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Abstract

Background: Significant progress has been made in advancing and standardizing tools for human genomic and
biomedical research. Yet, the field of next-generation sequencing (NGS) analysis for microorganisms (including
multiple pathogens) remains fragmented, lacks accessible and reusable tools, is hindered by local computational
resource limitations, and does not offer widely accepted standards. One such “problem areas” is the analysis of
Transposon Insertion Sequencing (TIS) data. TIS allows probing of almost the entire genome of a microorganism by
introducing random insertions of transposon-derived constructs. The impact of the insertions on the survival and
growth under specific conditions provides precise information about genes affecting specific phenotypic
characteristics. A wide array of tools has been developed to analyze TIS data. Among the variety of options available, it
is often difficult to identify which one can provide a reliable and reproducible analysis.

Results: Here we sought to understand the challenges and propose reliable practices for the analysis of TIS
experiments. Using data from two recent TIS studies, we have developed a series of workflows that include multiple
tools for data de-multiplexing, promoter sequence identification, transposon flank alignment, and read count
repartition across the genome. Particular attention was paid to quality control procedures, such as determining the
optimal tool parameters for the analysis and removal of contamination.

Conclusions: Our work provides an assessment of the currently available tools for TIS data analysis. It offers ready to
use workflows that can be invoked by anyone in the world using our public Galaxy platform (https://usegalaxy.org).
To lower the entry barriers, we have also developed interactive tutorials explaining details of TIS data analysis
procedures at https://bit.ly/gxy-tis.
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Importance
A wide array of tools has been developed to analyze
TIS data. Among the variety of options available, it is
often difficult to identify which one can provide a reli-
able and reproducible analysis. Here we sought to under-
stand the challenges and propose reliable practices for
the analysis of TIS experiments. Using data from two
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recent TIS studies, we have developed a series of work-
flows that include multiple tools for data de-multiplexing,
promoter sequence identification, transposon flank align-
ment, and read count repartition across the genome. Par-
ticular attention was paid to quality control procedures,
such as determining the optimal tool parameters for the
analysis and removal of contamination. Our work democ-
ratizes the TIS data analysis by providing open workflows
supported by public computational infrastructure.
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Background
Transposon insertion sequencing (TIS) is based on ran-
dom integration of transposons throughout a genome.
These insertions knock out or alter the expression of
genes and functional elements. A TIS library —a popula-
tion of bacterial cells carrying transposon insertions—is
divided into aliquotes subjected to different experimental
conditions. Upon completing an experiment, sites flank-
ing transposon insertions are amplified, and amplification
products are subjected to high throughput sequencing
(HTS). Mapping of resulting sequencing reads against the
host genome reveals locations of insertions. Regions con-
taining insertions can tolerate disruptions and thus are
non-essential, while location void of insertions (or with
underrepresented insertions) are likely under purifying
selection and are considered/essential in the given growth
conditions. These conclusions depend on the assump-
tion that transposons’ random insertion will impact every
gene (library saturation). Methods used for this classi-
fication must account for the probability of genes not
being impacted by any insertion. The TIS approach
led to successful genome-wide identification of essential
and non-essential genes in several species [1]. A more
comprehensive application of TIS involves the insertion
of transposon constructs carrying regulatory elements
such as promoters [2]. In addition to binary readout
(essential/non-essential), this approach yields information
about the effects of up- and down-regulation of specific
genes.
Randomly pooled transposons libraries are commonly

created with Mariner or Tn5 transposons. Mariner trans-
posons target TA dinucleotides. They have wide species
specificity and are stable [3]. The methods based on
Mariner transposons are referred to as TnSeq methods.
Tn5 transposons, on the other hand, do not target specific
sequence motifs while exhibiting a preference for GC-rich
sites [4]. Tn5-based methods are called TraDismethods if
the reads are sequenced directly after the PCR, or HITS
if the PCR products are subjected to a size selection and
a purification. Most bacteria species have TA sites equally
distributed across the genome, but when it is not the
case, Mariner transposons provide a biased library. The
Tn5 is then a common alternative as building a Mariner-
based library may be problematic for these species [1].
The downside is that the larger number of Tn5 insertions
produce less saturated mutant libraries. The saturation
is defined by the probability of a possible insertion site
to be impacted by an insertion. As Tn5 can insert any-
where, the potential insertion sites are more numerous
than Mariner transposon sites, decreasing the probability
to impact each one with the same quantity of transposons.
Another difference between the two types of transposons
is the use of a restriction endonuclease in Mariner-based
libraries. These enzymes, such asMmeI, cut a fixed-length

sequence upstream from the insertion site generating
reads of equal length. The Tn5-based methods do not use
this approach and produce fragments of various lengths,
potentially allowing for PCR bias [3].
In the end, each flavor of TIS experiments produces a

collection of sequencing reads. Before interpreting TIS
data, these reads need to be processed, mapped, fil-
tered, and converted into a form suitable for downstream
analysis tools. TIS sequencing reads have complex struc-
tures as they include fragments of transposon backbone,
primer annealing sites, molecular barcodes, and other
elements. For example, only ≈13 base pairs (bp) of a
TnSeq read correspond to the genomic region adjacent to
the integration site—the portion that is mapped against
the host genome—everything else needs to be stripped
away before mapping. After read trimming and mapping
resulting BAM (Binary Alignment Map) datasets need to
be filtered and converted into more compact representa-
tions such as, for example, wig (Wiggle) format. The BAM
are filtered to remove reads that align outside of inser-
tion sites, when applicable, thus removing reads that are
incomplete and do not provide information on transpo-
son insertions. Such derived datasets can then be paired
with appropriate annotation datasets (representing the
location of genes and functional elements across the host
genome) and used as inputs to analysis tools.
A number of algorithmic approaches have been devel-

oped to facilitate TIS data analysis. These include Hid-
den Markov Model (HMM)-based methods for identi-
fication of essential sites as well as regression analyses
utilizing gene saturation or runs of consecutive empty
sites. These approaches are implemented in tools such as
ESSENTIAL [5], Tn-seq Explorer [6], El-ARTIST [7] suite,
TRANSIT [8], or Bio-Tradis [9] (Table 1). The output
of these tools—lists of genes classified as essential/non-
essential or coordinates of regions enriched or void of
insertions—needs to be further processed by, for exam-
ple, comparing results across conditions. In this paper,
we focus on identifying essential genes, and the review of
methods for conditional essentiality would require a larger
study.
The tools such as TRANSIT and Bio-Tradis offer power-

ful means for the analysis of TIS data. However, while they
cover the essential step of data interpretation, it is just one
part of a multi-step process involving, as we demonstrated
above, trimming, mapping, filtering, and additional sta-
tistical analyses. In this manuscript, we developed a set
of comprehensive workflows for the analysis of TIS data
that include all analyses step from initial read processing
to preparation of final figures for publications, and can be
adapted to different datasets. To demonstrate the utility of
our approach, we reanalyzed data from two recent studies
employing Tn5 and Mariner transposons. Add tools and
workflows developed by us are publicly available and can
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be run as-is to reproduce this study as described at https://
bit.ly/gxy-tis.

Results
Our goal was to design a publicly accessible high through-
put system for transparent and reproducible analysis
of transposon insertion data. To devise and test our
approach, we selected data from two recent studies: one
performed in Escherichia coli [13] and another conducted
in Staphylococcus aureus [14]. The first study [13] used the
TraDIS approach [15] based on a Tn5 transposon insert-
ing with high-frequency into arbitrary sites within the
target genome [16]. The second study [14] used the TnSeq
approach based on a phage-assisted Mariner-derived sys-
tem that targets TA-sites within the host’s genome [2].

Analysis of TraDIS data
Goodall et al. [13] used TraDIS to identify essential genes
in Escherichia coli BW25113. TraDIS technique generates
reads that contain experimental barcodes and segments of
the transposon backbone in addition to the fragment of
genomic DNA proximal to the insertion site. Before the
reads can be used for mapping, required to identify loca-
tions of insertion sites, they need to be trimmed down to
include only genomic DNA adjacent to the insertion site.
In the case of the Goodall et al. study[13] this has been
done prior to submitting the sequencing data to the Short
Read Archive (SRA - BioProject PRJEB24436), and thus
the reads can be used directly for mapping without any
preprocessing. We mapped the reads against the E. coli
BW25113 genome (CP009273.1) and computed read cov-
erage (see Methods) using the 5’-end of the reads as it is
immediately adjacent to the insertion site [15].

Regression on genes saturation indexes
To identify essential genes, we proceeded to carefully re-
implement the analysis performed by Goodall et al. [13].
These authors conducted a regression analysis on gene
saturation indices by fitting known distributions to the
distribution of insertion indexes. First, we computed gene
saturation index S—, a simple statistic calculated by divid-
ing the number of insertions within a coding region (CDS)
by its length. In this dataset, S is bimodally distributed
with the first mode at low saturation and the second at
high saturation (Fig. 1). This profile is coherent with the
expected distribution of gene saturation in TIS studies
with saturated libraries [1]. It is a mixture of two dis-
tinct distributions: one of essential genes and the other of
non-essential genes.
To separate two distributions, we performed a regres-

sion by fitting a bimodal distribution to our data. The
bimodal distribution is composed of an exponential and a
gamma distribution components corresponding to essen-
tial and non-essential genes, respectively. Using distribu-
tion parameters, we then computed a probability of every
gene being drawn from exponential or gamma distribu-
tions. A gene is said to be essential if the probability of it
belonging to the essential distribution is X times higher
than the probability of belonging to the non-essential dis-
tribution (and vice versa). X is a threshold that can vary
between studies, and genes that do not meet this require-
ment are classified as “undetermined”. Goodall et al. [13]
used X = 12 as it was previously employed in another
E. coli gene essentiality study by Phan et al.[17]. Using
X = 12 we identified 364 essential genes (Additional file 1:
Table S1). We then compared our results with the list
of essential genes identified by Goodall et al.[13] as well

Fig. 1 Regression analysis on gene saturation indexes for TraDIS dataset. The histogram represents the frequency of saturation indexes of genes. A
gene saturation index is the ratio of insertion sites with insertions on the number of potential insertion sites. The regression uses the density of
frequencies, as we are using density functions to fit the data. A parametric regression algorithm is used to divide the bimodal distribution into two
distributions. An exponential distribution is fit to essential genes, and a Gamma distribution to non-essential genes. Although the Gamma distribution
deviated from observation at higher saturations, the two distributions fit the data nicely in the saturation range where the division happens

https://bit.ly/gxy-tis
https://bit.ly/gxy-tis
https://www.ncbi.nlm.nih.gov/bioproject/PRJEB24436/
https://www.ncbi.nlm.nih.gov/nuccore/CP009273.1
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as those from Keio (based on BW25113; [18]) and PEC
(based onMG1655; [19]) databases (Fig. 2). It showed that
several essential genes predicted by us and absent from
the Goodall et al. are found on the other databases.
To evaluate the effect of the threshold choice’s impact,

we compared results obtained with 4-fold (X = 4) and
12-fold differences (X = 12) used above. There were
little differences between the two thresholds for the pre-
diction of essential genes. (Additional file 1: Table S1).
With X = 4 we missed eight essential genes and over-
predicted 24 genes compared to the original study. X =
12 misses 12 essential genes and overpredicts 23. The
variations in prediction from the two studies could be
explained by differences in curve fitting that could be
introduced by a different regression tool. The parame-
ters of the bimodal distribution have not been specified
by Goodall et al. [13] for comparison. Another reason for
the different results obtained could be due to different
mapping parameters. The differences obtained when try-
ing to replicate an analysis highlight the importance of
open and reproducible science. Publishing exact data and
workflows allows reducing or tracking the variability of
results.

Automatic regressionwith bio-tradis
Next, instead of performing manual fitting, we employed
Bio-Tradis [9] toolkit. It identified 398 essential genes and
classified the other gene as “ambiguous”, failing to detect
any non-essential genes. We compared the essentiality

prediction of Bio-Tradis with the previous regression anal-
ysis (Fig. 3C). Among the 353 essential genes listed by
[13], 351 were also identified by Bio-Tradis. It predicted
47 additional essential genes, among which 21 are also
identified by the hand-fit regression. The results were
very similar for gene essentiality, whether we used the
automated or hand-fit method.

Classification based on rows of empty sites
In addition to a regression analysis performed to iden-
tify essential genes, Goodall et al. analyzed the density
of transposon insertions in the genome and describe the
probability of observing consecutive potential insertion
sites void of transposon insertions [13]. This metric can
be used to detect essential genes and regions as well, and
such a method is implemented in the TRANSIT suite [8]
with the Tn5Gaps tool. Comparison of Tn5Gaps results to
the Goodall et al. predictions (Fig. 4) showed that TRAN-
SIT predicted 124 additional essential genes, and 331
predicted essential genes were shared with the published
results. We did not find evidence that the genes predicted
by Transit and not by the original study were true posi-
tives. Some of the overpredicted essential genes showed
some partial depletions of insertions, which could indicate
a growth defect induced by the gene disruption. For other
genes, the reason for their classification as essential was
unclear. The list of predicted non-essential genes gener-
ated by TRANSIT, on the other end, was very close to the
Goodall et al. results.

Fig. 2 TraDIS - Upset plot comparing the regression results to Goodall et al. paper, Keio [18] and PEC [19] databases. We compared the list of
essential genes resulting from our reproduction of the Goodall and al. study with their results and those identified by two external databases Keio
and PEC. We can see that our replication predicts slightly more essential genes than the manually curated results provides, 364 genes against 353.
Out of the 232 core essential genes identified in the study, we successfully identified 230. We identified most of the genes predicted by the paper
that are absent in PEC or Keio (101 genes). Our replication identifies 13 essential genes identified in PEC but not in the original study in addition to
the 35 genes identified everywhere but in Keio. The genes predicted by only one of the sources are of similar magnitude, a dozen genes each. They
can be explained by manual annotation, parameter change, and domain essential genes
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Fig. 3 TraDIS - Comparison of methods for genes classification by regression analysis. a UpSet plot comparing the essential genes predicted by each
threshold with the curated list. There is little difference between the two thresholds for essential gene prediction. 341 essential genes are identified
in the three sets. Using a threshold of 4 predicts five additional genes compared to a threshold of 12, four of which are also identified in the curated
list. b UpSet plot comparing the non-essential genes predicted by each threshold with the curated list. When looking at the non-essential gene list,
we see that using a threshold of 12 misses 1570 non-essential genes identified in the paper and a regression using a threshold of 4. The latest
predicts 140 non-essential genes that are unclassified in the two other sets. c UpSet plot comparing the non-essential genes predicted by using
hand-fit curves, automated fit with Bio-TraDis, and the curated list. The two regression methods identify 344 of the essential genes predicted by the
publication. One gene is missed by the two methods, and eight are identified by only one of the regression analyses

Comparison of the regression and Tn5Gaps results
Finally, we compared the regression results, using the
two thresholds and the Tn5Gaps method implemented in
TRANSIT (Fig. 5). We could observe that TRANSIT over-
predicted essential genes (Fig. 5A). Among the 124 genes
identified by TRANSIT but not by the Goodall et al. study,
108 were identified by TRANSIT alone. Some of the over-
predicted genes were domain essential genes (only part of
the gene is free of insertions). Most of them, however, did
not seem to contain essential regions but showed sparse

insertions. When looking at non-essential genes predic-
tions, both methods were very close to the paper (Fig.
5B). The regression predictions were overall closer to the
manually curated results than TRANSIT regardless of the
chosen threshold.

Read count normalization
The transposon insertion sequencing datasets can be nor-
malized for three factors: (i) positional read bias, (ii) dif-
ferences in sequencing depth, (iii) stochastic differences

Fig. 4 TraDIS - Comparison of genes predicted by the Gumbel tool in Transit and those published in the paper. a Essential genes. Transit seems to
largely over-predict essential genes. 124 genes are identified as essential in addition to the 331 genes also identified as essential by manual curation.
b Non-essential genes. Transit prediction of non-essential genes overlaps well with the genes predicted as non-essential in the paper
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Fig. 5 TraDIS - Comparison of regression results, Transit results, external databases, and the curated list of essential genes. a Comparison of essential
genes predictions. We can see that Transit over-predicts the number of essential genes compared to databases as well. 108 are classified as such
that does not appear in any other source. b Comparison of non-essential genes predictions. All sources have similar results for non-essential gene
identification. 3478 genes are always identified. The second-largest set of genes are genes identified as unclassified by the manual curation only.
These could correspond to domain-essential genes or genes that impact growth

in library diversity [1]. To evaluate the impact of nor-
malization on the essentiality prediction, we compared
the results obtained without normalization and using one
of TRANSIT toolset’s normalization method. In particu-
lar, we used the “TTR” (Trimmed Total Reads) method
recommended by the authors to remove outliers and nor-
malize for the differences in saturation cited above [20].
We also compared the results obtained by ignoring reads
covering gene extremities, as they may not disrupt the
gene function. The results were identical regardless of
the normalization choices for all three analyses and both
essential and non-essential genes.

Analysis of TnSeq data
We applied the analysis approach developed on TraDIS
data to a Mariner-based TnSeq dataset produced by
Santiago et al. [14]. The methodology pioneered by these
authors allows transposon-mediated insertion of promot-
ers into the target genome [2]. As a result, this technique

provides two types of readout. First, similarly to TraDIS,
the lack of TnSeq reads mapping to a genomic locus
indicates its functional importance. This readout—lack
of reads—can be used for the identification of essen-
tial genes. Second, promoters contained within insertion
constructs may affect neighboring genes. Because pro-
moters act directionally, sequencing reads derived from
these insertions exhibit strand bias. The second type of
readout—regions where the majority of reads map to one
of the two strands—allows finding genes whose expres-
sion change is beneficial given an experimental condition.
In this study, we focused on the first type of TnSeq
readout to identify essential genes. The data produced
by Santiago et al. [14] contain raw reads (SRA BioPro-
ject PRJNA417822) for 82 experimental conditions with a
varying number of replicates. We used the control con-
dition (containing 14 replicates) to develop reproducible
strategies for read preprocessing and control for noise in
the data.

https://www.ncbi.nlm.nih.gov//bioproject/PRJNA417822


Larivière et al. BMCMicrobiology          (2021) 21:168 Page 8 of 15

TnSeq data preprocessing
Sequencing reads produced by Santiago et al. [14] contain
transposon backbone and auxiliary sequences that need
to be removed prior to analysis (Fig. 6A). In addition, the
reads contain molecular barcodes that identify constructs
containing different promoters. The genomic portion of
the reads, ultimately mapped against the host genome,
is only 16-17 bp in length because TnSeq protocol uses
MmeI restriction endonuclease. MmeI cleaves DNA 18
nucleotides downstream of the recognition site. After
mapping against the Staphylococcus aureus (CP000253.1)
we computed coverage at 3’-end of the reads only, as this
corresponds to the position of the insertion site (Fig. 6B).
Finally, we compared the coverage information with the
position of all TA dinucleotides found in the Staphylococ-
cus aureus genome.

Regression on the TnSeq dataset
The regression is the method that gave us the best results
with TraDIS data. However, TnSeq data distribution of the
saturation index S is different for TnSeq data (Fig. 7). To
fit the profile of the TnSeq data, we used different dis-
tributions to perform the regression. Here we used expo-
nential distribution for the essential genes and normal
distribution for the non-essential genes. When correct-
ing the method to use appropriate distribution, we could
compare the different thresholds’ efficiency (Fig. 8A). The
threshold choice had more impact on the results of TnSeq
data compared to TraDis data: the use of X = 4 as a

threshold leads to the prediction of 480 genes, which was
higher than the number of essential genes expected, and
more than predicted with the use of a threshold of X = 12
(Additional file 1: Table S2). When compared with the
results of the publication [2], most of the essential genes
and half of the domain essential genes were identified by
the regression analyses (Fig. 8). A threshold ofX = 12 pro-
ducedmore false-negative results than X = 4 and as many
false positives. The prediction of non-essential genes was
very close to the published results when using either
threshold (Fig. 8B). Overall, the choice of the threshold in
this analysis appeared to change the essentiality predic-
tion significantly. A threshold of 12 appeared too stringent
in that case, perhaps due to regression curves fitting less
closely to the actual distribution than TraDIS data.

Automatic regressionwith bio-tradis on the TnSeq dataset
We compared our regression analysis results to the auto-
mated regression performed with the Bio-Tradis toolkit
(Fig. 8C and D). Bio-Tradis predicts a larger number of
essential genes than Santiago et al. [2]. Our regression
analysis had a better performance than the tool for the
prediction of essential genes for this dataset. The tool
had a slightly better rate of true-positive than the hand-
fit regression but a worse false-positive rate. When we
looked at the results of non-essential genes predictions,
the two methods performed equally. These results are
not unexpected, as Bio-Tradis has been developed for
Tn5-based methods.

Fig. 6 TnSeq - Structure of transposon insertions and reads in Santiago et al. [2] technique. a Structure of a transposon construct insertion. The
transposon can insert in two directions since a TA site is identical in both strands. The MmeI insertion in the transposon allows reads of uniform size
by cutting DNA 20 bases upstream of the transposon. b Structure of the reads. In addition to the fragment of 20bp upstream of the MmeI site, the
reads contain an Illumina adapter P7 containing a 3bp barcode specific to the type of construct and an Illumina adapter P5 containing a sample
barcode at the 5’ end. The read also contains the MmeI transcription site included in the ITR region. We can see from that structure that the insertion
site’s position is aligned with the 3’ end of the read

https://www.ncbi.nlm.nih.gov/nuccore/CP000253.1
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Fig. 7 TnSeq - Regression on the frequency of gene saturation indexes for HiMar transposon and S. aureus. The Exponential distribution and the
Normal distribution seem to fit the general shape of the distribution, despite some lose fit around the quartiles of the normal distribution. There is
no intersection between the two distributions; however, some genes have a null probability of belonging to either population

Classification of genes based on rows of empty sites on the
TnSeq dataset
Using the same method as Tn5gaps, the Gumbel tool
in the TRANSIT suite is designed for gene essential-
ity prediction based on Mariner transposons. As with
the regression method, we did not differentiate essential
or domain essential genes. Therefore, we compared our
results both with the essential genes and essential and
domain essential genes identified by the essentiality study
with TnSeq data [2] (Fig. 8E). TRANSIT and the regres-
sion analysis identified half of the full essential genes,
about a third of domain-essential genes. Overall, TRAN-
SIT performs more poorly than other methods. It could
be due to the higher sensitivity of TRANSIT to gene sizes
compared to saturation indexes. If a gene is too small
compared to regions void of insertions, then TRANSIT
will not identify an essential gene. Many of the domain
essential genes were not identified by any method. The
identification of domain essential genes by TRANSIT or
the regression method is dependent on the size of the
essential domain. Too small, and it would not appear as
significant for TRANSIT, and would not impact the sat-
uration index enough to be classified into the essential
category.
When looking at the non-essential genes, we could see

that all the methods provided very similar results (Fig.
8F). It seemed to indicate that this variation in condition
impacted only the essential genes predictions. Some genes
may have been going from growth defect to entirely essen-
tial, depending on the conditions. It would have impacted
their classification into essential genes, going from low
insertion rate to no insertions, without them having suffi-
cient saturation index to be classified as non-essentials.

Prediction of essential genes using HMMon TnSeq data
TnSeq analyses often use a third method in addition to the
one used in the TraDIS. Hidden Markov Model (HMM)
methods consider each potential insertion site indepen-
dently of the previous states to predict the state of the next
position and attribute costs of changing from one state to
another. This method allows predicting regions with the
same state. It is a standard method available in several tool
suits, like EL-ARTIST, TRANSIT, ESSENTIALS, Tn-seq
explorer, and MAGENTA (See methods). Our goal was
to identify a tool that facilitate reproducibility and trans-
parency of analyses. For these reason we chose TRANSIT
suite to perform an HMM analysis of the TnSeq Data—it
has a permissible open source license and is actively main-
tained (Table 1). This tool uses HMM to classify each site
into four states: Essential, Non-Essential, Growth Defect,
and Growth Advantage. This method returned about two
thousand essential genes, which is more than the expected
350 to 400 genes. This result could be explained by the fact
that Santiago data may be too sparse for the HMM, which
is sensitive to zero-inflated datasets. This method could
be suited for a more saturated library, with few random
empty insertion sites.

Comparison of the differentmethods for essentiality
prediction on TnSeq data
We compared the results of the regression, using a thresh-
old of 4, and the Gumbel with the original study, and other
similar essentiality studies (Fig. 9). We did not include
the HMM analysis, as the results were inconclusive. We
compared our predictions to two other published TnSeq
studies: Chaudhuri et al. [21], and Valentino et al. [22]
(Fig. 9). While the Valentino et al. [22] study used the



Larivière et al. BMCMicrobiology          (2021) 21:168 Page 10 of 15

Fig. 8 TnSeq - Comparison of the essential genes prediction per method. Santiago FE refers to the genes that are identified as fully essential in the
Santiago et Al. paper. Santiago AE refers to both fully essential and domain-essential genes. The classification of the regression results has been
performed with thresholds of 4 and 12. a Comparison of regression on gene saturation index with the genes identified as essential in Santiago et al.
[2]. 255 genes are shared between the regressions and the paper full essential genes list. b Comparison of regression on gene saturation index with
the genes identified as non-essential in Santiago et al. The methods do not differ much on non-essential genes predictions. 2071 genes are
identified by the paper and the regression, regardless of the chosen threshold. c Comparison of Bio-Tradis prediction of essential genes with the
hand-fit regression and paper predictions. 287 genes are common to the three methods, and Bio-Tradis overpredicts 32 genes not identified by
other methods. d Comparison of Bio-Tradis prediction of non-essential genes with the hand-fit regression and paper predictions. The results are
very similar. 197 genes are predicted by both regressions that are not classified as non-essential by the study. e Comparison of Transit results,
regression results, and genes identified as essential in Santiago et al. We are using the hand-fit regression results using a threshold of 4 to be more
relaxed, as the threshold of 12 provides more stringent results and Bio-Tradis overpredicts essential genes. f Comparison of Transit results, regression
results, and genes identified as non-essential in Santiago et al. The three methods are in accordance with the non-essential genes predictions. 1923
are common across all results

same strain of S. aureus (HG003), Chaudhuri et al. [21]
used a different one(SH1000). Both strains derive from
the strain NCTC8325. Chaudhuri et al. [21] performed an
automatic detection of genes void of insertions and com-
pleted with a manual detection of genes with depleted

insertions. Valentino et al. [22] identified genes as essen-
tial if the insertions within the genes constitute less than
1% of total reads. We could observe a core of 229 genes
reported as essential across all studies. Overall, TRAN-
SIT and the regression analysis results were coherent
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Fig. 9 TnSeq - upSet plot of the essential genes predicted by the different methods, the genes published by the reference paper [2], and other
studies of gene essentiality in S. aureus. 229 genes are identified as a “core” of essential genes between studies. As Santiago et al. paper differentiates
domain essential and full essential genes, it shows the largest difference compared to the other studies with 89 genes not found in other sets of
essential genes. Transit is the closest to all other studies, with only two extra genes predicted, against 54 predicted by the regression analysis

with the results expected from essentiality analyses com-
pared to other studies performed in different conditions.
TRANSIT prediction was closer to the other studies,
with only two reported essential genes not predicted by
other methods. The regression method identified 54 addi-
tional essential genes compared to other studies. Manual
inspection of these genes shows a depletion in insertion,
indicating a growth depletion when the gene is disrupted.
Since the genes still show regular insertions, they are
not considered essential. The method used in the San-
tiago analysis [2], with EL-ARTIST, classify genes into
three categories: Essential, domain-essential, and non-
essential genes. The methods used in this study clas-
sify them only into non-essential or essential genes. We
expect to observe four possible outcomes for domain-
essential genes. i) The essential domain is small and does
not decrease the gene saturation enough to cross the
threshold between essential and non-essential genes. In
that case, the regression analysis will classify the gene
as non-essential. If the domain is also smaller than the
threshold of detection of TRANSIT Gumbel, The gene
is predicted as non-essential by TRANSIT as well. ii)
The essential domain is long enough to be detected by
TRANSIT but too small compared to the gene’s size to
be detected by the regression method. iii) The domain is
large compared to the gene but smaller than the detec-
tion threshold of TRANSIT. In that case, the gene is
predicted as essential by the regression analysis but not
by TRANSIT. iv) The essential domain is large enough
compared to the rest of the gene and compared to
TRANSIT’s detection threshold to be detected by both
methods. The additional 89 predicted in the Santiago
analysis could then be explained by its distinction between
essential and domain essential genes. Some domain essen-
tial will be predicted as essential, others as non-essential,

so there will not be a perfect fit for either class. For this
TnSeq dataset, TRANSIT performed better than the other
methods.

Implementation in Galaxy
We implemented the analysis workflows in Galaxy [23],
including preprocessing, alignment, read counts, and
essentiality prediction. We also developed and deployed
a comprehensive tutorial explaining the application of
our system to TIS data [24]. Despite being very similar,
the two types of data, TnSeq and TraDIS, require dis-
tinct workflows due to the difference in read structure
and coverage analysis. We constructed these workflows
and made them available in the Galaxy main instance
(usegalaxy.org; Additional file 1: Figure S1 and Figure S2).
The TraDIS workflow includes two parallel tracks (Addi-
tional file 1: Figure S1). One track performs essentiality
analysis with Bio-Tradis [9] and the other one with TRAN-
SIT [8]. The latter include the mapping of reads with
Bowtie2 [15] and the analysis of coverage with bamCov-
erage tool [25]. The TnSeq Workflow is more complex
than the TraDIS one, in part due to the read prepossessing
needed with this dataset. Finally, steps have been included
to replace the tool Reads to counts from the Bio-Tradis
suite, which is not suitable for TnSeq data. This work-
flow uses Bowtie to map reads, as it is more adapted to
very short reads than Bowtie2. Data are imported into
Galaxy using the SRA tool fasterq-dump [26]. All the
steps are highly adaptable to different read structures and
sequencing technology agnostic. The entire workflow
runs in approximately half a day on TnSeq data from [2].
The most time-consuming steps were splitting by bar-
codes and alignment. The availability of Jupyter in Galaxy
permitted the in-depth analysis of the final data. We
included these notebooks in galaxy histories containing

https://usegalaxy.org
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this paper analyses (See Additional file 1: Supplemental
Information). We used them to perform regression anal-
yses and compare the results of different methods with
other published studies.

Discussion
As there is no Gold Standard Dataset for transposon
analyses, we based our result evaluation on two factors.
The first factor was manual analysis. Manual analysis of
TIS data means looking at the coverage for a particular
gene and seeing if it differs significantly from the sur-
rounding region. The second factor was comparing with
experimental studies on the same organism. The exper-
imental conditions being variable between studies, we
expected to find different genes that are essential in dif-
ferent conditions. However, it provided a base to identify
“core essential genes”, essential in any conditions, and
constitute the majority of essential genes. Using these
factors, we wanted to emphasize that our results’ com-
parison is focused on getting the most accurate results
from the data. If a gene is depleted in reads, we con-
sidered it as essential in our study. When we talk about
“True Essential,” it means that the automatic prediction
of essentiality is coherent with the data’s manual analy-
sis. Since there was no experimental validation of the gene
essentiality in the given conditions, we could not ascer-
tain that the gene was truly essential without experimental
validation.
To test the performance of TIS analysis methods, we

selected two different datasets. The first one is a TraDIS
dataset utilizing Tn5 transposons that can potentially
insert at any genomic position. The second dataset used
Mariner transposons inserting at TA sites. The choice of
transposon impacts the overall library saturations: TraDIS
data is more sparse than TnSeq data because Tn5 trans-
posons have many more potential insertion sites than
Mariner transposons. The TnSeq library has been built
using different types of promoter-containing constructs.
We performed the analyses using either the control con-
structs, that do not contain any promoter, or all constructs
as replicates. The second solution provided more reliable
results by increasing library saturation.
Regression analysis produced results that were in good

agreement with published data as well as with databases
of essential genes. We performed the manual regression
in a Jupyter notebook in Galaxy. We also used the Bio-
Tradis [9] tool suite to perform an automatic regres-
sion. The manual method adds the burden of the choice
of distribution on the user. On the other hand, it
provides more flexibility as differently saturated libraries
may present different profiles that would change the dis-
tributions. When the appropriate parameters are deter-
mined, the manual method was highly reliable on datasets
we tested.

HMM analyses produced inconclusive results in our
hands. In both cases, the data were too sparse for HMM
to identify stable regions (consecutive insertion sites with
the same state covering a genomic region large enough to
be considered significant biologically). Zero-inflated data
disrupt the continuity of “regions with insertions” with
empty sites that do not provide information. HMM pre-
dict “blocs” of sites in the same state by analyzing the
probability of transition between states. If consecutive
sites constantly jump between empty and with insertion,
the algorithm is unable to identify contiguous states.
These results were expected for the TraDIS dataset due to
the libraries’ sparse nature but were more surprising for
the TnSeq data.

Conclusion
The goal of this study was to develop end-to-end work-
flows for the analysis of transposon insertion sequencing
data. TIS studies are used to identify genes essential to
bacterial growth in specific conditions or to detect genes
causing growth defect or advantage. While the experi-
mental aspects of the technique are continually evolving,
there is no consensus on the way to perform the essen-
tiality data analysis as many different approaches are
described in the literature. These can be broadly classified
into three categories. The first group of methods is based
on a regression analysis of the gene saturation indices. The
second type of analysis uses runs of consecutive sites with
no transposon insertion. Finally, the third group consists
of HMM-based methods. We added tools representing
each of these categories to Galaxy toolkit.
The workflows implemented in Galaxy are using robust

open-source tools. The tools used explicitly for TIS anal-
ysis are open source and well maintained, ensuring repro-
ducibility and transparency of analyses. The workflows
include Jupyter notebooks for exploratory analyses with-
out losing Galaxy history tracking that allows traceability
and sharing. The combination of open-source tools and
Jupyter notebooks provides a complete and flexible work-
flow that can be easily modified to fit any analysis need.

Methods
Selecting appropriate tools
First, we assessed the status of existing tools for the anal-
ysis of TIS data (Table 1). This information is essential
for tool selection as it identifies actively maintained tools
that will be supported in the future. Based on this analy-
sis, only Bio-Tradis, Magenta, and TRANSIT are actively
developed, maintained, and regularly released (Table 1).

Alignment of TraDIS data
The reads have been trimmed to remove low-quality
(Phred score < 20) bases at the end of the reads with Trim-
momatic [27]. The reads were mapped using Bowtie2 [15]
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against the reference genome of Escherichia coli BW25113
(CP009273.1), used in the Goodall et al. study. The cov-
erage of the genome was computed with BamCoverage,
from the Deeptools suite [25]. In our case, we were inter-
ested in identifying only insertion points. For that reason,
we computed coverage using 5’-ends of the reads only.

TRANSIT for TraDIS data
Tn5Gaps is the Gumbel tool adapted for TraDIS data.
These methods perform a gene by gene analysis of essen-
tiality based on the longest consecutive sequence of
potential sites without insertions in a gene. This metric
allows identifying essential domains regardless of inser-
tion at other locations of the gene. We ran TRANSIT
with default parameters but changed the normalization
method and selected not to normalize the counts. TRAN-
SIT offers two ways to deal with replicates: either the
counts of all replicates at each site are summed, or they
are averaged. Using the sum of counts provides a better
saturation of the library: a site that might not have been
impacted during the initial transfection might have been
impacted in another sample. In the case of TraDIS data,
where the saturation tends to be low due to a large number
of potential sites, the use of the sum of counts provides a
better resolution. By averaging the counts at each site, we
significantly decreased the noise.

Saturation indexes
Saturation is defined by the ratio of the number of sites
impacted by insertions on the total number of sites able to
receive an insertion in the gene. If the library is sufficiently
saturated, we should observe two distinct distributions.
The essential genes distribution has a low average satura-
tion, and the distribution of the non-essential genes has a
higher average saturation.

Regression on TraDIS data
Regression is a statistical analysis aiming to estimate
the relationship between variables. It provides a func-
tion modeling this relationship. In our particular case,
we are trying to identify the models behind gene satu-
rations’ observed distribution. Formalizing these models
then allows calculating the probability of each gene to
belong to either one. We performed this regression using
the python library scipy [28]. We started by defining the
probability density function (pdf ) of the gene saturation
as the sum of two known pdf s: here, an exponential and
a γ distribution. We anchor the regression by providing
expected parameters. Goodall et al. [13] did not provide
the parameters, and thus we had to estimate them. We
attempted to plot several distributions and correcting the
parameters to make them look like our data as much as we
could (See Jupyter notebook). Once we approximated the
parameter, the fitting function fits the data and returns the

corrected parameters and their standard deviations for the
two distributions.

Classification of TraDIS data
Once we identified the two distributions, we calculate the
probability of genes to belong to each of them. This prob-
ability is calculated using each class’s probability density
function (library scipy in python). pdf s are function whose
area under the curve in the interval x =[ a, b] is the prob-
ability of a random value of the distribution to belong to
the interval [ a, b]. When used for a single value, it also
provides a relative likelihood that the value n belongs to
the distribution (the absolute likelihood of n is null since
our variable is continuous).
To decide between the two categories, we select the

most likely category if the difference between the two
probabilities is significant. Formula (1) defines the signifi-
cance thresholds for gene classification:

log2
(
P(ES)
P(NE)

)
> log2(x) (1)

The threshold is calculated as the log2(x), where x is
the number of times the likelihood for a model must be
superior to the likelihood of the other one. The use of
a logarithm allows ignoring the direction of the ratio for
the decision calculation. Genes whose differences had not
been judged significant are classified as undetermined.

Bio-TraDis on TraDIS data
The Bio-Tradis toolkit provides a comprehensive set of
tools for preprocessing reads from TIS. Our data are
already exempt from transposon sequences. We used the
dataset provided as input for a read mapping step, fol-
lowed by the count of insertion per gene and gene essen-
tiality predictions. The mapping is done using bwa, with a
minimum mapping quality of 0 and default values for the
other parameters. The toolkit does not handle replicates,
so we merged the datasets after the mapping by adding
read counts at every position.

Pre-processing of TnSeq data
The reads published still contain transposon sequences
that need trimming. The transposon sequence includes
not only primers but also barcode sequences that separate
the constructs containing different promoters. We use
Cutadapt [29] to separate the reads of each construct. We
then trimmed the transposon sequence downstream of
the construct barcode, the sequence including the ITR and
the MmeI site, the sample barcode at the beginning of the
reads, and finally, the low-quality bases before alignment
and calculation of coverage.

Alignment of TnSeq data
The reads have been aligned to the reference genome
of Staphylococcus aureus subsp. aureus NCTC 8325

https://www.ncbi.nlm.nih.gov/nuccore/CP009273.1
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(CP_000253.1), used in the Santiago et al. study, using
Bowtie. Bowtie [30] has been selected instead of Bowtie2
[31] for this dataset, as it is recommended for very short
reads ( shorter than 50 bp). We enforce alignment with no
mismatches. It is necessary as we are working with very
short reads of 16-17 bp, which is the minimum length for
the majority of reads to have a unique alignment [32].

Counts for TnSeq data
The genome coverage is computed with BamCoverage,
from the Deeptools suite [25]. The coverage is calculated
with an offset of−1, meaning that the read is counted only
at the 3’ position, at the TA site position (Fig. 6b). This
study has seven datasets for each biological replicates:
one dataset corresponding to control constructs and six
corresponding to transposon containing a promoter. Con-
trary to the TraDIS data, where the Tn5 transposon inserts
everywhere, Mariner transposons insert only at TA sites.
To compute the gene saturation and row of empty sites,
we need to use the coverage of all TA sites, whether it
is null or not. It is accomplished by merging the cover-
age files with the positions of TA sites calculated with the
Nucleotide subsequence search tool available in Galaxy
[33]. The resulting file is a tabular file with a column
containing the read position (leftmost site) and another
containing the counts of reads aligning at this TA site.

Bio-Tradis TnSeq data
The Bio-Tradis toolkit provides a comprehensive set of
tools for preprocessing reads from TIS. This preprocess-
ing requires to provide the sequence of the transposon
located at the beginning of the read. Sequences need-
ing trimming in our reads are located on both sides of
the reads and are variable between constructs. Bio-Tradis
includes a script for read alignment that provides both the
mapped reads and the insertion counts at each nucleotide.
The scripts do not provide the option to choose which
end of the read should be used to attribute the inser-
tion at a nucleotide. We used the counts generated by our
workflow as input for Bio-Tradis essentiality analysis to
circumvent this problem.

TRANSIT for TnSeq data
We ran HMM and Gumbel tools on the TnSeq data. The
HMM results were inconclusive, probably due to each
sample’s low saturation after we divided the data based
on transposon constructs. We ran the Gumbel method
with default data, except for the option to not normal-
ize data and the choice of replicates handling method. For
this dataset, we are using the mean instead of the sum
because of the large number of samples. While using the
sum increases the library saturation, it is more sensitive to
artifacts than the mean. If one read align by mistake at a
position in 30% of the 84 samples, the mean would be 0

when the sum would be 15. it makes a big difference in the
metrics used for essentiality prediction.

Regression on TnSeq data
The regression onTnSeq data follows the same protocol as
the one used for TraDIS data. The difference is that we did
not have any information about the type of distribution
we expected. We added a step of distribution selection to
the parameter estimation. We used a book describing the
different distribution to select those who appeared close
to the shape of our data [34]. We first started with the dis-
tribution of non-essential genes (Fig. 7a). The distribution
shows no skew and seems to correspond to a normal dis-
tribution. An exponential distribution seemed to be the
most appropriate to describe essential gene saturations.
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