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A network pharmacology
approach to evaluate the
synergistic effect of
dihydromyricetin and myricitrin
in vine tea on the proliferation
of B16F10 cells
Nanxing Zhao, Hongming Kong, Hesheng Liu, Qing Shi,
Xiangyang Qi and Qiuping Chen*

College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China

Aim of the study: Although vine tea has demonstrated broad-spectrum anti-

cancer properties, its main active compounds, dihydromyricetin (DMY) and

myricitrin (MYT), exert weaker effects than the tea extracts. This study aimed

to investigate the synergistic inhibitory effects of DMY and MYT on B16F10 cell

proliferation and their synergistic inhibitory effects.

Methods: The effect of vine tea extracts (VTEs) and their active

compounds on B16F10 cells was analyzed by 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) assay, fluorescence staining, and flow

cytometry. The synergistic effects were calculated by the combination index

(CI), and its mechanism was discussed by network pharmacology.

Results: Different VTEs varied in their inhibition of B16F10 cell growth, with

IC50 values ranging from 4.45 to 12.95 µg/mL, Among these, Guangzhou

Qingyuan (Level 2), appeared to have the most potent inhibitory effect. The

IC50 value of mix-use of DMY and MYT was 19.94∼64.4 µM, of which DMY:

MYT = 8:1 had the minimum IC50 value of 19.94 µM. Combinations in the

1:1∼8:1 range had stronger effects than the isolated active compound. When

they were mixed at the ratio of 1:4∼8:1, CI < 1, showing a synergistic effect.

The combination of DMY and MYT also significantly inhibited the tyrosinase

activity in B16F10 cells, consistent with its impact on cell proliferation. The

eight potential targets were identified by network pharmacology regulating

melanin metabolism, tyrosine metabolism, and melanogenesis signaling.

According to the analysis of protein-protein interactions, TP53, TNF, and TYR

might be critical targets for preventing and treating melanoma.
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Conclusion: We found that DMY and MYT induced apoptosis of B16F10

cells, and their combined application had a significant synergistic effect. The

present findings indicated that vine tea had a multi-pathway and multi-target

impact on the prevention and treatment of melanoma.

KEYWORDS

vine tea, dihydromyricetin, myricitrin, proliferation inhibition, network
pharmacology, synergistic effect, cell cycle

Introduction

Melanoma originates from melanocytes (1, 2). In addition to
genetic and other endogenous risk factors, ultraviolet radiation
is the most critical exogenous risk factor for melanoma (3). Early
detection and surgical resection are the best choices to cure
melanoma. At the same time, radiotherapy and chemotherapy
are also commonly used treatments (4). However, surgical
resection is limited and cannot effectively treat metastatic
tumors. Radiotherapy and chemotherapy have drug toxicity and
a high cost (5, 6). Therefore, it is important to prevent melanoma
through lifestyle. Phytochemicals as supplements have attracted
wide attention because of their low cost and toxicity. Many
active ingredients have been reported with anti-cancer, anti-
metastatic, and pro-apoptotic effects (7–10). Daphnetin inhibits
α-MSH-induced melanogenesis via PKA and ERK signaling
pathways in B16F10 cells and inhibits melanin synthesis in
UVB-irradiated HaCaT conditioned medium (11). Paclitaxel in
combination with a C-C chemokine receptor type 7 monoclonal
antibody can both delay B16F10 cell growth and reduce
lymphatic metastasis (12). Luteolin inhibits melanoma growth
by regulating cell-cell interaction and oncogenic pathways (13).
The purified extract of Nymphaea hybrid also has a specific
inhibitory effect on melanogenesis in B16F10 cells (14).

Vine tea (Ampelopsis grossedentata) has more than 600 years
of use in China, is widely distributed in the mountainous areas
of southern China, and has been used as a new food resource
in recent years. It has hypoglycemic (15), antioxidant (16, 17),
antibacterial (18), and anti-inflammatory (19, 20) properties.
Several bioactive components have been isolated from vine tea,
such as DMY, MYT, and myricetin (21). As the most abundant
flavonoid in vine tea, the content of DMY can reach as much as
30% in the leaves (15). Several studies have shown it to be anti-
tumor in human lung adenocarcinoma cell lines (22), human
glioma (23), and cholangiocarcinoma (24).

Natural products have gained popularity due to their
low toxicity and low cost. However, due to their complex
composition, the use of natural products is sometimes
restricted. Network pharmacology can provide insight into
natural products. In network pharmacology, multiple targets
of a specific molecule are analyzed through network analysis,

emphasizing multi-way regulation of signaling pathways, which
can help understand the mechanism of prevention and
treatment (25).

The present study evaluated the synergistic effect of the
main active components in vine tea, DMY, and MYT, on the
proliferation of B16F10 cells. The network pharmacological
model was used to explain the underlying mechanisms of vine
tea in preventing and treating melanoma.

Materials and methods

Materials

B16F10 cells were purchased from Shanghai Institute of
Biochemistry and Cell Biology, CAS; MYT standard (CAS:
17912-87-7; ≥ 98%, purity), DMY standard (CAS: 27200-12-
0; ≥ 98%, purity), and MTT were purchased from Beijing
Solarbio Science and Technology Co., Ltd.; Fetal bovine serum
was purchased from Beijing TransGen Biotech Co., Ltd.; RPMI
medium and trypsin were purchased from Hyclone from
Thermo Fisher Scientific; Hoechst 33342 was purchased from
Shanghai Beyotime Biotechnology Co., Ltd.; PI/Rnase staining
solution was purchased from Beijing BD Biosciences Co., Ltd.,
other reagents were commercially available and analytically
pure. Six vine tea varieties selected for use in the experiment are
all commercially available: A, Wild vine tea in Enshi, Hubei; B,
Hubei Enshi selenium-rich vine tea; C, Guangzhou Qingyuan
(Level 1); D, Guangzhou Qingyuan (Level 2); E, Wild vine tea in
Shiqian, Guizhou; F, Wild vine tea in Zhangjiajie, Hunan.

Extraction of vine tea

The preparation of vine tea extracts (VTEs) was as follows:
70% ethanol was added to dried vine tea (tea: solvent = 1:10), and
the suspension was incubated in a water bath at 40◦C for 30 min.
Then, the extracts were filtered and concentrated in a rotary
evaporator to eliminate the solvent. Finally, the concentrate was
lyophilized and stored at 4◦C.
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High-performance liquid
chromatography analysis of vine tea
extracts from different regions

VTEs were detected using a high-performance liquid
chromatography (HPLC) system (Waters, Shanghai, China)
with a C18 (5 µm, 4.6 × 250 mm) reverse-phase column, and
the flow rate was 1.0 mL/min. The mobile phases were 0.1%
acetic acid acetonitrile solution (A) and 0.1% acetic acid aqueous
solution (B). Under the following gradient profile: 0–22 min
10–30% A, followed by washing and reconditioning the column
(3 min). The detection wavelength was 254 nm (200–400 nm
full-band scanning).

The standard curve equation of DMY was
y = 9656905.4141x+39250.3632, r2 = 0.9995 (0.1677 ∼
0.8 mg/mL); and MYT was y = 33785171.6504x+446.4681,
r2 = 0.9998 (0.0030 ∼ 0.035 mg/mL). The VTEs were prepared
at a 1 mg/mL concentration, the sample injection volume was
20 µL and repeated three times as parallels.

Cell culture

B16F10 cells were inoculated in RPIM-1640 medium
containing 10% FBS at 37◦C and cultured in an incubator
with 5% CO2 and saturated humidity (MCO-15AC, Sanyo,
Japan), and the medium was changed every other day. When
cells reached about 80% confluence, they were digested and
subcultured with 0.25% trypsin and allowed to continue to
develop (26).

The proliferation of B16F10 cells by
MTT assay

B16F10 cell suspension was inoculated in a 96-well plate
at 3,000 cells/well for 24 h. VTEs were dissolved in dimethyl
sulfoxide (DMSO) to 100 mg/mL and diluted with a culture
medium to 10–30 µg/mL. For the administration of DMY
and MYT, the compounds were diluted in DMSO to 100 mM
and then diluted with a culture medium to get the needed
concentration. The final concentration of the DMSO was less
than 0.5% in the medium.

To evaluate the synergistic effect of DMY and MYT, cells
were treated with DMY, MYT, or mix-use. In the mixture, the
compounds were present in ratios of 1:4, 1:2, 1:1, 2:1, 4:1, and
8:1. After treatment for 72 h, 10 µL of 5 mg/mL MTT was
added to each well. The media containing MTT was removed
after 4 h, and 100 µL DMSO was added to each well to dissolve
the formazan crystals (27). The plate was shaken for 1 min,
the absorbance at 490 nm was measured, the inhibition rate
of the drug on cell growth was calculated, and the general
equation for the dose-effect relationship was obtained according
to the following formula. The combination index (CI) was

calculated after 72 h incubation, and the CI value represented
the combined effect of two drugs; CI <1 showed synergism,
CI = 1 additive effects, and CI > 1 showed antagonism. The CI
values of different intervals had strong and weak differences. CI
value was calculated by the equation.

log
(
fa/fu

)
= log (D/Dm)m = m log(D)−m log(Dm)

D: the dose of the drug
Dm: the median-effect amount is signifying the potency.
Fa: the fraction affected by the dose
fu: the fraction unaffected, fu = 1-fa
If b = m, a = -mlogDm, Y = log (fa/fu), X = logD, Y = bX+a.

CI =
(D)1
(DX)1

+
(D)2
(DX)2

In the above formula, (D)1 and (D)2 represent the combined
inhibition rate X% of drug 1 and drug 2 in the experiment,
and (DX)1 and (DX)2 represent their respective inhibition
rates X% (28).

Cell fluorescence staining

B16F10 cells were inoculated in 24-well plates at 3 × 104

cells/well. DMY, MYT, or mixed-use were applied the next
day at a concentration of 75 µM. The cells were stained for
72 h. The original medium was aspirated and discarded, and
the well was washed with PBS. Each was stained with 250
µL Hoechst 33342 solution. After 15 min, the dye solution
was discarded. After washing 3 times with PBS, fluorescence
photomicrographs were obtained by an inverted fluorescence
microscope (IX73, Olympus, Japan) (29) and quantitatively
analyzed using ImageJ software.

Mean = IntDen/Area (30).

Mean: Mean gray value.
IntDen: Integrated Density.

Effects of dihydromyricetin and
myricitrin on tyrosinase activity in
B16F10 cells

B16F10 cells were inoculated into 96-wells at 3,000
cells/well. The cells were cultured for 24 h before administering
the test compounds. DMY and MYT were in DMSO to 100 mM
and diluted with a culture medium to a concentration gradient
of 20–100 µM, either alone or in combination.

After B16F10 cells were treated for 72 h, 90 µL 1% TritonX-
100 was added to each well, and then 10 µL 1.0 mg/mL L-DOPA
was added. The absorbance at 490 nm was measured after 5 min
of ultrasound and treatment at 30◦C for 30 min. The enzyme
activity was calculated using the following formula: tyrosinase
activity = OD sample /ODcontrol × 100% (31).
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Determination of cell cycle

The digested B16F10 cells were inoculated into three 12-well
plates as three parallel groups at 5× 104 cells/well. After 24 h, the
cells were adherent to the wall before treatment. 75 µM DMY,
MYT, or the combined compounds were added to each well,
and then the cells were incubated for 24 h. The digested cells
were collected and centrifuged at 1,000 rpm for 5 min; then,
the supernatant was discarded. After washing the cells with PBS
twice, 4◦C 75% ethanol was added slowly, and the cells were
kept in darkness at 4◦C overnight. The cells were centrifuged
at 1,000 rpm for 5 min before analysis, the supernatant was
discarded, and the cells were washed with PBS to remove all
ethanol and resuspended in 0.5 mL PI/Rnase staining solution,
incubated in the dark at room temperature for 15 min, and then
analyzed by flow cytometry (FACSVerse, BD, America) (32).

Network analysis of
component-disease interactions

The genes of targets associated with “melanoma” disease
names were collected through CTD,1 and the genes of targets
with “DMY” and “MYT” as chemical names were similarly
searched. Target genes were screened for overlapping with
DMY, MYT, and melanoma. Then, they were uploaded to
Cytoscape 3.8.2 to generate a network map of component-gene-
disease interactions, and the protein interaction diagrams, gene
ontology (GO), and kyoto encyclopedia of genes and genomes
(KEGG) pathway diagrams were obtained for further analysis.

Data analysis and processing

Calcusyn 2.0 software was used to calculate the CI of DMY
and MYT for further analysis. The data were visualized using by
Origin 9.0 and were statistically analyzed by SPSS. For statistical
analysis, one-way ANOVA was used. Results are presented
as means and error bars represent standard deviation (SD).
p < 0.05 was considered statistically significant.

Results

High-performance liquid
chromatography analysis of vine tea
extracts

VTEs were analyzed by HPLC (Figure 1), and three peaks
revealed the main components of vine tea were DMY, MYT, and
myricetin. The range of DMY was 53.36∼ 67.09%, of which the

1 http://ctdbase.org/

wild vine tea in Zhangjiajie, Hunan province, was the highest,
with a content of 67.09% (Figure 2).

Inhibitory effects of vine tea extracts
on the proliferation of B16F10 cells

B16F10 cells were treated with 10 µg/mL VTEs, and the
inhibition rate of cell proliferation increased gradually within
48 h (Figure 3). Within 24 h, the inhibition rate of VTEs on
B16F10 cells was 9.87 ∼ 53.62%. The inhibition rate was 14.87
∼ 75.95% within 48 h; the results showed that vine tea had an
inhibitory effect on B16F10 cells. Among these, sample D had
the best inhibitory effect.

Correlation analysis

As shown in Table 1, Quantitative Composition-Activity
Relationship analysis showed a very significant correlation
between DMY and the proliferation inhibition rate of B16F10
cells, which indicated that DMY in vine tea played an essential
role in inhibiting the proliferation of B16F10 cells.

Previous experiments showed that the IC50 value of DMY
on B16F10 cells was 14.73 µg/mL. IC50 of VTEs on B16F10 cells
was 4.45∼12.95 µg/mL, in which sample D showed the best
inhibitory effect (Figure 3). The IC50 values of six VTEs were
lower than DMY, indicating that VTEs had a better inhibitory
effect on B16F10 cells. Therefore, we inferred that MYT in vine
tea had no significant correlation with inhibiting B16F10 cell
proliferation, but MYT may have a synergistic effect.

Inhibition of B16F10 cell proliferation
by dihydromyricetin and myricitrin

Single or combined administration of DMY and MYT
could inhibit the proliferation of B16F10 cells. The rate of cell
proliferation inhibition increased gradually in a dose-dependent
manner as drug concentration increased (Figure 4). When
the content of DMY in the mixed drug increased, the IC50

decreased gradually. When the DMY: MYT was more significant
than 1: 1, the IC50 of the mix-use group was lower than
that of the single-drug group, and the lowest IC50 was 19.94
µM when DMY: MYT = 8:1 (Table 2). The CI value was
used to analyze the experimental results further. DMY and
MYT had a synergistic effect on inhibiting the proliferation
of B16F10 cells. When they were mixed in the ratio of 1:4–
8:1, the CI at IC25, IC50, and IC75 was less than 1, showing a
synergistic effect. Among them, the CI of IC25 was the lowest,
and DMY: MYT = 8:1 showed strong synergism, indicating that
the synergistic effect of DMY and MYT was more apparent when
the cell inhibition rate was low. Among different proportions,
when the ratio of them was 8:1, the CI value was the lowest,
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FIGURE 1

The chromatography of different vine teas. (A) Wild vine tea in Enshi, Hubei. (B) Hubei Enshi selenium-rich vine tea. (C) Guangzhou Qingyuan
(Level 1). (D) Guangzhou Qingyuan (Level 2). (E) Wild vine tea in Shiqian, Guizhou. (F) Wild vine tea in Zhangjiajie, Hunan; 1, Dihydromyricetin; 2,
Myricitrin; 3, Myricetin.

indicating that the synergistic effect of the ratio was the best
(Figure 5).

Effects of combination of
dihydromyricetin and myricitrin on
tyrosinase activity in B16F10 cells

DMY and MYT inhibited tyrosinase activity in B16F10 cells
when applied alone or in combination. With the increase in drug
concentration, the inhibition of tyrosinase activity increased
gradually, showing a dose-dependent relationship in which the
activity of DMY was more substantial than MYT’s (Figure 6).
The IC50 of the combined drug group was lower than that of
the single-drug group. The lowest IC50 of DMY: MYT = 2:1 was

62.59 µM (Table 3). When they were mixed in the ratio of 1:4–
8:1, the CI of IC25, IC50, and IC75 was less than 1, showing a
synergistic effect. Among them, the CI of IC75 was the smallest,
and DMY: MYT = 8:1 showed strong synergism, indicating that
the synergistic effect was higher when DMY and MYT were used
together. Among the different ratio concentrations, the CI value
of DMY: MYT = 8:1 was the lowest at IC50 and IC75, while the
lowest CI at IC25 was the ratio of 2:1 (Figure 7).

Inhibition of B16F10 cell proliferation
by dihydromyricetin and
myricitrin—Fluorescence staining

Hoechst’s staining results showed that DMY and MYT alone
or in combination could effectively inhibit the proliferation
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FIGURE 2

Contents of DMY and MYT in the extract of different vine teas.
Values are means ± SD (n = 3). Different groups of vine tea were
prepared at 1 mg/mL, DMY and MYT standards were prepared at
different concentrations with methanol solution and were
determined by HPLC. Different letters and capitalization indicate
significant differences between means at P < 0.05 by one-way
ANOVA followed by Duncan comparison test. DMY,
dihydromyricetin; MYT, myricitrin.

FIGURE 3

Inhibitory effect of different kinds of vine tea extracts on the
proliferation of B16F10 cells. Values are means ± SD (n = 3).
B16F10 cells were treated for 24 h with inhibitor (10 µg/mL VTEs
of different varieties) and medium (control), and cell viability was
determined using the MTT assay. Different letters and
capitalization indicate significant differences between means at
P < 0.05 by one-way ANOVA followed by Duncan comparison
test. (A) Wild vine tea in Enshi, Hubei. (B) Hubei Enshi
selenium-rich vine tea. (C) Guangzhou Qingyuan (Level 1).
(D) Guangzhou Qingyuan (Level 2). (E) Wild vine tea in Shiqian,
Guizhou. (F) Wild vine tea in Zhangjiajie, Hunan.

of B16F10 cells and promote cell apoptosis compared with a
control group. The fluorescent staining results were consistent
with the MTT experimental data. With the increase of DMY
concentration in the combined drug group, the number of cells
decreased gradually, in which the single DMY was stronger than

TABLE 1 Correlation analysis.

Administration time 24 h 48 h

Single use R P R P

DMY –0.882 <0.001 0.713 0.009

MYT 0.443 0.150 0.423 0.170

Myricetin –0.562 0.057 0.540 0.070

FIGURE 4

The effects of DMY and MYT on B16F10 cell proliferation. Values
are means ± SD (n = 3). B16F10 cells were treated with DMY,
MYT, or mix-use (1:4 ∼ 8:1) for 72 h, before assessment of
viability by MTT assay. The dose-response relationship was
obtained by transformation according to the equation. DMY,
dihydromyricetin; MYT, myricitrin.

TABLE 2 Half-inhibitory concentration of drugs on B16F10
cell proliferation.

Sample DMY MYT DMY: MYT

1:4 1:2 1:1 2:1 4:1 8:1

IC50 (µM) 45.98 109.1 64.64 63.89 43.65 41.87 27.41 19.94

r 0.9 0.95 0.99 0.99 0.99 0.99 0.98 0.98

MYT. The best effect was at 8:1 in the combined drug group
(Figure 8A). The quantitative fluorescence results showed that
the 8:1 group had the lowest mean fluorescence intensity, which
was consistent with the image results (Figure 8B).

Effects of B16F10 cells on cell cycle in
combination with dihydromyricetin
and myricitrin

The effects of DMY and MTY on the cell cycle of B16F10
cells were analyzed by flow cytometry. As shown in Table 4,
the results of DMY, MYT, and the combination group on the
cell cycle of B16F10 cells were mainly characterized by reducing
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FIGURE 5

Analysis of the combined inhibitory effects of DMY and MYT on B16F10 cell proliferation. Values are means ± SD (n = 3). B16F10 cells were
treated with DMY, MYT, or mix-use (1:4 ∼ 8:1) for 72 h, before assessment of viability by MTT assay. The CI value was calculated by the equation.
DMY, dihydromyricetin; MYT, myricitrin.

the number of cells passing through G1 phase and blocking
the cell cycle in S and G2 phases. The cell cycle results of the
combination group (1:4, 1:2, 1:1, 2:1, 4:1, and 8:1) were similar
to those of the DMY group, suggesting that their mechanisms
of action were relatively consistent. Compared with the control

FIGURE 6

Tyrosinase inhibition by DMY and MYT in B16F10 cells. Values
are means ± SD (n = 3). After B16F10 cells were treated with
DMY, MYT, or mix-use (1:4 ∼ 8:1) for 72 h, 90 µL of 1%
TritonX-100 was added to each well, and then 10 µL of
1.0 mg/mL L-DOPA was added. The absorbance at 490 nm was
measured after 5 min of ultrasound and treatment at 30◦C for
30 min. The dose-response relationship was obtained by
transformation according to the equation. DMY,
dihydromyricetin; MYT, myricitrin.

TABLE 3 Half-inhibitory concentrations of drugs on tyrosinase
in B16F10 cells.

Sample DMY MYT DMY: MYT

1:4 1:2 1:1 2:1 4:1 8:1

IC50 (µM) 107.7 233.95 98.68 99.42 75.67 62.59 78.91 73.07

r 0.97 0.97 1 0.99 0.99 0.97 0.93 0.94

group, the experimental groups had significant differences, of
which DMY: MYT = 8:1 group was the most prominent, and the
percentage of cells in the G1 phase decreased to 59.38%, the rate
of cells in the S phase increased to 33.16% and the cells in G2
phase increased to 7.46%.

Targets of dihydromyricetin and
myricitrin on melanoma

The mechanism of action of vine tea in the prevention and
treatment of melanoma was studied. The targets of DMY and
MYT on melanoma were shown in Figure 9A. 8 targets of DMY
and MYT related to melanoma, among which DMY acted on
TYRP1, PARP1, MC1R, and TYR, while MYT acted on TP53,
TNF, PPARG, and PTGS2.

Two components-disease cross targets were uploaded
to the String database to construct a protein-protein
interaction network (PPI). In this network, eight targets
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FIGURE 7

Analysis of the combined effect of DMY and MYT on inhibiting tyrosinase in B16F10 cells. Values are means ± SD (n = 3). After B16F10 cells were
treated with DMY, MYT, or mix-use (1:4 ∼ 8:1) for 72 h, 90 µL of 1% TritonX-100 was added to each well, and then 10 µL of 1.0 mg/mL L-DOPA
was added. The absorbance at 490 nm was measured after 5 min of ultrasound and treatment at 30◦C for 30 min. The dose-response
relationship was obtained by transformation according to the equation. The CI value was calculated by the equation. DMY, dihydromyricetin;
MYT, myricitrin.

could interact with proteins, and 14 edges represent the
interactions between proteins. The average degree of
freedom of each node in the network was 3.5, the average
betweenness centrality was 0.101190, and the average closeness
centrality was 0.645117 (Figure 9B). There were three
targets above the average, speculating that TP53, TNF, and
TYR might be the critical targets of vine tea in preventing
and treating melanoma (Table 5). Interleukin-4 and 13
signaling, thyroid cancer, pathways in cancer, signaling by
interleukin, interleukin-10 signaling, melanogenesis, melanin
biosynthesis, and tyrosine metabolism might be the key to
treating melanoma.

GO pathway enrichment analysis

The functional enrichment analysis of GO terms was carried
out. A total of 474 enrichment results were obtained in the
biological process (P < 0.01), and 10 categories with the highest
functional values were selected, mainly related to the metabolic
synthesis of melanin, including the corresponding response to
light stimulation and the negative regulation of gene silencing.
Twenty six enrichment results were obtained by molecular
function, mainly related to oxidoreductase activity, and 12
enrichment results were obtained by cell composition, including
melanosome membrane, and complex transcription mechanism
(Figure 10A).

KEGG pathway enrichment analysis

The selected targets were analyzed by KEGG pathway
enrichment analysis, and 6 enrichment results were obtained (P
< 0.01). It included the melanogenesis signaling pathway, NF-
κB signaling pathway, tyrosine metabolism signaling pathway,
thyroid cancer signaling pathway, and apoptosis signaling
pathway, suggesting that DMY and MYT play a role in
preventing and treating melanoma by acting on the multiple
pathways (Figure 10B).

Discussion

Melanoma is challenging to treat because of its ability to
metastasize at early stages and its resistance to conventional
cancer treatments (33, 34). The use of molecular targeted
drugs and immunotherapy for melanoma is limited by the
high cost and significant side effects (2). Therefore, safer
and more effective treatments are necessary. Natural products
have few side effects and do not contain any drug residues.
The compatibility of active components can improve disease
prevention and treatment efficacy and has been widely used
in anti-tumor. For example, Cuphea aequipetala extracts can
induce cell accumulation in the G1 phase of the cell cycle,
induce apoptosis, and thus exhibit inhibitory activity (35).
Menke et al. reported that dandelion extract and mistletoe
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FIGURE 8

Analysis of the synergistic inhibitory effect of DMY and MYT on cell proliferation by fluorescence staining. Cell viability was determined by
Hoechst 33342 fluorescent staining and pictures were quantified with ImageJ. Values are means ± SD (n = 3). Different letters indicate
significant differences between means at P < 0.05 by one-way ANOVA followed by Duncan comparison test. (A) Fluorescence photography.
(B) Fluorescence quantitative analysis. (A) Control. (B) DMY. (C) MYT. (D) DMY: MYT = 1:4. (E) DMY: MYT = 1:2. (F) DMY: MYT = 1:1. (G) DMY:
MYT = 2:1. (H) DMY: MYT = 4:1. (I) DMY: MYT = 8:1. DMY, dihydromyricetin; MYT, myricitrin; Mean, mean gray value.

extract could promote neuroblastoma cell apoptosis (36). Sturza
et al. found that quercetin could simultaneously regulate the
pathway of glycolysis and mitochondria to produce ATP to
kill cancer cells (37). Some studies have shown that flavonoids
can inhibit mTOR and RAS carcinogenic pathways, activate
apoptosis, and lead to cell cycle stagnation. The vine tea contains
many flavonoids, which have certain biological activities in
cells and have anti-tumor effects (38). Huang et al. found

that DMY inhibits melanin synthesis through its antioxidant
properties and down-regulation of protein kinase A, protein
kinase C, and mitogen-activated protein kinase signal pathways
(39). Our data showed that the VTEs could inhibit B16F10
cells, and the inhibitory effect on tyrosinase was consistent
with cell inhibition experiments. In organisms, tyrosinase is
the key enzyme involved in melanin biosynthesis (31). It has
been reported that individual flavonoids are potential melanin
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TABLE 4 Effects of the drugs on the cell cycle of B16F10 cells.

Sample Control DMY MYT DMY: MYT

1:4 1:2 1:1 2:1 4:1 8:1

G1/% 75.9± 0.58a 59.11± 2.00d 67.81± 5.3b 63.5± 0.75c 59.32± 0.05d 60.36± 1.39cd 62.17± 1.26cd 59.96± 0.45cd 59.38± 1.43cd

S/% 22.05± 1.39d 35.32± 1.10a 27.25± 4.97c 28.51± 0.75bc 35.73± 0.13a 33.56± 1.41ab 32.44± 1.53ab 34.79± 1.01a 33.16± 1.2ab

G2/% 2.05± 0.82d 5.57± 0.94bc 4.96± 0.33c 7.98± 0.03a 4.96± 0.17c 6.08± 0.39b 5.39± 0.29bc 5.26± 0.57bc 7.46± 0.23a

The mean value of different letters in the same row is significantly different from the mean value of control (P < 0.05).

synthesis inhibitors in mammalian melanocytes (40, 41). For
melanoma diseases, only flavonoids with an IC50 value of less
than 50 µM can inhibit mammalian tyrosinase, thus reducing
the melanin synthesis of B16F10 (31).

Some studies have shown that natural products target
pathogens through a combination of different structures and
functions (42). The active components in vine tea are present as
mixtures. The activity of purified extracts of single compounds
is weaker than that of crude extracts, suggesting that maximum
bioactivity is obtained through the interaction of different
functional factors (43). Previous studies have compared the
theoretical value (T-EM) with the actual experimental value
(EM). If the EM is higher than the T-EM, the two compounds are
considered to have a synergistic effect. The EM value is the sum
of the effect values of each combination. For example, it has been
found that the synergistic effect of EGCG and metformin can
increase ROS, thereby destroying the ribonucleic acid of B16F10
cells and promoting cell apoptosis (44). These flavonoids have
also been shown to inhibit melanoma (37). This inhibitory
effect has two main aspects: inhibiting cancer cell proliferation
and promoting cancer cell apoptosis (45–47). Recent studies
have shown inhibitory effects on the expansion of human acute
promyelocytic leukemia cells and K562 cells (48), Bel-7402 cells
(49), human breast cancer cells (50, 51), and nasopharyngeal
carcinoma HK –1 cells (27). We expected that both DMY and
MYT would have inhibitory effects on B16F10 cells. However,
the IC50 value of DMY on B16F10 cells was 14.73 µg/mL,
the IC50 of MYT on B16F10 cells was 50.66 µg/mL, and the
IC50 of VTEs on B16F10 cells was 4.45∼12.95 µg/mL, which
showed that the effect was not as significant as a crude extract.
We hypothesized that the combination of active compounds in
the extracts could enhance the inhibitory effect on melanoma
disease. Therefore, the correlation between DMY, MYT, and
myricetin in vine tea was analyzed, and DMY had a very
significant correlation. Further inhibition experiments showed
that the IC50 of VTEs was lower than that of DMY. There
might be a synergistic effect between the active compounds. We
selected DMY and MYT for further study since our previous
experimental results indicated that DMY and myricetin had no
synergistic effect, whereas DMY and MYT did show an effect.
B16F10 cells were treated with different ratios of DMY and
MYT, ranging from 1:4 to 8:1; it was found that DMY: MYT = 8:1

was the most effective in inhibiting B16F10 and tyrosinase
activity. Fluorescence staining showed that the number of cells
decreased with the increase of DMY concentration, and the
inhibitory effect of DMY was more substantial than MYT’s.
Compared with the control group, the proportion of cells in S
phase, or G2 phase was increased, but G1 phase was decreased.
The effects of DMY and MTY on B16F10 cells were analyzed by
flow cytometry, which showed that the cell cycle was arrested
in the S phase and G2 phase. The combined treatment could
effectively reduce the number of cells entering the G1 phase.
The inhibition of DMY on melanoma cells was higher than that
of MYT. We speculated that the proportion of DMY had an
important effect on the synergism. It was observed that the IC50

values of the mix-drugs decreased with increased DMY content.
Especially in the range of 1:1∼8:1, they showed lower IC50 than
single-use. Based on CI and isobole methods, the 8:1 group
showed a strong synergistic effect. However, only a narrow range
of ratios were tested in this experiment; perhaps increasing the
ratios will produce stronger effects, which will be tested in the
follow-up experiments.

Furthermore, network pharmacology was used to create a
network map of the “active ingredient-acting gene-disease” of
vine tea on melanoma disease. It was found that DMY and
MYT have the same target and act on eight different targets of
melanoma disease, which might be the reason for the synergism
between DMY and MYT. Based on the interaction analysis of
these targets, TP53, TNF, and TYR might be the key targets
for the prevention and treatment of melanoma diseases. P53
protein promoted cancer cell apoptosis by responding to the
anti-proliferation effects of various physiological processes such
as aging (52). GO, and KEGG enrichment analysis found that
the prevention and treatment of melanoma were related to
ultraviolet reaction, melanosome membrane, chitosan, receptor
binding, NF-κB signal pathway, and apoptosis. Abnormal
expression of NF-κB has been associated with various cancers
(53). Exposure to ultraviolet (UV) radiation, that is, UVA
(315–400 nm), and UVB (280–315 nm), is considered to
be a significant risk factor for melanoma (54). Melanosomes
could synthesize and organize melanin. Melanin synthesis and
melanosome transport disorders are associated with pigmented
diseases (55). The crosstalk between protease-activated receptor
1 and platelet-activating factor receptor has been demonstrated
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FIGURE 9

Analysis of action targets of DMY and MYT on melanoma. (A) The targets of dihydromyricetin and myricitrin on melanoma. (B) The
protein-protein interaction network of DMY, MYT, and melanoma disease.
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TABLE 5 Basic information of crucial gene in the control of melanoma by vine tea.

Gene Pathway Degree Betweenness Closeness

TP53 Interleukin-4 and 13 signaling,
thyroid cancer, pathways in

cancer, signaling by Interleukins

6 0.381 0.875

TNF Interleukin-4 and 13 signaling,
signaling by interleukins,
interleukin-10 signaling

5 0.167 0.778

TYR Melanogenesis, melanin
biosynthesis,

tyrosine metabolism

4 0.190 0.700

FIGURE 10

Enrichment analysis of key genes. (A) Results of GO enrichment analysis. (B) Results of KEGG enrichment analysis. BP, biological process; CC,
cellular component; MF, molecular function.
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to regulate the expression of melanoma cell adhesion molecule
(MCAM/MUC18) metastasis of melanoma (56).

Conclusion

The combination of DMY and MYT in vine tea could
synergistically inhibit the proliferation of B16F10 cells, and
they have a synergistic effect on different targets. Through
network pharmacology, it is concluded that TP53, TNF, and
TYR are the main targets of DMY and MYT in melanoma
disease and regulate signaling pathways such as melanogenesis,
NF-κB, and apoptosis. Regular application of low-toxicity
and vine tea extract can contribute to the prevention and
treatment of melanoma.
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