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Simple Summary: Sphingosine 1-phosphate is a bioactive phospholipid derived from cell mem-
branes. It is biosynthesized and metabolized within the cell and released extracellularly to trig-
ger various cellular responses via sphingosine 1-phosphate receptors. Keratinocyte and mast cell
functions are responsible for skin barrier acquired and innate immunity, and express sphingosine
1-phosphate receptors. These receptors regulate not only cell differentiation and proliferation, but
also immune responses such as cell migration and cytokine secretion, through G-protein-mediated
signaling pathways. Sphingosine 1-phosphate and its receptor signaling pathways are also involved
in several skin diseases along with various receptor agonists and are being investigated as potential
therapeutic agents. Here, we focus on the association of sphingosine 1-phosphate and its receptors
within the skin barrier interface.

Abstract: Sphingosine 1-phosphate (S1P) is a product of membrane sphingolipid metabolism. S1P
is secreted and acts via G-protein-coupled receptors, S1PR1-5, and is involved in diverse cellular
functions, including cell proliferation, immune suppression, and cardiovascular functions. Recent
studies have shown that the effects of S1P signaling are extended further by coupling the different S1P
receptors and their respective downstream signaling pathways. Our group has recently reported that
S1P inhibits cell proliferation and induces differentiation in human keratinocytes. There is a growing
understanding of the connection between S1P signaling, skin barrier function, and skin diseases.
For example, the activation of S1PR1 and S1PR2 during bacterial invasion regulates the synthesis
of inflammatory cytokines in human keratinocytes. Moreover, S1P-S1PR2 signaling is involved
in the production of inflammatory cytokines and can be triggered by epidermal mechanical stress
and bacterial invasion. This review highlights how S1P affects human keratinocyte proliferation,
differentiation, immunoreaction, and mast cell immune response, in addition to its effects on the
skin barrier interface. Finally, studies targeting S1P-S1PR signaling involved in inflammatory skin
diseases are also presented.

Keywords: sphingosine 1-phosphate; sphingosine 1-phosphate receptors; keratinocytes; mast cells

1. Introduction

Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid which modulates cell prolif-
eration and differentiation, including angiogenesis and apoptosis [1–3].

S1P generation and secretion play a vital role in many intracellular signaling cascades
and pathogeneses. In particular, angiogenesis, cell proliferation and differentiation, as well
as immune and inflammatory responses, have been widely investigated. It also plays an
essential role in signaling molecules, immune cell trafficking, and in various diseases in
multiple organs by binding to one of five G-protein-coupled receptors, S1PR1-5 [4].

The functions of S1P and the S1P-S1PR signaling pathway are equally important in
the skin organ. They are involved in keratinocyte differentiation and proliferation [5,6],
mast cell degranulation and migration [7,8], and have been shown to contribute to the
pathogenesis of skin sclerosis, psoriasis, and atopic dermatitis, as well as in the defense of
bacterial infections [9–14].
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We begin with the recent accumulated research on the effects of S1P and S1P-S1PR
signaling on the skin, as it is important to consolidate common findings, in order to advance
in this growing field.

2. S1P Formulation and Secretion

Until the early 1990s, S1P was thought to be an intermediate metabolite produced
during the degradation of sphingomyelin and sphingolipids, which are abundant in the cell
membrane. Subsequently, S1P was found to be an up-regulator of fibroblasts [3]; and also
involved in cell proliferation, cell motility, morphology modulation, and cell differentiation,
including tumor cells, neurons, vascular smooth muscle, and vascular endothelial cells [15].

S1P is derived from the cell membrane sphingolipids. Sphingomyelin in the cell
membrane is cleaved by sphingomyelinase to yield ceramide and is then cleaved by
ceramidase to form sphingosine. Sphingosine can be phosphorylated by sphingosine
kinases (SphK1 and SphK2), leading to the formation of S1P [2,3,15]. S1P is formed in the
cells but is degraded by intracellular S1P lyase or dephosphorylated by S1P phosphatases
(SPP) [2,15–17] (Figure 1).
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the nM order [20]. Erythrocytes and endothelial cells produce S1P constantly [21], while 
other cells, such as mast cells and keratinocytes, produce and release S1P in response to 
activation [22,23]. For example, Olivera et al. [22] reported that antigen administered to 
mouse models of anaphylaxis resulted in increased S1P production from mast cells along 
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Figure 1. Biosynthesis and metabolic pathways of sphingolipids. Sphingomyelin in the lipid bilayer
is converted to ceramide by sphingomyelinase. Ceramide is transformed into sphingosine by cerami-
dase. Some sphingosines are phosphorylated by sphingosine kinase (SPHK) and converted to the
bioactive lipid S1P. S1P is either released in extracellular space via S1P transporters, degraded by S1P
lyase, or transformed by sphingosine phosphatase (SPP) to sphingosine.

Plasma S1P concentrations are high in the µM order [18], but most of it is bound to
albumin and high-density lipoprotein (HDL), resulting in low levels of free S1P (less than
2%) [19]. In contrast, the concentration of S1P in the stromal fluid is considered to be in
the nM order [20]. Erythrocytes and endothelial cells produce S1P constantly [21], while
other cells, such as mast cells and keratinocytes, produce and release S1P in response to
activation [22,23]. For example, Olivera et al. [22] reported that antigen administered to
mouse models of anaphylaxis resulted in increased S1P production from mast cells along
with increased histamine levels. Park et al. [23] reported that the exposure of keratinocytes
to low toxic doses of Tg, a specific pharmacological ER stressor, increases intracellular
ceramide levels and its distal metabolites, sphingosine and S1P. Moreover, our group
previously reported that stimulating keratinocytes with Staphylococcus aureus culture
supernatant resulted in a threefold increase in S1P production [13].
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3. S1P Receptors

In the late 1990s, a family of five G-protein-coupled receptors (GPCR) for S1P, S1PR1-5,
were identified [24–28]. It was first shown that S1P induces the activation of extracellular-
signal-regulated kinase (ERK) 1 and 2 via activation of Gi proteins [29]. Subsequently, the
GPCR, initially called endothelial differentiation gene 1 (EDG1), was identified as the recep-
tor for S1P [30]. The binding of the extracellular S1P to S1PRs on the cell membrane results
in signaling and cellular responses, such as cell proliferation, differentiation, apoptosis, and
immunoreaction. S1PR1-3 is found in high density in the cardiovascular and immune cells
and is widely distributed in most other cell types. On the other hand, S1PR4 and S1PR5
can also have a limited distribution, such as in lymphatic and nervous cells [31,32].

Several groups have studied the signaling mechanisms of S1P receptors in detail.
S1PR1 is mainly bound to trimeric G protein Gi/o and activates ERK via activation of
low-molecular-weight G protein Ras and activates phosphoinositide 3-kinase-mediated
activation of Akt and low-molecular-weight G protein Rac, phospholipase C (PLC), and
inhibition of cyclic AMP production [28,33]. S1PR2 mainly activates the low-molecular-
weight G protein Rho via G12/13, and Rho activates Rho kinase (ROCK/ROK). S1PR2
also inhibits cell migration by suppressing Rac downstream of Rho without ROCK [34].
Besides G12/13, S1PR2 also binds to Gi/o and Gq [35]. S1PR3 primarily activates PLC by
conjugating Gq, causing Ca2+ mobilization, and activating C kinase (PKC) [36]. S1PR3
binds to Gi/o and G12/13 and activates the downstream Rho pathways [37]. S1PR4 binds
to Gi/o and G12/13 and activates ERK, mitogen-activated protein kinase (MAPK), and
the PLC downstream pathways [38]. S1PR5 binds to Gi/o and G12/13 and promotes the
downstream signaling pathways [35] (Figure 2).
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Figure 2. S1P-S1PR pathways. Extracellular S1P binds to S1P receptors. Each receptor binds to a
different G protein and triggers downstream signaling pathways. S1PR1 mainly binds to Gi/o, and
S1PR2 binds G12/13 and Gi/o and Gq. S1PR3 binds to mostly Gq but also to Gi/o and G12/13. S1PR4
and S1PR5 bind to Gi/o and G12/13. Gi/o activates Akt, Ras-Raf-MEK-ERK, Rac, and PLC/PKC
pathways but suppresses cAMP. Gq activates the PLC/PKC pathway. G12/13 activates Rho and the
downstream ROCK/ROK pathway.

4. S1P and S1P-S1PR Pathways on Human Keratinocytes

Since the first discovery of S1P, the effects of S1P on keratinocytes have also been
documented. Although S1P has a growth-promoting effect in many cells, keratinocyte S1P
exposure causes cell growth arrest. Vogler et al. [39] reported that both intracellular actions
of S1P itself and S1PRs cause cell growth arrest. Kim et al. [40] reported that S1P plays
an essential role in the negative regulation of keratinocyte proliferation by inhibiting the
Akt/PKB pathway.
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Besides inhibiting proliferation, there is also a substantial increase in intracellular
calcium content due to S1P [41]. Since this is the most critical signal of the differentiation
process in keratinocytes, they are transformed into corneocytes [11].

S1P can also protect keratinocytes from their apoptosis. Uchida et al. [42] reported
that the conversion of sphingosine to S1P protects keratinocytes from UVB-induced,
ceramide-mediated apoptosis in keratinocytes. More et al. [43] reported that S1P attenuates
hydrogen-peroxide-induced apoptosis of keratinocytes by promoting phosphorylation of
the Akt pathway.

The immunomodulating effects of S1P are well known as central in regulating the
circulation of lymphocytes, plasma, and tissue-to-tissue T lymphocytes [18,20,21], but
S1P also exhibits immunomodulating effects in the skin, particularly in keratinocytes.
Park et al. [44] reported that increased S1P production induced by ER stress activates NFκB-
and C/EBPα-dependent pathways and promotes keratinocyte CAMP production. It has
also been observed that S1P binds to heat shock proteins after ER stress [45]. In addition,
activation of SPHK1 promotes cathelicidin production by keratinocytes, while SPHK2
has the opposite role, or is not associated at all [46,47]. Furthermore, S1P stimulates the
production of inflammatory cytokines, such as TNF-α, IL-8, and IL-36gamma from human
keratinocytes [13,48].

S1P is also known to promote skin wound healing by increasing keratinocyte migra-
tion [49]. For example, Shin et al. [50] reported that a ginsenoside species, Rb1, which
regulates sphingolipid metabolism, promotes keratinocyte migration using the S1P-S1P
receptor–ERK1/2-NF-kB-MMP2/9 pathway.

Epidermal keratinocytes express all five types of S1PR 1-5 [39], most abundantly S1PR5,
followed by S1PR1 and S1PR2 [13]. S1P potently increases Ca (2+), which plays an essential
role in keratinocyte differentiation, and S1PR1 mediates chemotaxis of keratinocytes with no
effect on increasing Ca (2+), though S1PR3 increases S1P-induced Ca (2+) [41]. S1P inhibits
keratinocyte proliferation; as also mentioned above, S1PR2 was found to be dominantly
involved in the S1P-induced dephosphorylation of Akt and keratinocyte growth arrest [51].
Schmitz et al. [52] reported that S1PR3 in human keratinocytes mediates eNOS activation
and NO- formation in response to S1P. They also reported that the S1PR3 deficiency inhibits
S1P to protect human keratinocytes from apoptosis [52].

S1P receptors have been found to be associated not only with keratinocyte prolifera-
tion, differentiation, and apoptosis control but also with immunoreaction and inflammatory
mechanisms. It has been shown that S1P-induced increases in TNFα, IL-8, and IL-36γ are
mediated by S1PR1 and 2, and that the above cytokine increases from Staphylococcus-
aureus-stimulated keratinocytes are mediated by S1PR1 [13]. Furthermore, S1PR2 ex-
pression is upregulated in Staphylococcus-aureus-stimulated keratinocytes, and S1PR2 is
involved in the formation of skin barrier structures, such as filaggrin, claudin, occludin,
and corneodesmosin [13,14]. Moreover, S1PR3 has recently been reported to contribute to
the upregulation of IL-17A and IL-22 secretion via the AKT/mTOR pathway [53] (Figure 3).
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S1PR1–S1PR5. While S1PR1 activates cell growth, S1PR2 inhibits keratinocyte cell growth and
mediates skin barrier structure. S1PR1, S1PR2, and S1PR3 trigger cytokine release. S1PR3 promotes
keratinocyte differentiation.

5. S1P and S1P-S1PR Pathways on Human Mast Cells

As mentioned above, S1P is involved not only in cell proliferation, migration, and
differentiation, but also in immune and inflammatory responses. Therefore, considering the
relationship between mast cells and S1P, a significant player in inflammatory and allergic
immunoreactions, is key for understanding skin inflammation and has been investigated
by many groups.

Mast cells release S1P in response to IgE or antigen stimulation [7] because cross-
linking of FcERI increases SphK activity and the production of S1P [54]. Fyn kinase, a
59 kDa member of the Src family of tyrosine kinases [55], is required for this reaction [56].
It has also been reported that multidrug-resistant protein 1 (MRP1) contributes to releasing
S1P from the intracellular to the extracellular space of mast cells [57]. SPHK1 and 2
are activated by antigen stimulation; while SPHK1 is a critical factor in regulating the
human mast cell response, SPHK2 is essential in mouse mast cell response [58]. Mast cells
release S1P, but on the other hand, S1P stimulates mast cell chemotaxis, degranulation,
and cytokine secretion. Jolly et al. [8] reported that even a very low concentration of S1P
(1 nM) enhances mast cell chemotaxis, and 100 nM S1P induces cytokine secretion, such
as TNFα, IL-13, IL-6, and MCP-1, from mast cells by using bone-marrow-derived mast
cells and RBL-2H3 cells. Oskeritzian et al. [59] also reported that S1P stimulates mast
cell cytokine and chemokine secretion, such as TNFα, IL-6, and CCL2/MCP-1, by using
LAD2 mast cells and cord-blood-derived human mast cells. Interestingly, S1P not only
affects the inflammatory response of mast cells but also regulates their differentiation and
maturation. For example, Price et al. [60] reported that S1P induces the maturation of
cord-blood-derived mast cells to express chymase. Olivera et al. [61] reported that chronic
exposure to S1P on mast cells enhances the expression of genes associated with calcium
response and degranulation.

Mast cells express S1PR1, S1PR2, and S1PR4, but not S1PR3 and S1PR5 [8,54,62,63].
S1P released from mast cells enhances mast cell migration and the secretion of various

allergenic and inflammatory mediators in an autocrine manner by binding to S1PR1 and
S1PR2 [54,64,65]. For example, S1PR1 regulates mast cell migration toward low concen-
trations of antigen, while the migration of mast cells is inhibited through the S1P–S1PR2
axis [54,64]. However, once the mast cell reaches the target site, degranulation is induced by
the S1P-S1PR2 pathway [65]. S1PR4 is a negative regulator of IgE-induced degranulation
via IL-33, although it has little effect on mast cell migration [63]. S1PR4 is also involved
in mast cell degranulation and cytokine production [63]. As proof of this, Jeon et al. [66]
reported that the administration of CYM50358, a selective S1PR4 antagonist, suppressed
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degranulation of RBL-2H3 mast cells and reduced IL-4 production and serum IgE levels
among ovalbumin-induced allergic model mice (Figure 4).
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stimulates degranulation and cytokine production intracellularly. On the other hand, S1P released
into the extracellular space also acts in an autocrine manner via S1P receptors expressed on mast cells.
Mast cells express three S1P receptors, S1PR1, S1PR2, and S1PR4, but not S1PR3 and S1PR5. S1PR1
activates mast cell chemotaxis; meanwhile, S1PR2 suppresses it. S1PR2 and S1PR3 promote mast cell
degranulation and cytokine production.

6. S1P-S1PR Signaling and Skin Diseases

Although many effects of S1P signaling in the human organism have been discovered,
the full extent of its functions has not been elucidated yet. It is now becoming clear that
dysfunction or imbalance of the S1P axis is a contributing factor in inflammatory skin
diseases such as atopic dermatitis and psoriasis [67].

For atopic dermatitis, in a mouse model, Japtok et al. [68] applied topical S1P and
observed reduced antigen uptake capacity by epidermal dendritic cells. They described
the reason for this; the Akt signaling pathway is inhibited in dendritic cells and in ker-
atinocytes. Park et al. [69] reported that, in a mouse model of atopic dermatitis, the
administration of JTE-013, a selective antagonist of S1PR2, followed by a topical applica-
tion of 2,4-dinitrochlorobenzene, decreased lymph node size and levels of inflammatory
cytokines such as IL-4, IL-13, IL-17, and IFN-γ in the ear and lymph nodes, and levels
of chemokines CCL17 and CCL22. They suggested that this is because the expression
of CCL17 and CCL22 induced by IL-4 is significantly blunted in bone-marrow-derived
dendritic cells (BMDCs) from S1pr2-gene-deficient mice and that JTE-013 suppresses this
induction in BMDCs from wild-type mice. They also observed that the inflammation of
atopic dermatitis is significantly improved in S1pr2-gene-deficient mice.

In the imiquimod model, Schaper et al. [9] reported that blocking S1P significantly
reduced swelling, inflammatory cell infiltration, and edema in the ear skin for psoriasis-like
skin lesions. Syed et al. [70] reported that bone-marrow-specific S1PR1 deficiency promotes
early inflammation in imiquimod-induced psoriasiform dermatitis mouse models because
the S1PR1 deletion alters IL-1β and VEGF generation and expression of their receptors,
affecting neoangiogenesis and neolymphangiogenesis. Jena et al. [71] reported that the
Western diet increases the incidence of dermatitis in mice and S1PR2 expression and genes
encoding SPHKs, S1P phosphatase, binding proteins, and transporters are elevated in
skin lesions. S1PR3 is also related to the mechanism of psoriasis. He et al. [53] reported
S1PR3 axis contributes to the hyperproliferation of keratinocytes and skin inflammation
in psoriasis via the AKT/mTOR pathway. For S1PR4, Schuster et al. [72] reported that
imiquimod-induced psoriatic skin lesions created in S1pr4-deficient mice reduce the sever-
ity of psoriasiform dermatitis, decrease CCL2, IL-6, and CXCL1, and reduce infiltrating
monocytes and granulocytes. This conclusion is drawn because S1PR4 signaling is associ-
ated with TLR signaling in macrophages to produce CCL2 via the NF-κB pathway.
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Furthermore, S1P-S1PR signaling also has a role in the retention of resident memory T
cells (TRM), which is essential for the pathogenesis of chronic inflammatory and autoim-
mune diseases as well as for protection against pathogens. Skon et al. [73] reported that
accumulation of activated TRM cells in inflamed skin is dependent on the downregulation
of S1PR1. Evrard et al. [74] reported that downregulation of S1PR5 resulted in the retention
of TRM cell precursors in the skin and provided skin with immune protection.

7. S1P and S1PR Modulators for Skin Diseases

Beginning with the development of Fingolimod (FTY720) for the treatment of multiple
sclerosis [75], various S1P and S1P receptor modulators have been developed. Given that
S1P and S1P-S1PR signaling have been implicated in the pathogenesis of skin diseases, a
variety of modulators have been investigated in an effort to develop therapeutic agents.

FTY720 is a functional antagonist of S1PR1 and has been documented to be involved
in S1PR2, S1PR3, S1PR4, and S1PR5 [76,77].

Administration of FTY720 into mouse skin, after repeated hapten administration,
inhibits eosinophil outflow from the bone marrow and reduces the number of eosinophils
in the blood and skin [78]. Thus, FTY720, in combination with betamethasone ointment
applied to an NC/Nga mouse model of spontaneous development of atopic dermatitis-like
skin inflammation, inhibits epidermal hyperplasia and mast cell accumulation [79]. The
systemic application of FTY720 also protected NC/Nga mice from skin inflammation [80].
Additionally, using histamine- and IgE-induced dermatitis mouse models, topical appli-
cation of FTY720, as a preventive measure or after the establishment of inflammation has
been shown to reduce SPHK1 activity and cytokine production, such as TNFα, IL-6, and
MCP-1, and reduces ear thickness [81]. Furthermore, FTY720 inhibited the migration of
dendritic cells from the skin to the lymph nodes [82]. In addition to these reports, it has
also been shown that FTY720-containing gel decreases the Eczema Area and Severity Index
(EASI) score of AD-like lesions in SKH-1 hairless mice [83]. FTY720 is also effective in
psoriasis. In the IMQ-induced psoriasiform dermatitis mouse model, FTY720 inhibited the
migration of IL-17A-producing γδT cells from lymph nodes to the skin [84,85]. Ramírez
et al. [86] reported that FTY720 treatment in IMQ-induced psoriasiform dermatitis mouse
models showed an accumulation of Vγ4 + Vδ4+ cells in the responding LNs and inhibited
their increase both in the blood and in the inflamed skin. Moreover, FTY720 inhibits hyper-
trophic scar fibroblasts progression and the G0/G1 cycle and promotes apoptosis through
S1PR5 [87].

The selective S1P1 modulator Syl930 reduces sodium lauryl sulfate (SLS)-induced
psoriasis-like skin lesions in mouse models [88]. In addition, Syl930 improved skin lesions
in a propranolol-induced psoriasis-like skin lesion guinea pig model [88]. In a phase II study
of psoriasis, the oral administration of the S1PR1 agonist ponesimod reduced the psoriasis
area and severity index (PASI) score by 75% in 77% of patients [89]. Unfortunately, systemic
side effects such as lymphopenia and transient bradycardia were observed. Therefore,
the development of a topical soft-drug S1PR1 agonist modified from ponesimod has been
attempted [90,91]. IMMH002, a recently developed oral S1PR1 modulator, reduces irritation
in the SDS-induced psoriasis-like skin lesion mouse model, T lymphocyte infiltration of
the imiquimod-induced psoriasiform dermatitis mouse model, and skin damage in the
propranolol-induced psoriasis-like skin lesion guinea pig model [92]. Another S1PR1
modulator, cenerimod, reduces skin and lung fibrosis in a bleomycin-induced SSc mouse
model [12].

There have been many trials with S1PR1 modulators in the field of skin diseases, but
there have also been studies with other modulators related to the S1P axis. For example,
Shin et al. [93] reported that topical application of HWG-35D, an SPHK2 inhibitor, improves
skin lesions, serum IL-17A levels, and mRNA levels of IL-17A, K6, and K16 genes in
imiquimod-induced psoriasiform dermatitis mouse model skin.
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8. Conclusions

Since the discovery of S1P and its receptors, its association with many vascular,
immune, and inflammatory diseases has now become clear. Although further studies
are still needed before S1P-S1PR modulators can be applied clinically to skin diseases, it is
clear that the S1P-S1PR axis is a key factor within the immunomodulatory mechanism and
barrier functions of the skin. With future research, the development of therapeutic reagents
which can be applied to skin diseases is expected in the near future.
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