co(CO3)0.5(OH)·0.11H2O. Figure
S4 shows the TEM images of Co2P2O7/C, which were
obtained by carbonization of the PA-treated Co
(CO3)0.5(OH)·0.11H2O NRs. Interestingly, the rodlike
Co2P2O7/C with a carbon shell can be seen in Figure S4,
and further high-angle annular dark-field scanning transmission
electron microscopy (HAADF-STEM) and element-mapping
images in Figure S4 verify that the C and P elements are
distributed around Co2P2O7.
Further, after the carbonization of the PANI-PA-coated

Co2P2O7/C, as presented in the low-magnification TEM
images in Figure 5a, the feature with hollowed nanotube walls
was confirmed. The Co2P2O7 nanoparticles are wrapped by the
hollowed PANI-derived N, P-doped carbon tube. The
Co2P2O7 nanoparticles are inserted into the carbon skeleton
when we magnify the wall (Figure 5b). The lattice fringes show
that the 0.31 nm interlayer spacing corresponds to the (012)
plane of Co2P2O7, which is in agreement with the XRD
assessment. The hollow feature is further demonstrated in
Figure 5d by the high-angle annular dark-field (HAADF)
image and related EDS maps of Co2P2O7@N,P−C with
uniform distributions of Co, P, and O elements in the inside
and N, C elements in the exterior. These findings contribute to
the development of a heterogeneous electrocatalyst comprising
Co2P2O7 nanoparticles embedded in N,P-codoped tubular
carbon. According to previous reports on carbon nanostruc-
tures wrapping metal or other inorganic nanoparticle hybrids,
the introduced carbon layer can not only “armor” the Co2P2O7
cores and prevent them from being destroyed during
electrochemical cycling but also enhance electron penetration
or tunneling and facilitate electrocatalytic application.
N2 adsorption−desorption tests were employed to assess the

specific surface area and porosity of the prepared materials.
The BET specific surface area of Co2P2O7/C@N,P−C was
found to be 459.3 m2/g, which was greater than that of
Co2P2O7/C (104.7 m2/g, Figure 6). The formation of the 1D
hollowed tube structure obviously promotes the BET specific
surface area. The hierarchical porous structure is noted to have
an average pore diameter of 2.63 nm in Co2P2O7/C@N,P−C.
Meanwhile, the large pore with the diameter close to 80 nm in
the pore distribution curve of Figure 6b mainly corresponded
to the inner diameter of the formed hollow Co2P2O7/C@

Figure 6. (a)Adsorption−desorption isotherms for N2 for Co2P2O7/C@N,P−C and Co2P2O7/C; (b) pore diameter distribution diagram.
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N,P−C tubes. The porous carbon derived from the carbonized
PANI matrix as well as the 1D hollowed tube structure was
responsible for the increased specific surface area. The
hierarchical porous structure develops a specific surface area,
which provides numerous energetic spots for the catalytic
reaction; meanwhile, porosity facilitates the transfer of
reactants, promotes the occurrence of catalytic response, and
thus improves the catalytic ability.
3.2. Electrochemical Activity of Co2P2O7/C@N,P−C

HNTs. To study the electrochemical properties, a three-

electrode system was used in an aqueous 0.1 M KOH. The
voltage range was 0−0.5 V (relative to RHE). Figure 7a
illustrates the curves of CV for Co2P2O7/C, Co2P2O7/C@
N,P−C, PANI-derived N,P−C, and commercial 20% Pt/C at a
scan rate of 50 mV/s. The area around the ring of the CV
curve for Co2P2O7/C@N,P−C is larger than that of the
Co2P2O7/C electrode, exhibiting better capacitive perform-
ance. LSV tests of Co2P2O7/C@N,P−C conducted at 1600
rpm exhibited a diffusion-limited current density of 4.6 mA/
cm2 at 0.2 V (Figure 7c), which is substantially greater than

Figure 7. (a) Comparison of the CV of different Co2P2O7/C, Co2P2O7/C@N,P−C,Co2P-Co2P2O7/C@N,P−C, and 20% Pt/C. (b) LSV curves
observed in 0.1 M KOH (O2-saturated) at 20 and 50 mV/s sweep rates. (c) Curves of RRDE for 20 wt % Pt/C, Co2P2O7/C@N, P−C, Co2P2O7/
C, and PANI-derived N,P−C catalysts. Densities of the ring (upper) and disc (bottom) currents observed at 1600 rpm. (d) Calculated electron
transfer numbers n for the RRDE data for Co2P2O7/C@N,P−C, Co2P2O7/C, PANI-derived N,P−C, and 20% Pt/C. (e) Half-wave (blue) and
onset (green) potentials together with the restricted current density (gray) values for Co2P2O7 /C, Co2P2O7/C@N,P−C, Co2P-Co2P2O7/C@
N,P−C, PANI-derived N,P−C, and 20% Pt/C catalysts.
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that of Co2P2O7/C at 2.23 mA/cm2 and PANI-derived N,P−C
at 3.46 cm−2. A more positive onset potential was observed for
Co2P2O7/C @N,P−C (equal to 0.91 V) than that of
Co2P2O7/C at 0.6 V and PANI-derived N,P−C at 0.84 V.
The half-wave potential of Co2P2O7/C@N,P−C is 0.85 V, and
the value is only 50 mV lower than commercial 20 wt % Pt/C
catalysts. The ORR pathway was computed, and the OH2

−

ORR yield was screened using RRDE. During ORR with the
Co2P2O7/C@N,P−C catalyst, the OH2

− yield was 1.0% (see
Figure 7c), and the value of n (electron transfer number) was

observed in the range of 3.97−3.98, which is quite close to the
20 wt % Pt/C catalyst value. However, the n values and OH2

−

yield attained for the Co2P2O7/C catalyst-assisted ORR were
substantially different from those achieved for the reactions
assisted by the 20% Pt/C and Co2P2O7/C@N,P−C materials,
which demonstrates a four-/two-electron mixed transfer
pathway.
In Table 1, we compare the ORR ability of the lately

reported Co2P2O7-based catalyst with our catalysts. Gratify-
ingly, the catalyst here reported exhibits a superior perform-

Table 1. ORR Electrocatalytic Activity Recently Reported for Nonprecious Metal-Based Catalyst Containing Co

catalyst electrolyte onset potential (V) half-wave potential (V) limiting current density (mA/cm2) refs

1 N−C@CoP 1 M KOH 0.85 V 0.68 V 4.48 mA/cm2 47
2 CoP/NP-HPC 0.1 M KOH 0.95 V 0.83 V 5.2 mA/cm2 48
3 NC-CoP 0.1 M KOH 0.82 V 0.69 V 5.2 mA/cm2 49
4 CoP-DC 0.1 M KOH N.A. 0.81 V N.A. 50
5 Co/CoP-HNC 0.1 M KOH 0.93 V 0.83 V N.A. 51
6 CoP@SNC 1 M KOH 0.87 V 0.79 V 4.8 mA/cm2 52
7 CoP-PBSCF 0.1 M KOH N.A. 0.752 V N.A. 53
8 CoP@PNC-DoS 0.1 M KOH 0.94 V 0.803 V N.A. 54
9 NPMCNT-300 0.1 M KOH 0.93 V N.A. N.A. 55
10 CoP@C 0.1 M KOH 0.91 V 0.87 V 4.2 mA/cm2 56
11 CoPi/NPGA 0.1 M KOH 0.91 V 0.80 5.1 mA/cm2 57
12 CoP@PNC-DoS 0.1 M KOH 0.94 V 0.803 N.A. 54
13 Co2P2O7/N-rGO-800 (1800 rpm) 0.1 M KOH 0.9 V 0.8 4.7 mA/cm2 58
14 Co2P2O7/C@N,P−C 0.1 M KOH 0.9 V 0.84 V 4.6 mA/cm2 this work

Figure 8. (a) Typical curves of CV for the Co2P2O7/C @N,P−C pyrolyzed at different polymerization times in a solution of O2-saturated 0.1 M
KOH with a scan rate of 5 mV/s. (b) LSV recorded in O2-saturated 0.1 M KOH at 10 and 50 mV/s sweep rates. (c) Curves of RRDE for 20 wt %
Pt/C, Co2P2O7/C@N,P−C-3h, Co2P2O7/C@N,P−C-4h, and Co2P2O7/C@N,P−C-5h catalysts. The ring current densities (upper) and disk
current densities (bottom) were achieved at 1600 rpm. (d) Evaluated electron transfer numbers n for the RRDE data for Co2P2O7/C@N,P−C-3h,
Co2P2O7/C@N,P−C-4h, Co2P2O7/C@N,P−C-5h, and 20% Pt/C.
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ance no matter the limiting current density and E1/2. These
findings indicate that the Co2P2O7/C@N,P−C materials
exhibit an outstanding ORR catalytic activity, which may
result from the special hollow tube nanohybrid structure. A
synergetic effect of individual components leads to enhancing
the ORR movement. In terms of electrocatalytic performance
results (Figure 7b), the performance of the composite ternary
catalyst is much higher than the performance of PANI-derived
N,P-doped C and Co2P2O7/C. The Co2P2O7 NRs obtained
from the Co(CO3)0.5(OH)·0.11H2O precursors are more
likely to serve as templates for the fabrication of N,P−C,
instead of taking effect in the ORR process. The promising
ORR activities of the Co2P2O7/C@N,P−C catalysts also
highlight the advantages of the exposure of more active sites
given by the well-defined 1D hollow nanotube structure and
the synergetic interactions between Co2P2O7/C and PANI-
derived N,P−C in favor of the absorption/desorption of the
oxygenated species during the electrocatalytic processes.
Moreover, the N,P-doped carbon enhances the specific surface
area; thus, the resulting abundant pores and open tunnels
permit the facile access of O2 bubbles and electrolytes toward
the active sites to accelerate the ORR process. Further, there
also is a considerable electronic coupling effect in the
Co2P2O7/C and PANI-derived N,P−C components, and
electrons can be transferred into the thin C shells from
Co2P2O7 cores. The conductivity of the catalyst material
obtained by four-probe methods was much improved due to
the wrapping of PANI-derived N,P−C, with σCo2P2O7/C = 0.468
S/cm up to σCo2P2O7/C@N,P‑C = 1.87 S/cm. The thin C shells, in
other words, can improve the interfacial electron or electron
penetration transfer. Additionally, the pyridinic and graphitic
nitrogen atoms with their sp2 electronic structures are very
active ORR sites.8,45,46 They enhance the material electronic
conductivity and increase the catalyst corrosion resistance,
which, again, can effectually advance the movement and
constancy of the catalysts.
From the above discussion, it is easy to see that the presence

of the pyrolytic N,P-doped carbon layer derived from the

PANI layer plays an important role in the ORR catalytic
performance. A huge improvement of ORR over the original
Co2P2O7/C was observed. Thus, the effects of polymerized
PANI amounts controlled by the polymerization time on the
catalyst performance were then investigated.
Figure 8 compares the curves of CV and LSV for Co2P2O7/

C@N,P-C with different PANI polymerization times during
the synthesis process of their carbonized precursors. A distinct
cathodic peak can be observed for all of the Co2P2O7C@N,P−
C samples, which corresponds to the featureless CV curves in
O2-saturated solutions, and the catalytic performance is highly
dependent on the quantity of PANI loaded during catalyst
preparation. Further, the ORR onset potential of the Co2P2O7/
C@N,P−C catalyst significantly shifts negatively, and the
oxygen reduction current peak dramatically reduced with the
increase in polymerization time of PANI. The Co2P2O7/C@
N,P−C-3h catalyst exhibits the highest overall ORR activity,
which is close to that of 20 wt % Pt/C in Figure 8. LSV curves
recorded at 1600 rpm show that Co2P2O7/C@N,P−C-3h has
a higher onset potential (Eonset) of 0.90 V vs RHE and a half-
wave potential (E1/2) of 0.84 V than that of Co2P2O7/C@
N,P−C-4h and Co2P2O7/C@N,P−C 5h, separately (Figure
8b). The polymerization time in the catalyst precursor had a
significant influence on the OH2

− yield and the electron
transfer number n attained for the ORR assisted by the
Co2P2O7/C@N,P−C catalyst. During ORR with the
Co2P2O7/C@N,P−C-3h catalyst, the OH2

− yield was 1.0%
(see Figure 8c), and the electron transfer number n was in the
3.97−3.98 range, which is extremely similar to the value of the
20 wt % Pt/C catalyst. Moreover, increasing the polymer-
ization duration of PANI in the corresponding precursors
resulted in OH2

− yields and n that were not the same as the
ones found in reactions facilitated by 20% Pt/C and
Co2P2O7C@N,P−C-3h materials, which suggests a two-
electron transfer pathway. The weaker presentation of the
other catalysts prepared with a longer polymerization time
could be explained by the formation of the thicker N-doped

Table 2. Weight Content Prepared at T = 3, 4, and 5 of Pyridinic, Pyrrolic, Oxidized, and Graphitic Nitrogen in the Co2P2O7/
C@N,P−C-H Catalysts

sample
graphitic-N/Ntotal

(%)
pyrrolic-N/Ntotal

(%)
pyridinc-N/Ntotal

(%)
oxidized-N/Ntotal

(%)
graphitic-N + pyridinic-N contents/Ntotal

(%)

Co2P2O7/C@N,P−C-3h 51.64 21.45 16.51 10.4 68.15
Co2P2O7/C@N,P−C-4h 46.88 17.7 5.36 29.06 52.24
Co2P2O7/C@N,P−C-5h 21.08 32.22 10.56 20.8 41.88

Figure 9. XPS High-resolution N 1s spectra for (a) Co2P2O7/C@N,P−C-3h, (b) Co2P2O7/C@N,P−C-4h, and (c) Co2P2O7/C@N,P−C-5h.
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carbon, which is highly confirmed by the following results of
XPS and BET measurements.
First, the N1s core-level XPS spectra of the synthesized

catalysts were shown in Figure 9, and four types of N bonds
were divided. The composed ratio of the different type N was
summarized in Table 2. Based on the XPS results, it was
noticed that the different N species ratios in the catalysts were
strongly influenced by the varied polymerization times of
PANI in the catalytic precious that leads to the variety of
loaded outside N−C thickness after pyrolysis treatment (see
Figure 9 and Table 2). As shown in Table 2, as the
polymerization time in the precursor of the Co2P2O7/C@
N,P-C catalyst enhanced, the total content of graphite N and
pyridine N decreased. Co2P2O7/C@N,P−C-3h has the
greatest total content of graphite N and pyridine N, which is
68.15%. It has been shown that pyridine nitrogen and graphite
nitrogen are involved in ORR as active sites, with pyridine
nitrogen possessing a pair of lone electrons that can weaken
the O−O bond of O2; thus, it enhanced oxygen adsorption and
exhibited better catalytic performance.8,45,46,59 It can be
deduced that the synergistic effects between Co2P2O7/C and
PANI-derived N,P−C with the active N species (pyridine N,
and graphitic N) can effectively reduce the activation barrier of
the adsorbed O2 to promote the capture of the first electron to
enhance the cleavage of O−O bonds, thereby improving the
ORR activity.60

Further, we can see that the specific surface area was also
significantly affected through the PANI polarization time. All
of the N2 adsorption−desorption isotherms exhibit the II-type
curve in Figure 9, and the BET surface area is compiled in
Table 3. The Co2P2O7/C@N,P−C-3h catalyst possesses a

surface area of 459.30 m2/g, which is approximately twice that
of the Co2P2O7/C@N,P−C-4h catalyst, which possesses a
surface area of 237.71 m2/g. The hierarchical porous structure
is noticed with an average pore diameter of 4.63 nm in
Co2P2O7/C@N,P−C. The hierarchical porous structure
develops a specific surface area, which provides numerous
energetic spots for the catalytic reaction; meanwhile, porosity
facilitates the transfer of reactants, promotes the occurrence of
catalytic response, and thus improves the catalytic ability
(Figures 10 and 11).

Electrochemical impedance spectroscopy (EIS) measure-
ment Nyquist diagram is one of the effective methods for
measuring electrochemically active sites. The Nyquist diagram
shows that the slope of the Co2P2O7/C@N,P−C-3h catalyst is
larger than that of other samples, indicating faster kinetics of
charge transfer and an increase in the ion diffusion rate.
We also compared the long-term electrochemical stability of

Co2P2O7/C@N,P−C and 20% Pt/C catalysts. The i−t

Table 3. BET Surface for Co2P2O7/C@N,P-C HNTs

BET
surface (m

2/g)

total pore
volume (cm

3/g)
average pore
diameter (nm)

Co2P2O7/C@N,P−C-3h 459.30 0.65 4.63
Co2P2O7/C@N,P−C-4h 237.71 0.46 4.52
Co2P2O7/C@N,P−C-5h 203.40 0.15 4.58

Figure 10. (a) N2 adsorption−desorption isotherms for Co2P2O7/C@N,P−C-3h, Co2P2O7/C@N,P−C-4h, and Co2P2O7/C@N,P−C-5h and (b)
the corresponding pore diameter distribution diagram.

Figure 11. Nyquist plot of Co2P2O7/C@N,P−C-3h, Co2P2O7/C@
N,P−C-4h, and Co2P2O7/C@N,P−C-5h catalysts under 0.1 M KOH
conditions.
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response of Co2P2O7/C@N,P−C and Pt/C recorded for 8000
s at 500 rpm is shown in Figure 12. The Co2P2O7/C@N,P−C

catalyst exhibited better durability than the commercial Pt/C
catalyst: only 9.1% of the activity was lost after 8000 s of a
continuous ORR. For comparison, the commercial Pt/C
catalyst demonstrated 7.7% lower activity after 8000 s.

5. CONCLUSIONS
To summarize, a simple hydrothermal technique and a
subsequent pyrolysis strategy were used to synthesize N,P-
rich carbon/carbon Co2P2O7 (Co2P2O7/C@N,P−C) tubular
composite materials. The obtained Co2P2O7/C@N,P−C
demonstrated a high catalytic activity toward the ORR due
to the special hollowed structure and synergistic effect of the
Co2P2O7 and PANI-derived N,P-doped C. The onset and
positive half-wave potentials were recorded at 0.90 and 0.84 V,
respectively, while the diffusion-limited current density was 4.6
mA/cm2, values that were similar to those of commercial 20%
Pt/C. The Co2P2O7/C@N,P−C catalyst also has excellent
stability compared to 20% Pt/C. It was demonstrated that the
specific surface area, as well as the content of graphitic N,
changed with the time of PANI polymerization, resulting in a
significantly different catalytic performance, and an optimal
value was achieved with 3 h of PANI polymerization in its
precursor. This investigation of hollow tube metal phosphate-
based materials reveals significant potential for energy storage
regeneration and conversion technologies.
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