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Abstract: Tumor metastasis is a complex process in which cells detach from the primary tumor and
colonize a distant organ. Metastasis is also the main process responsible for cancer-related death.
Despite the enormous efforts made to unravel the metastatic process, there is no effective therapy,
and patients with metastatic tumors have poor prognosis. In this regard, there is an urgent need for
new therapeutic tools for the treatment of this disease. Small molecules with the capacity to reduce
cell migration could be used to treat metastasis. Migrastatin-core analogs are naturally inspired
macrocycles that inhibit pathological cell migration and are able to reduce metastasis in animal
models. Migrastatin analogs can be synthesized from a common advanced intermediate. Herein we
present a review of the synthetic approaches that can be used to prepare this key intermediate,
together with a review of the biological activity of migrastatin-core analogs and current hypotheses
concerning their mechanism of action.
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1. Introduction

Cell migration is a physiological process and a central feature in embryonic development, tissue
repair and immune cell function. Importantly, cell migration is also responsible for angiogenesis,
tumor invasion, and metastasis [1]. The cytoskeleton drives cell migration and a key cytoskeletal
component is Actin. Several targets have been proposed for the inhibition of Actin dynamics, including
the following: (1) actin (e.g., phalloidin (1) an F-actin stabilizer or cytochalasin D (2), an F-actin
destabilizer); (2) tubulin and microtubule (e.g., taxol (3), a microtubule stabilizer or vincristine (4),
a microtubule destabilizer); (3) actin-binding proteins (ML-7 (5), a myosin light chain kinase inhibitor);
and (4) upstream signaling molecules (e.g., Y27632 (6), a Rho-kinase inhibitor) [2] (Figure 1).

Migrastatin (7) is a natural product that was originally isolated from Streptomyces sp.
MK-929-43F1 [3,4] and later found in fermentation broths of Streptomyces platensis [5].
Migrastatin comprises a 14-membered ring macrolactone incorporating two E bonds and one Z
double bond, together with three contiguous stereocenters and a pendant alkyl gluturamide side chain.
It has been reported that migrastatin inhibits cell migration [3,4], suppresses multi-drug resistance [6],
and antagonizes muscarinic acetylcholine receptor [7].
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Figure 1. Small-molecule inhibitors of cell mobility. 

In 2003, Danishefsky and co-workers described the first total synthesis of migrastatin [8]. One 
year later, the same group demonstrated that ablation of the glutaramide side chain increases the 
biological activity of migrastatin analogs 1000-fold with respect to natural migrastatin [9]. They found 
that simpler analogs at nanomolar concentrations were able to inhibit cell migration in 4T1 mouse 
mammary tumor cells. Danishefsky demonstrated that migrastatin and simplified migrastatin analogs 
could be easily synthesized from a common advanced intermediate 8. This result highlights the 
potential of diverted total synthesis drug discovery (Figure 2). 

 
Figure 2. Diverted total synthesis approach for the preparation of migrastatin (7) and truncated 
analogs MGSTA-1,6 from a common advanced intermediate (8). IC50 values (in parentheses) in 
boyden chamber assays against a 4T1 mouse mammary cancer and b A549 human lung cancer cells. 

Several groups have been involved in the preparation of 8 (Figure 3 and table 1) [8–14]. The synthesis 
and the biological activity of migrastatin (7) and migrastatin analogs were covered by Reymond and 
Cossy in 2008 [15]. The aim of this review is to discuss the recent synthetic approaches used for the 

Figure 1. Small-molecule inhibitors of cell mobility.

In 2003, Danishefsky and co-workers described the first total synthesis of migrastatin [8]. One year
later, the same group demonstrated that ablation of the glutaramide side chain increases the biological
activity of migrastatin analogs 1000-fold with respect to natural migrastatin [9]. They found that
simpler analogs at nanomolar concentrations were able to inhibit cell migration in 4T1 mouse mammary
tumor cells. Danishefsky demonstrated that migrastatin and simplified migrastatin analogs could be
easily synthesized from a common advanced intermediate 8. This result highlights the potential of
diverted total synthesis drug discovery (Figure 2).
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Figure 2. Diverted total synthesis approach for the preparation of migrastatin (7) and truncated analogs
MGSTA-1,6 from a common advanced intermediate (8). IC50 values (in parentheses) in boyden
chamber assays against a 4T1 mouse mammary cancer and b A549 human lung cancer cells.

Several groups have been involved in the preparation of 8 (Figure 3 and Table 1) [8–14].
The synthesis and the biological activity of migrastatin (7) and migrastatin analogs were covered by
Reymond and Cossy in 2008 [15]. The aim of this review is to discuss the recent synthetic approaches
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used for the preparation of 8, together with new findings that provide insight into the anti-metastatic
potential of migrastatin analogs and their targets.
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Table 1. Synthetic key aspects for the preparation of advanced precursor 8.

Year Authors n0 Steps
Overal
Yield Key Steps Notes Reference

2004 Danishefsky et al. 10 22% LACDAC reaction,
Ferrier rearrangement Multi-gram scale synthesis [8,9,16]

2006 Cossy et al. 11 (+4) a 11% Stereoselective
crotylmetalation, RCM - [10]

2007 Cossy et al. 11 (+4) a 35%
Stereoselective

crotylmetalation, Still-Gennari
olefination

Entry to isomigrastatin
analogues, gram scale [17]

2006 Lqbal et al. 12 8%

Evans aldol condensation
and distereoselective

vinylmagnesium
bromide additon

Entry to
isomigrastatin analogues [11]

2010 Dias et al. 14 1.2%
Upjohn dihydroxilation,

Horner-Wadsworth-
Emmons olefination

Entry to
isomigrastatin-core
epimers, gram scale

[12]

2013 Lqbal et al. 11 5.9% Pd(II) catalyzed
intramolecular C-H oxidation

Entry to migrastatin-core
with different

functional groups
[13]

2014 Murphy et al. 9 30%
Brown alcoxyallylation,
HWE, Zinc catalyzed

asimmetric desymmetrization

Entry to isomigrastatin
analogues, gram scale [14,18,19]

a Precursor of advanced intermediate 8.

2. Results

2.1. Synthesis of Advanced Intermediate 8

2.1.1. Synthesis of the Protected Migrastatin-Core (Danishefsky et al.) [16]

The first synthesis of the migrastatin-core was reported by Danishefsky and co-workers in
2002 [16]. MGSTA-1 was synthesized as its MOM derivative through a precursor of advanced
intermediate 8. The synthesis began with the selective silylation of the primary hydroxyl group
of (S)-3-benzyloxy-1,2-propanediol 9 [20,21], followed by methylation of the secondary hydroxyl
group. Regioselective deprotection of benzyl ether gave 10, which was subsequently oxidized under
Swern conditions. A Lewis acid-catalyzed diene-aldehyde cyclocondensation (LACDAC) [22] reaction
between aldehyde 11 and diene 12 gave dihydropyrone 13, which contains the three contiguous
stereocenters of the migrastatin core fragment. Dihydropyrone 13 was treated with NaBH4 and
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CeCl3·7H2O (Luche reduction) [23], followed by Ferrier rearrangement in acidic media, to give lactol
14 [24]. Reductive opening of lactol 14 using LiBH4 gave compound 15, which contains the desired (Z)
olefin. Diol 15 reacted with (E)-hepta-2,6-dienoyl chloride in the presence of DMAP to give esther 16.
The secondary hydroxyl group of 16 was protected as MOM ether, and the TBDPS group was cleaved
using HF·py to afford intermediate 17. Oxidation of the primary hydroxyl group using Dess-Martin
periodinane (DMP), followed by olefination using the Tebbe reaction [25], gave metathesis precursor
18. Finally, RCM reaction of 18 with Grubbs II catalyst [26] gave protected migrastatin core compound
19 in 50% yield (Scheme 1).
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2.1.2. First Total Synthesis of Migrastatin (Danishefsky et al.) [8] 
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regard, migrastatin was obtained from advanced intermediate 8, which was prepared using a similar 
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The synthesis [9] began with commercially available dimethyl 2,3-O-isopropylidene-L-tartrate (20), 
which was reduced using DIBAL. Diastereoselective divinylzinc addition afforded the desired vinyl 
carbinol 21 [25]. The two free hydroxyl groups were then methylated and the acetonide protecting 
group was removed to afford diol 22 [26]. Glycol cleavage using Pb(OAc)4 led to vinyl aldehyde 23, 
which was then used for the LACDAC sequence. Aldehyde 23 was reacted with diene 12 in the 
presence of TiCl4, affording dihydropyrone 24 as a single diastereoisomer [20]. As above, the 
reduction of 24, followed by Ferrier rearrangement [22], gave lactol 26, which, after reductive opening 
using LiBH4 and protection of secondary alcohol as TBS ether, afforded advanced intermediate 8. 

Scheme 1. Danishefsky’s synthesis of protected MGSTA-1 (19). Reagents and conditions: (a) TBDPSCl,
imidazole, DMF; (b) MeI, NaH, THF; (c) H2, Pd(OH)2, EtOAc, 73% over three steps; (d) (COCl)2,
Et3N, DMSO, CH2Cl2; (e) TiCl4, CH2Cl2; (f) CSA, PhMe, 71% over three steps; (g) NaBH4, EtOH,
CeCl3·7H2O; (h) CSA, H2O, THF; (i) LiBH4, H2O, THF, 55% over three steps; (j) (E)-hepta-2,6-dienoyl
chloride, DMAP, CH2Cl2, 65%; (k) MOMCl, Bu4NI, DIPEA, CH2Cl2; (l) HF.py, THF, 79% over two
steps; (m) DMP, CH2Cl2; (n) Tebbe reagent, pyridine, THF, 60% over two steps; (o) Grubbs II catalyst,
PhCH3, reflux, 50%.

2.1.2. First Total Synthesis of Migrastatin (Danishefsky et al.) [8]

In 2003, Danishefsky and co-workers publish the first total synthesis of migrastatin (7) [8]. In this
regard, migrastatin was obtained from advanced intermediate 8, which was prepared using a similar
strategy as that used for the synthesis of 15. A slightly optimized procedure for the preparation of 8
was reported one year later [9] and is illustrated in Scheme 2.

The synthesis [9] began with commercially available dimethyl 2,3-O-isopropylidene-L-tartrate
(20), which was reduced using DIBAL. Diastereoselective divinylzinc addition afforded the desired
vinyl carbinol 21 [27]. The two free hydroxyl groups were then methylated and the acetonide protecting
group was removed to afford diol 22 [28]. Glycol cleavage using Pb(OAc)4 led to vinyl aldehyde
23, which was then used for the LACDAC sequence. Aldehyde 23 was reacted with diene 12 in the
presence of TiCl4, affording dihydropyrone 24 as a single diastereoisomer [22]. As above, the reduction
of 24, followed by Ferrier rearrangement [24], gave lactol 26, which, after reductive opening using
LiBH4 and protection of secondary alcohol as TBS ether, afforded advanced intermediate 8. With 8 in
hand, migrastatin was finally synthesized (Scheme 2). The synthetic procedure leading to migrastatin
has already been reviewed elsewhere [15].
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H2C=CHMgBr, PhCH3, −78 ◦C to RT, 75% (ds > 90%); (b) (i) MeI, NaH, DMF, RT, (ii) 2 M HCl,
MeOH, reflux, 80%; (c) Pb(OAc)4, Na2CO3, CH2Cl2, 0 ◦C to RT; (d) (i) TiCl4, CH2Cl2, −78 ◦C, (ii) TFA,
CH2Cl2, RT, 87% from 22; (e) LiBH4, MeOH, THF, −10 ◦C; (f) CSA, H2O, THF, reflux; (g) LiBH4, H2O,
THF, RT, 53% from 24; (h) TBSOTf, 2,6-lutidine, CH2Cl2, RT, (ii) AcOH:H2O:THF (3:1:1), RT, 80%.

2.1.3. Synthesis of the Migrastatin-Core Library (Danishefsky et al.) [9,29]

After achieving the total synthesis of migrastatin [8], Danishefsky and co-workers reported [9,29]
the preparation of a small library of migrastatin-core analogs using advanced intermediate 8 (Scheme 3).
Reaction of 8 with (E)-hepta-2,6-dienoic acid in the presence of 2,4,6-trichlorobenzoyl chloride
and DIPEA gave acylated compound 27, which, after RCM and protecting group removal,
afforded MGSTA-1.

A similar strategy was applied for the preparation of MGSTA-2. Intermediate 8 was coupled
to 6-heptenoyl chloride to give 29, which, after RCM and de-protection, afforded MGSTA-2. For the
preparation of macroketone analogs, intermediate 8 was converted into allylic bromide 31 using the
Appel reaction. Compound 31 was then coupled to β-ketosulfone 32 [30], followed reductive removal
of the sulfone group mediated by Na/Hg, to give ketone 33. RCM and de-protection of 33 gave
MGSTA-3. For the preparation of macrolactam analogs, compound 8 was converted into allylic azide
35 using diphenylphosphoryl azide under Mitsunobu conditions. Staudinger reduction of 35, followed
by coupling with 6-heptenoic acid in the presence of EDC, gave compound 36, which, after RCM and
removal of silyl protecting group, afforded MGSTA-4 (Scheme 3).

2.1.4. Synthesis by Cossy et al. [10,17]

In 2006, Cossy and co-workers [10] reported the synthesis of a precursor 46 of advanced
intermediate 8 (Scheme 4). The synthesis began from methyl esther 38. Acetonide cleavage of 38
followed by regioselective protection of primary alcohol in 39 as TBDPS ether afforded 40. Methylation
of secondary alcohol in 40, followed by DIBAL reduction of the ester moiety, gave primary alcohol
42. After oxidation of 42 under Swern conditions, the corresponding aldehyde was treated with
2-enyl[tri(n-butyl)]stannane the presence of MgBr2·OEt2 to give the syn,syn-stereotriad 43 with good
stereocontrol (dr = 90:10) [31]. The authors claim that the stereochemical outcome of that reaction
resulted from an open chair transition state of type A, where the carbonyl and the methoxy group of
aldehyde are chelated with MgBr2·OEt2 [31]. Compound 43 was treated with methacryloyl chloride in
the presence of TEA and DMAP to give diene 44. RCM of 44 using Grubbs II catalyst gave unsaturated
lactone 45, which contains the olefin with desired Z configuration and three contiguous stereocenters.
Treatment of 45 with LiBH4 in the presence of CeCl3·7H2O, followed by simultaneous protection of the
two hydroxyl groups as TBS ether and regioselective de-protection of the primary alcohol, afforded
precursor 46. This compound was therefore converted into migrastatin 7 using a similar procedure to
that described by Danishefsky and co-workers [8] (Scheme 4).
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Scheme 3. Danishefsky’s synthesis of the migrastatin-core library. Reagents and conditions:
(a) (E)-hepta-2,6-dienoic acid, 2,4,6-trichlorobenzoyl chloride, DIPEA, pyridine, PhCH3, RT, 48%;
(b) Grubbs II catalyst (20 mol %), PhCH3 (0.5 mM), reflux, 55% (28), 76% (30), 81% (34), 60% (37);
(c) HF.pyridine, THF, RT, 66% (MGSTA-1), 94% (MGSTA-2), 90% (MGSTA-3), 81% (MGSTA-4);
(d) 6-heptenoyl chloride, DMAP, CH2Cl2, RT, 82%; (e) CBr4, solid-supported PPh3, CH2Cl2, RT;
(f) (i) β-ketosulfone 32, DBU, PhCH3, RT, (ii) Na/Hg, Na2HPO4, MeOH, RT, 61% from 7; (g) DPPA, DBU,
PhCH3, RT, 87%; (h) (i) PPh3, H2O, THF, 70 ◦C, (ii) 6-heptenoic acid, EDC, DIPEA, CH2Cl2, RT, 92%.

In 2007, Cossy and co-workers [17] reported the synthesis of 46 using a Still–Gennari olefination
to control the formation of the (Z)-double bond (Scheme 5). Compound 43 [10] was protected as TBS
ether and therefore subjected to oxidative cleavage using OsO4, followed by treatment with NaIO4.
The aldehyde obtained was treated with Still-Gennari phosphonate [32,33] in the presence of KHMDS
to give the unsaturated ester 48 with a good Z/E ratio (97:3). Reduction of 48 with DIBAL gave the
precursor 46. Following similar steps to those reported by Danishefsky et al. [9], this compound was
converted to MGSTA-1 in 5 steps (Scheme 5).
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Scheme 4. Cossy’s synthesis of 46. Reagents and conditions: (a) pTSA, MeOH/H2O (1:1), RT, 83%;
(b) TBDPSCl, imidazole, CH2Cl2, 0 ◦C to RT 81%; (c) Ag2O, MeI, MS 4 Å, Et2O, 40 ◦C, 96%; (d) DIBAL,
CH2Cl2, −78 ◦C to RT 90%; (e) (COCl)2, DMSO, CH2Cl2, −78 ◦C, then Et3N −78 ◦C to RT; (f) MgBr2·OEt2,
CH2Cl2, −20 ◦C, then but-2-enyl-[(tri(n-butyl)]stannane, −60 ◦C, 87% (over two steps); (g) methacryloyl
chloride, Et3N, DMAP, CH2Cl2, 0 ◦C to RT 80%; (h) Grubbs II catalyst (16.5 mol %), CH2Cl2 (c = 10−2 M),
40 ◦C, 144 h, 65%; (i) LiBH4 (7 equiv.), CeCl3·7H2O (1 equiv.), THF/H2O (4:1), RT, 74%; (j) TBSOTf,
2,6-lutidine, CH2Cl2, 0 ◦C to RT, 75%; (k) THF/H2O/AcOH (1:1:3), 36 h, RT, 75%.
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Scheme 5. Synthesis of MGSTA-1. Reagents and conditions: (a) TBSOTf, 2,6-lutidine, CH2Cl2,
−20 ◦C, 93%; (b) (i) OsO4, NMO, t-BuOH/H2O (1/1), RT; (ii) NaIO4, THF/H2O (1/1), RT; (iii) 47,
KHMDS, 18-crown-6, THF, −78 ◦C, 80% (over 3 steps); (c) DIBAL, CH2Cl2, −78 ◦C to RT, 94%;
(d) (E)-2,4,6-trichlorobenzoic (E)-hepta-2,6-dienoic anhydride, Pyridine, PhCH3, RT, 67%; (e) NH4F
MeOH, reflux, 77%; (f) Dess-Martin Periodinane CH2Cl2, 0 ◦C to RT; (g) Zn, PbCl2 cat, CH2I2Ti(Oi-Pr)4,
THF, RT (h) Grubbs II catalyst (20 mol %), PhCH3, reflux, 47%; (i) HF Py, THF, RT, 67%.

2.1.5. Synthesis by Iqbal et al. [11]

In 2006, Iqbal and Parthasarati reported the synthesis of advanced intermediate 8 as its PMB
derivative 65 in 12 steps. The synthesis started with dibutylboron triflate-mediated Evans aldol
condensation of acrolein 52 and (S)-benzyl oxazolidinone 53 to give the desired aldol product 54 [34].
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Scheme 6. Iqbal’s synthesis of 65. Reagents and conditions: (a) n-Bu2BOTf, i-Pr2NEt, CH2Cl2, −78 ◦C to
0 ◦C, 1 h, 84%; (b) LiBH4, MeOH, THF, 0 ◦C, 2 h, 96%; (c) (OMe)2CHC6H4OMe, CSA, CH2Cl2, RT, 12 h,
70%; (d) DIBAL, CH2Cl2, −78 ◦C to 0 ◦C, 2 h, 95%; (e) TBSCl, imidazole, DMF, RT, 12 h, 88%; (f) OsO4,
NaIO4, 2,6-lutidine, dioxane/H2O (3:1), RT, 3 h, 82%; (g) H2C=CHMgBr, MgBr2·OEt2, CH2Cl2, RT, 2 h,
72%; (h) MeOTf, 2,6-di-tert-butyl-4-methylpyridine, CH2Cl2, reflux, 6 h, 62%; (i) TBAF, THF, RT, 12 h,
94%; (j) DMP, CH2Cl2, RT, 40 min, 85%; (k) (PhO)2P(O)CH(CH3)CO2C2H5, DBU/NaI, THF, −78 ◦C to
0 ◦C, 3 h, 60%; (l) DIBAL, CH2Cl2, −78 ◦C, 1 h, 96%.

The chiral auxiliary was then removed using LiBH4 in THF to yield diol 55, which was then
protected with 4-methoxybenzaldehyde dimethyl acetal [35] to afford compound 56. Acetal 56 was
opened using DIBAL [35], and the corresponding primary alcohol 57 was then protected as TBS ether
to afford the orthogonally protected compound 58. Oxidative cleavage of 58 using OsO4-NaIO4 in the
presence of 2,6-lutidine [36] gave aldehyde 59 in good yield. Lewis acid-mediated distereoselective
addition of vinylmagnesium bromide to aldehyde 59 gave the desired compound 60 (dr = 7:1), which
was separated from its diastereomer in the next step. Secondary alcohol 60 was methylated using
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MeOTf [37] to yield enantiomerically pure 61. TBAF-mediated deprotection of the TBS group in
61, followed by oxidation using Dees-Martin periodinane [38], gave the corresponding aldehyde,
which was treated with Ando’s phosphonate 63 [39] in the presence of DBU to afford the (Z)-olefin 64
(Z/E ratio not reported). Reduction of the ester moiety using DIBAL gave the advanced intermediate
65, which was used for the preparation of the migrastatin core MGSTA-1 (Scheme 6).

2.1.6. Synthesis by Dias et al. [12]

The strategy used by Dias and co-workers for the preparation of advanced intermediate 8 involved
the formation of stereocenters at C4,5 by means of an asymmetric aldol addition. The methoxy group
at C6 was introduced as hydroxyl group using Upjohon dihydroxylation and, finally, Z configuration
at C2,3 was introduced using a HWE reaction. The synthesis began with asymmetric aldol addition of
a titanium enolate derived from (S)-4-benzyl-3-propionyloxazolidin-2-one 53 which was reacted with
acrolein 52 to give product 54 in 87% (dr = 95:5) [40–48]. The secondary alcohol was then protected as
TBS ether to afford 66 in 93% yield. Treatment of 66 with 4-methylmorpholine oxide and a catalytic
amount of OsO4 in acetone/H2O at 0 ◦C [49] afforded lactones 67 and 68 (dr = 74:26) on a multigram
scale (Scheme 7).
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Scheme 7. Dias’ synthesis. Synthesis of 8. Reagents and conditions: (a) TiCl4, DIPEA, CH2Cl2, −78 °C to 
0 °C; 1 h; (b) acrolein, −78 °C to 0 °C to RT, 12 h, 87% over two steps; (c) TBSOTf, 2,6-ludine, CH2Cl2, 0 °C, 
20 min, 93%; (d) NMO, OsO4, cat., acetone/H2O, 0 °C, 45 min, 67 (57%), 68 (20%); (e) CSA cat., 4-
methoxybenzyl-2,2,2-trichloroacetimidate, CH2Cl2, RT, 12 h, 67%; (f) LiAlH4, THF, −78 °C, 1 h, 75%; 
(g) TBSCl, imidazole, CH2Cl2, 0 °C, 1 h, 95%; (h) proton sponge, Me3OBF4, CH2Cl2, RT, 12 h, 75%; (i) 
DDQ/H2O, CH2Cl2; RT, 2 h, 88%; (j) NMO, TPAP cat., CH2Cl2; RT, 1 h; (k) Cp2TiMe2, PhCH3, 70 °C, 12 
h, 50% over two steps; (l) HF-Py-THF, THF, RT, 12 h; 80%; (m) NMO, TPAP cat., CH2Cl2; 1 h, RT, (n) 
75 in THF, NaH, RT, 12 h, 58% over two steps; (o) DIBAL, CH2Cl2, −15 °C, 1 h, 98%. 

After chromatographic separation and recovery of the chiral auxiliary, lactone 68 was reacted 
with 4-methoxybenzyl 2,2,2 trichloroacetimidate in the presence of 10-camphorsulfonic acid to afford 
fully protected lactone 69. Reduction of 69 with LiAlH4 gave primary alcohol 70 in good yield. The 
primary alcohol in 70 was then protected as TBS ether (71), and the free secondary alcohol was 
methylated using 1,8-bis(dimethylamino)naphthalene (proton sponge) [48] to afford compound 72. 
The p-methoxybenzyl protecting group was then selectively removed using DDQ/H2O. Ley’s 
oxidation of the resulting primary alcohol [49] followed by Petasis olefination [50] gave olefin 73 in 
44% yield (from 72). The primary TBS group was regioselectively removed using HF·Py·THF to 

Scheme 7. Dias’ synthesis. Synthesis of 8. Reagents and conditions: (a) TiCl4, DIPEA, CH2Cl2, −78 ◦C to
0 ◦C; 1 h; (b) acrolein, −78 ◦C to 0 ◦C to RT, 12 h, 87% over two steps; (c) TBSOTf, 2,6-ludine, CH2Cl2,

0 ◦C, 20 min, 93%; (d) NMO, OsO4, cat., acetone/H2O, 0 ◦C, 45 min, 67 (57%), 68 (20%); (e) CSA cat.,
4-methoxybenzyl-2,2,2-trichloroacetimidate, CH2Cl2, RT, 12 h, 67%; (f) LiAlH4, THF, −78 ◦C, 1 h, 75%;
(g) TBSCl, imidazole, CH2Cl2, 0 ◦C, 1 h, 95%; (h) proton sponge, Me3OBF4, CH2Cl2, RT, 12 h, 75%;
(i) DDQ/H2O, CH2Cl2; RT, 2 h, 88%; (j) NMO, TPAP cat., CH2Cl2; RT, 1 h; (k) Cp2TiMe2, PhCH3,
70 ◦C, 12 h, 50% over two steps; (l) HF-Py-THF, THF, RT, 12 h; 80%; (m) NMO, TPAP cat., CH2Cl2; 1 h,
RT, (n) 75 in THF, NaH, RT, 12 h, 58% over two steps; (o) DIBAL, CH2Cl2, −15 ◦C, 1 h, 98%.

After chromatographic separation and recovery of the chiral auxiliary, lactone 68 was reacted
with 4-methoxybenzyl 2,2,2 trichloroacetimidate in the presence of 10-camphorsulfonic acid to afford
fully protected lactone 69. Reduction of 69 with LiAlH4 gave primary alcohol 70 in good yield.
The primary alcohol in 70 was then protected as TBS ether (71), and the free secondary alcohol
was methylated using 1,8-bis(dimethylamino)naphthalene (proton sponge) [50] to afford compound
72. The p-methoxybenzyl protecting group was then selectively removed using DDQ/H2O. Ley’s
oxidation of the resulting primary alcohol [51] followed by Petasis olefination [52] gave olefin 73
in 44% yield (from 72). The primary TBS group was regioselectively removed using HF·Py·THF to
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afford the corresponding primary alcohol 74. Ley’s oxidation followed by HWE reaction using Ando’s
phosphonate ester 75 [39,53,54] gave compound 76 (Z/E = 85:15) in 58% yield (~100 mg scale) from 74.
Finally, reduction of the ester moiety using DIBAL afforded the advanced intermediate 8 in 14 steps
with 1.2% overall yield. Using 8, Andricopulo et al. prepared the macrolactone of migrastatin, namely
MGSTA-1. The coupling of 8 to (E)-2,6-heptadienoic acid using DCC and DMAP [55–57], followed by
ring-closing metathesis (RCM) [8,9,29] and removal of TBS protecting group, afforded MGSTA-1.

Since undesired lactone 67 was prepared on multi-gram scale, the authors undertook the
preparation of the C-8 epimer of the migrastatin core, MGSTA-7. Lactone 67 was converted to
compound 77 using the same strategy as that described above for the preparation of 8. Coupling of 77
to 6-heptadienoic acid gave 78, which underwent RCM. After removal of the TBS protecting group,
78 afforded MGSTA-7. Interestingly, 77 was coupled to (E)-2,6-heptadienoic acid, and the resulting
compound 79 was submitted to RCM using Grubbs II catalyst . However, no metathesis product was
observed (Scheme 8).
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acid, CH2Cl2, RT, 12 h, 92%; (b) Grubbs II catalyst, PhCH3, reflux, 30 min, 80%; (c) HF, CH2Cl2/CH3CN,
RT, 24 h, 40%; (d) DCC, DMAP, (E)-2,6-heptadienoic acid, CH2Cl2, RT, 98%.

2.1.7. Synthesis by Iqbal et al. [13]

Iqbal’s synthesis of advanced intermediate 8 began with an Crimmins modified Evans aldol
reaction [43,58] of Evan’s chiral auxiliary 53 and 3-butenal in the presence of (−)-spartein and
TiCl4 to give aldol adduct 80. The secondary alcohol was protected as TBS ether (81), and the
chiral auxiliary was removed using sodium borohydride to afford primary alcohol 82. Hence,
oxidation of 82 using Dess-Martin periodinane gave the corresponding aldehyde, which reacted
with ethyl 2-(diphenyl-phosphono)acetate (63) [59] in the presence of DBU to give the corresponding
α,β-unsaturated ester 83 with Z configuration. The attempt to promote intermolecular allylic C-H
oxidation on ester 83 using White’s catalyst [60] gave two regioisomers 84 and 85 in equal ratio [61].
Compound 84 was characterized and appeared as a single product (1H-NMR evidence); however,
no further studies were performed to assign the stereochemistry of the newly formed stereocenter.
With the aim to achieve high regio- and diastereo-selectivity, the authors hydrolyzed ester 83 to the
corresponding carboxylic acid 86, which was then submitted to intramolecular lactonization via C-H
allylic activation using White’s catalyst [62–64]. After a brief optimization, the authors found that
the reaction of 86 with White’s catalyst in the presence of DDQ and Cr(III)salenCl gave lactone 87 as
a single diastereoisomer in 40% yield with 50% recovery of the starting material. Reduction of lactone
87 with DIBAL gave the corresponding diallylic alcohol 88. Regioselective protection of primary
alcohol was achieved using TBSCl in the presence of imidazole to afford 89. Methylation of the
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secondary alcohol using MeOTf gave intermediate 90. Finally, regioselective deprotection of primary
alcohol with CSA in methanol gave advanced intermediate 8 (Scheme 9).
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low temperature. Addition of (+)-B-methoxydiisopino-campheylborane gave the corresponding 
borane, which reacted with chiral aldehyde 94 to yield 96 with high diastereoselectivity. The benzoate 
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Both hydroxyl groups were protected as TBS ethers using TBSOTf in the presence of triethylamine (73). 
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protected 73 with catalytic p-toluenesulfonic acid in methanol to give 74. Oxidation of 74 using Dess-
Martin periodinane afforded aldehyde 98 in excellent yield. Horner-Wadsworth-Emmons reaction 
was used to introduce the Z olefin at C2,3. Treatment of 98 with Ando’s phosphonate 63 [11,13] gave 
the desired alkene 76. The reaction proceeded with high Z selectivity (Z/E = 97:3) on a 1.0 g scale.  
The authors reported some erosion of the Z selectivity when the reaction was scaled up to ~4.0 g  
(Z/E = 90:10). Finally, reduction of ester moiety using with diisobutylaluminum hydride (DIBAL-H) 

Scheme 9. Iqbal’s synthesis of 8. Reagents and conditions: (a) TiCl4, 3-butenal, (−) spartein, CH2Cl2, 0 ◦C,
1 h, 83%; (dr 20:1); (b) TBSOTf, DIPEA, CH2Cl2, 0 ◦C, 90%; (c) NaBH4, THF:H2O, 90 h, 80%; (d) DMP,
CH2Cl2, 2 h, 90%; (e) 63, NaI, DBU, −78 ◦C to 0 ◦C, THF, 3 h, Z:E, 95:5, 60%; (f) White catalyst 10%,
p-benzoquinone, p-nitrobenzoic acid, 45 ◦C, 72 h, 84 (24%) and 85 (20%); (g) LiOH, THF/MeOH/H2O,
4 h, 55 ◦C, 90%; (h) White catalyst 10%, p-benzoquinone, Cr(III)salenCl, 1,4-dioxane, 45 ◦C, 72 h, 40%
(78% based on recovered starting material); (i) DIBAL, −78 ◦C to 0 ◦C, CH2Cl2, 2 h, 90%; (j) TBSCl,
Imidazole, DMF, 2 h, 90%; (k) DTBMP, CH2Cl2, MeOTf, 6 h, reflux, 70%; (l) CSA, MeOH 2 h, 90%.

2.1.8. Synthesis by Murphy et al. [14]

In their synthesis of fragment 8, Murphy and co-worker used Ando’s phosphonate ester [11–13,39,59]
to introduce the C2,3 olefin with Z configuration. A diastereoselective Brown alkoxylallylation [65] was
used to introduce the two contiguous stereocenters at C5,6. The synthesis began with desymmetrization
of 2-methylpropanediol 91 using a scale-up of the method reported by Trost et al. [66] Diol 91 was
treated with S,S-Cat 92 and vinyl benzoate to afford monoprotected alcohol 93. Subsequent oxidation
of 93 using TEMPO and BAIB gave aldehyde 94. Hence, allyl methyl ether was treated with sBuLi
at low temperature. Addition of (+)-B-methoxydiisopino-campheylborane gave the corresponding
borane, which reacted with chiral aldehyde 94 to yield 96 with high diastereoselectivity. The benzoate
protecting group was then removed [67] to give diol 97 as a single diastereoisomer in good yield.
Both hydroxyl groups were protected as TBS ethers using TBSOTf in the presence of triethylamine
(73). Regioselective de-protection of the primary TBS protecting group was achieved by treating
the fully protected 73 with catalytic p-toluenesulfonic acid in methanol to give 74. Oxidation of 74
using Dess-Martin periodinane afforded aldehyde 98 in excellent yield. Horner-Wadsworth-Emmons
reaction was used to introduce the Z olefin at C2,3. Treatment of 98 with Ando’s phosphonate 63 [11,13]
gave the desired alkene 76. The reaction proceeded with high Z selectivity (Z/E = 97:3) on a 1.0 g
scale. The authors reported some erosion of the Z selectivity when the reaction was scaled up to
~4.0 g (Z/E = 90:10). Finally, reduction of ester moiety using with diisobutylaluminum hydride
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(DIBAL-H) afforded intermediate 8 in 9 steps with an overall yield of 30% from 91. Using 8, the authors
prepared Macroketone MGSTA-3 in 100-mg scale, which was used for in vivo studies [14], and the
natural product migrastatin (7) (Scheme 10). Interestingly, MGSTA-3, which was contaminated
by hydrocarbon and silicon grease [68], was purified by distillation under reduced pressure using
a Kugelrohr apparatus (0.05 mbar, T = 90 ◦C, 18 h).
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analogs with variations in the macrocycle ring size and functionality. Therefore, advanced 
intermediate 8 was used for the preparation of compounds MGSTA-8 to MGSTA-16. 

The coupling of advanced intermediate 8 with carboxylic acids 99a–c under Mitsunobu conditions 
gave the corresponding esters 29 and 100a,b which underwent ring-closing metathesis (RCM) using 
Grubbs II catalyst to give macrolactones 30 and 101a,b. Removal of the TBS group was achieved using 
HF.pyridine to afford MGSTA-2 and the 13- and 15-membered analogs MGSTA-8 and MGSTA-11 
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Scheme 10. Murphy’s synthesis of 8. Reagents and conditions: synthesis of 8, migrastatin 7 and
MGSTA-3. Reagents and conditions: (a) vinyl benzoate, 92, PhCH3, −20 ◦C, 48 h, 89%; (b) DAIB,
TEMPO, CH2Cl2, 2.5 h, RT, 84%; (c) (i) sBuLi, THF, 15 min, −78 ◦C; (ii) (+)Ipc2BOMe, −78 ◦C, 1 h;
(iii) BF3·Et2O then 94, −78 ◦C, 20 h, then 1 M NaOH, 30% H2O2, RT, 20 h; (d) K2CO3, MeOH, RT, 18 h,
73% from 94; (e) TBSOTf, Et3N, CH2Cl2, 0 ◦C, 1.5 h; (f) p-TSA, MeOH, 0 ◦C, 2 h, 84% over two steps;
(g) Dess–Martin reagent, CH2Cl2, pyridine, RT, 18 h, 93%; (h) 63 in THF, NaH, 0 ◦C, 1.5 h, then 98 at
−78 ◦C, 30 min, then 0 ◦C for 15 h, 79%; (i) DIBAL, CH2Cl2, −78 ◦C, 10 min, 90%.

In 2015 [18], Murphy and co-workers reported the preparation of several migrastatin-core analogs
with variations in the macrocycle ring size and functionality. Therefore, advanced intermediate 8 was
used for the preparation of compounds MGSTA-8 to MGSTA-16.

The coupling of advanced intermediate 8 with carboxylic acids 99a–c under Mitsunobu conditions
gave the corresponding esters 29 and 100a,b which underwent ring-closing metathesis (RCM) using
Grubbs II catalyst to give macrolactones 30 and 101a,b. Removal of the TBS group was achieved using
HF·pyridine to afford MGSTA-2 and the 13- and 15-membered analogs MGSTA-8 and MGSTA-11
(Scheme 11).
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103b (51%), from 8; (d) Grubbs II catalyst, PhCH3, reflux, 104a (99%), 104b (60%); (e) (i) 34, TMSCl, 
LHMDS, THF, 0 °C, 2 h; (ii) Pd(OAc)2, CH3CN, RT, 2 h, 78% from 34; (f) HF·Py, THF, RT, MGSTA-13 
(90%); (g) HF·Py, THF, RT, MGSTA-9 (84%), MGSTA-12 (82%). 

Macrothiolactones were also prepared using Mitsunobu reaction of thioacids 106a,b with allylic 
alcohol 8. Thioacids 106a and 106b were prepared by treating the corresponding carboxylic acids 
105a,b with Lawesson’s reagent under microwave irradiation [68]. As described above, RCM and 
removal of the TBS group afforded macrothiolactones MGSTA-10 and MGSTA-14 (Scheme 13). 
Interestingly, silicon grease impurity in MGSTA-8 to MGSTA-14 was removed after distillation 

Scheme 11. Synthesis of macrolacton migrastatin-core analogs. Reagents and conditions: (a) 99a–c, Ph3P,
DIAD, PhCH3, RT; 100a (69%), 100b (76%); (b) Grubbs II catalyst, PhCH3, reflux, 101a (68%), 101b
(73%); (c) HF.py, THF, RT; MGSTA-8 (61%), MGSTA-11 (54%).

Furthermore, migrastatin-core-based macroketones were prepared by the conversion of allylic
alcohol 8 into the allylic bromide 31 using an Appel reaction [9]. This was subsequently reacted with
β-ketosulfones 32-102a,b [9] to give ketones 33 and 103a,b. Ring-closing metathesis reaction using Grubbs
II catalyst afforded macroketones 34 and 104a,b, which, after TBS removal using HF·Py, gave MGSTA-3,
and the 13- and the 15-membered analogs MGSTA-9 and MGSTA-12. In addition, protected macroketone
34 underwent Saeugusa Ito oxidation using LHMDS and TMSCl, followed by treatment with Pd(OAc)2,
to give the α,β-unsaturated macroketone MGSTA-13 after TBS de-protection (Scheme 12).
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Scheme 12. Synthesis of macroketone migrastatin-core analogs. Reagents and conditions: (a) CBr4, Ph3P
polymer-bound, CH2Cl2; (b) 32-102a,b, DBU, PhCH3 then 31, RT; (c) Na/Hg, MeOH, RT; (103a (51%)
103b (51%), from 8; (d) Grubbs II catalyst, PhCH3, reflux, 104a (99%), 104b (60%); (e) (i) 34, TMSCl,
LHMDS, THF, 0 ◦C, 2 h; (ii) Pd(OAc)2, CH3CN, RT, 2 h, 78% from 34; (f) HF·Py, THF, RT, MGSTA-13
(90%); (g) HF·Py, THF, RT, MGSTA-9 (84%), MGSTA-12 (82%).

Macrothiolactones were also prepared using Mitsunobu reaction of thioacids 106a,b with allylic
alcohol 8. Thioacids 106a and 106b were prepared by treating the corresponding carboxylic acids 105a,b
with Lawesson’s reagent under microwave irradiation [69]. As described above, RCM and removal
of the TBS group afforded macrothiolactones MGSTA-10 and MGSTA-14 (Scheme 13). Interestingly,
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silicon grease impurity in MGSTA-8 to MGSTA-14 was removed after distillation under reduced
pressure (Kugelrohr apparatus: 0.05 mbar, T = 90 ◦C, 2 to 24 h). Since MGSTA-3 was synthesized in
100-mg scale, the authors undertook the preparation of glucuronidated migrastatin-core analogs.

Molecules 2017, 22, 198 13 of 26 

 

under reduced pressure (Kugelrohr apparatus: 0.05 mbar, T = 90 °C, 2 to 24 h). Since MGSTA-3 was 
synthesized in 100-mg scale, the authors undertook the preparation of glucuronidated migrastatin-
core analogs. 

 
Scheme 13. Synthesis of macrothiolactone migrastatin-core analogs. Reagents and conditions: (a) Lawesson’s 
reagent, CH2Cl2, mw, 100 °C, 10 min; (b) 105a,b, Ph3P, DIAD, PhCH3, RT; 106a (42%), 106b (39%);  
(c) Grubbs II catalyst, CH2Cl2, mw, 100 °C, 30 min, 107b (49%); (d) Grubbs-II catalyst, PhCH3, reflux, 
107a (88%); (e) HF·Py, THF, RT; MGSTA-3 (85%), MGSTA-7 (63%). 

The glucuronidation of small molecules is a physiological process that leads to highly water-
soluble compounds that are therefore excreted through the kidney [69]. These compounds are 
generally biologically inactive. However, it has been found that glucuronidated small molecules can 
display increased biological activity through a direct or indirect mechanism [69–71]. In addition, β-
glucuronidases are generally overexpressed in tumor tissue and glucuronidation strategy has been 
exploited for the preparation of pro-drugs based on SN-38 or taxol [72,73]. Murphy and co-workers 
demonstrated that reaction of MGSTA-3 with trichloroacetimidate 109 [74] in the presence of 
TMSFOTf leads to the protected β-glucuronide 110. The resulting compound was subsequently 
treated with TiCl4 [75–81] to give α-glucuronide 111 as a single product. Finally, removal of benzoate 
groups and hydrolysis of methyl ester led to migrastatin analogs MGSTA-15 and -16 (Scheme 14). 

 
Scheme 14. Reagents and conditions: (a) 109 TMSOTf, MS (AW300), CH2Cl2, −78 °C, 5 h, 60%;  
(b) TiCl4, CDCl3, 4 °C, 69%; (c) NaOH aq., MeOH, RT, 18 h, MGSTA-16 (61%), MGSTA-17 (73%). 

  

 

Scheme 13. Synthesis of macrothiolactone migrastatin-core analogs. Reagents and conditions:
(a) Lawesson’s reagent, CH2Cl2, mw, 100 ◦C, 10 min; (b) 105a,b, Ph3P, DIAD, PhCH3, RT; 106a (42%),
106b (39%); (c) Grubbs II catalyst, CH2Cl2, mw, 100 ◦C, 30 min, 107b (49%); (d) Grubbs-II catalyst,
PhCH3, reflux, 107a (88%); (e) HF·Py, THF, RT; MGSTA-3 (85%), MGSTA-7 (63%).

The glucuronidation of small molecules is a physiological process that leads to highly
water-soluble compounds that are therefore excreted through the kidney [70]. These compounds
are generally biologically inactive. However, it has been found that glucuronidated small molecules
can display increased biological activity through a direct or indirect mechanism [70–72]. In addition,
β-glucuronidases are generally overexpressed in tumor tissue and glucuronidation strategy has been
exploited for the preparation of pro-drugs based on SN-38 or taxol [73,74]. Murphy and co-workers
demonstrated that reaction of MGSTA-3 with trichloroacetimidate 109 [75] in the presence of TMSFOTf
leads to the protected β-glucuronide 110. The resulting compound was subsequently treated with
TiCl4 [76–82] to give α-glucuronide 111 as a single product. Finally, removal of benzoate groups and
hydrolysis of methyl ester led to migrastatin analogs MGSTA-15 and -16 (Scheme 14).
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2.2. Biology

2.2.1. Preliminary Findings [3,6,83]

The biological activity of migrastatin was first reported in 2000 by Imoto et al. [3] These authors
showed that migrastatin inhibits the migration of EC17 (mouse esophageal cancer cells), with an IC50

of 6 µM in a wound-healing assay (WHA) and of 2 µM in a chemotaxicell chamber assay. However,
the same authors reported [83] that a migrastatin sample was contaminated with teleocidin-related
impurities, which are known for their anti-migratory activity. After careful purification, they showed
an inhibition of cell migration in EC17 cells, pretreated with pure migrastatin for 24 h, with an IC50 of
20.5 µM (WHA). In addition, they showed that migrastatin inhibits the growth of EC17 cells, with an
IC50 of 167.5 µM. These results indicate that inhibition of cell migration was not due to cytotoxicity [83].
In 2006, the same authors reported that migrastatin inhibits the function of P-glycoprotein and is
therefore capable of suppressing multidrug resistance (MDR) [6]. They demonstrated that migrastatin
increases the intracellular concentration of anticancer drugs vinblastine, vincristine and taxol in
P-glycoprotein-overexpressing VJ-300 (vincristine-resistant human epidermoid carcinoma) [84] and
P388/VCR (vincristine-resistant mouse leukemia) cells [85]. The cytotoxicity of vincristine and taxol in
VJ-300 cells treated with migrastatin (61 µM) increased 40- and 53-fold respectively (migrastatin not
toxic up to 102 µM).

2.2.2. Danishefsky’s Work [9,86–88]

An important breakthrough with respect to the biological activity of migrastatin was made by
Danishefsky et al. in 2005 [9]. Through a diverted total synthesis approach (Figure 2), a series of
truncated analogs of migrastatin were prepared and tested as inhibitors of cell migration in 4T1 cells
(mammary mouse cancer) and HUVECs (human healthy endothelial cells). Migrastatin-core analogs
MGSTA-2 to 4 were ≈ 1000 more potent that migrastatin itself (Figure 4b) and were not cytotoxic up
to 20 µM. Interestingly, while migrastatin was stable in mouse plasma, macrolactone MGSTA-1 and
MGSTA-2 were not. On other hand, macroketone MGSTA-3 and macrolactam MGSTA-5 displayed
higher stability, as revealed by an unchanged HPLC signal over 60 min of incubation (Figure 4c).

MGSTA-3 and MGSTA-4 also inhibited the migration of highly invasive and metastatic cancer
cell lines, such as MDA-MB-231 (human breast tumor), Lovo (human colon tumor) and PC-3 (human
prostate tumor) in WHAs [86]. Importantly, MGSTA-3 and MGSTA-4 did not affect the migration of
normal human mammary-gland epithelial cells (MCF-10A), mouse embryonic fibroblasts, or primary
mouse leukocytes in WHAs [86].

For in vivo studies [86], the 4T1 mouse mammary model was chosen. In this model, the tumor
closely mimics human breast cancer with respect to immunogenicity, metastasis, anatomy and
growth characteristics [89]. 4T1 tumors spontaneously metastasize to the lung, bone, brain and
liver [90]. MGSTA-3 and MGSTA-4 were administrated daily for 20 days at 10 mg/kg or 20 mg/kg.
MGSTA-3 and MGSTA-4 reduced the metastasized 4T1 cells in the lungs by 91%–99% (measured
by 6-thioguanine clonogenic assay) (Figure 4d). Tumor growth was not affected by MGSTA-3 or
MGSTA-4, and no obvious side effects were observed. MGSTA-2, which was not stable in plasma
(Figure 4c), was considerably less effective at inhibiting metastasis (Figure 4). In addition, the authors
showed that MGSTA-3 and MGSTA-4 block the activation of RAC (Ras-related C3 botolinum toxic
substrate 1), a protein involved in lamellipodia formation and therefore in cell migration.
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MGSTA-4 in a mouse model. Lung metastasis was measured by the 6-thioguanine clonogenic assay.
Results are mean ± SD (n = 5). *, p < 0.01. Adapted with permission from PNAS, 2005, 102, 3772.
Copyright (2005) National Academy of Sciences, U.S.A. a Intensity of HPLC signal unchanged over
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A few years later [87], Danishefsky and co-workers prepared the simplified macroether MGSTA-5
starting from advanced intermediate 8 (Figure 5a). MGSTA-5 was tested in transwell cell-migration
assays against 4T1, MDA-MB-231 (human breast cancer), MDA-MB-435 (human breast cancer) cell
lines. MGSTA-5 inhibited the migration of tested cell lines, with an IC50 in the nanomolar range
(Figure 5b). Interestingly, a higher concentration of MGSTA-5 was necessary to inhibit the migration
of MCF10A (non-tumor human breast cells), thereby suggesting a specific mechanism of action
for transformed cells. MGSTA-5 also inhibited the proliferation of MDA-MB-231 cells, with an
IC50 > 100. This observation suggesting that the inhibition of migration in MDA-MB-231 cells is not
related to cytotoxicity. MGSTA-5 inhibited the migration of the highly metastatic breast cancer cell
line LM2-4175 (LM2), with an IC50 (extrapolated from graph) [87] of around 1.5–2 µM. LM2 cells
are aggressive and highly metastatic and are derived from lung metastasis of MDA-MB-231 [91].
The ability of MGSTA-5 to inhibit tumor metastasis in vivo was assessed using luciferase-based
noninvasive whole animal bioluminescent imaging in a xenograft breast cancer model in NOD/SCID
mice transplanted with MDA-MB-231 cells stably expressing the HSVTK-eGFP-luciferase (TGL)
reporter protein [92]. After inoculation of MDA-MB-231 cells, a group of five mice were treated
with MGSTA-5 (three times/week; 40 mg/kg) from day 1 (pre-treatment). Another group of mice was
treated starting from day 15 (post-treatment). At the time of surgical resection, 50% of control mice
had metastasis and 85% had tumors invading the muscle layer and peritoneal membrane. The group
of mice treated with MGSTA-5 from day 1 (pre-treatment) showed an 87% reduction in metastases,
while that treated with MGSTA-5 from day 15 (post-treatment) showed a 47% reduction (Figure 5c).
Pre-treatment with MGSTA-5 also had an important effect on overall survival. Mice were pre-treated
with MGSTA-5 at 40 mg/kg and 200 mg/kg. After 50 days, all the control mice had died; however,
the overall survival of the groups treated with 40 and 200 mg/kg was 30% and 50%, respectively
(Figure 5d). After 9 weeks, a metastatic tumor was detectable in the former group but not in the latter.
Importantly, treatment with MGSTA-5 did not attenuate the growth of the primary tumor [87].
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and 12 and 49 mg/kg (MGSTA-6) (both analogs were administered by intraperitoneal injection three 
times/week; doses adjusted to molecular weight). Mice were treated for 55 days and monitored by 
serial noninvasive bioluminescent imaging (BLI). At day 55, mice were killed, and the spread of 
metastasis in lungs, liver, heart, kidneys and spleen was evaluated using BLI (Figure 6c). Neither 
analog affected the inhibition of tumor growth. No toxicity was detected in mice treated with 
MGSTA-6. In addition, treatment with the low dose of MGSTA-6 (12 mg/kg) was approximatively 
four times more potent than MGSTA-5 at the same dose (10 mg/kg). 

Figure 5. (a) Structure of MGSTA-5; (b) Chamber cell migration assay; (c) MGSTA-5 treatment
(40 mg/kg) begun at day 1 (Pre) or day 15 (Post) after tumor inoculation (MDA-MB-231). Primary tumor
was resected at 2 weeks and tumor metastasis was determined by bioimaging at 3 weeks; (d) MGSTA-5
treatment (40 or 200 mg/kg) begun at day 1 after tumor inoculation (MDA-MB-231). Primary tumor
was resected at 3 weeks and tumor metastasis was determined by bioimaging at 4 weeks. Adapted with
permission from J. Am. Chem. Soc. 2010, 132, 3224. Copyright (2010) American Chemical Society.

With the aim to identify new compounds with enhanced solubility, bioavailability and
pharmacostability, Danishefsky and co-workers [88] synthesized the carboxymethyl migrastatin-core
analog MGSTA-6 (Figure 6a). The ability of this compound to inhibit cell migration was assessed using
the WHA and transwell migration assay in human non-small cell lung carcinoma cells (NSCLC) and
compared with that of MGSTA-5. Both MGSTA-5 and MGSTA-6 efficiently reduced the migration of
A549, H1975 and H1299299 cancer cells, with an IC50 in the micro and nanomolar range (Figure 6b).
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Figure 6. (a) Structure of MGSTA-6 a; (b) Chamber cell migration assay with non-small lung carcinoma
(NSLC) A549, H1975, H1299 cells; (c) Bioluminescent imaging of tumor metastasis at endpoint. Lung (Lu),
liver (Li), heart (H), kidneys (K), and spleen (S). Adapted with permission from PNAS, 2011, 108, 15074.

The capacity of MGSTA-5 and 6 to inhibit tumor metastasis generated from human primary
small lung carcinoma cells (SLCL) was also evaluated. Primary tumors were obtained from patients,
and cells were stably transduced with a triplefusion protein reporter construct (AC3-TGL) and then
transplanted by subcutaneous injection with Matrigel into NOD/SCID IL2R gamma null (NSG)
mice. Mice were treated with both MGSTA-5 and 6 from day 1 at doses of 10, 40 and 200 mg/kg
(MGSTA-5) and 12 and 49 mg/kg (MGSTA-6) (both analogs were administered by intraperitoneal
injection three times/week; doses adjusted to molecular weight). Mice were treated for 55 days and
monitored by serial noninvasive bioluminescent imaging (BLI). At day 55, mice were killed, and the
spread of metastasis in lungs, liver, heart, kidneys and spleen was evaluated using BLI (Figure 6c).
Neither analog affected the inhibition of tumor growth. No toxicity was detected in mice treated with
MGSTA-6. In addition, treatment with the low dose of MGSTA-6 (12 mg/kg) was approximatively
four times more potent than MGSTA-5 at the same dose (10 mg/kg).
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2.2.3. Mechanism of Action [93]

In 2010, Chen and co-worker [93] attempted to elucidate the mechanism of action of MGSTA-3.
The authors claimed that the target of MGSTA-3 was fascin. Fascin is an actin-bundling protein
responsible for cell migration and therefore for cell invasion and metastasis. Fascin mRNA transcript
and protein levels are elevated in aggressive tumors [94,95], and overexpression of fascin is also
linked to increased cell migration and invasion [96,97]. Using an affinity protein purification approach,
they demonstrated that a MGSTA-3 biotin-labeled analog [9] (Figure 7a) binds to fascin in cancer cell
extracts. F-actin pelleting assays [98] revealed that MGSTA-3 significantly decreases fascin-induced
bundling of F-actin polymers. The authors also published an X-ray crystal structure of fascin
co-crystalized with MGSTA-3 and claimed that MGSTA-3 binds at the same site of actin. However,
this X-ray structure was found to be incorrect and was therefore retracted [93], since the chemical
structure of MGSTA-3 bound to fascin shown in the X-ray picture was not MGSTA-3 but rather its
isomer [99]. Furthermore, the authors showed that selective mutation of fascin in the proposed region
of binding reduced the actin-bundling activity of fascin (mutation on H392, Lys471, Ala488, F-actin
pelleting assay, Figure 7b). On other hand, mutation of His 474 to Ala did not reduce the activity
of fascin but rendered fascin resistant to MGSTA-3 treatment (Figure 7c). These results were also
validated in 4T1 cancer cells in a boyden chamber assay (Figure 7d).
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Knockdown of fascin using short-hairpin RNAs (shRNA) decreased cell migration. This effect 
was rescued by transfection of wild-type human fascin cDNA or H477A/H477K human fascin cDNA. 
Importantly, rescued migration of WT fascin was sensitive to MGSTA-3 while rescued migration by 
H477A or H477K fascin was not (Figure 7d). Similar results were obtained in vivo using various fascin 
mutants in mouse fascin shRNA-treated 4T1 cells in the presence or absence of MGSTA-3 (Figure 7e). In 
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Figure 7. (a) Structure of Biotin-conjugated MGSTA-3; (b) Quantification of actin bundling assay for
the wild-type fascin and mutants; results are means and ± SD (n = 3); * p < 0.05 (c) Mutant sensitivity
to MGSTA-3. Wild-type fascin and the E391A and H474A mutants of fascin were assayed for their
actin-bundling activity in the absence or presence of MGSTA-3 (10 µM); results are means and ±SD
(n = 3). * p < 0.05; (d) Boyden chamber cell migration assay of mouse fascin shRNA-treated 4T1
cells transfected with various mutants of GFP–human fascin (h-fascin) in the presence or absence of
MGSTA-3 (10 µM); results are means and ± SD (n = 5) p < 0.05; (e) Tumor metastasis assay with mouse
fascin shRNA-treated 4T1 cells overexpressing wild-type human fascin or fascin (H474A) mutant in
the presence or absence of MGSTA-3 (10 mg/kg). Comparison of the fascin shRNA group with the
control shRNA group. Results are means and ±SD (n = 5~6). *, p < 0.05 Adapted by permission from
Macmillan Publishers Ltd: Nature, 2010, 464, 1062, copyright (2010) http://www.nature.com/.

Knockdown of fascin using short-hairpin RNAs (shRNA) decreased cell migration. This effect
was rescued by transfection of wild-type human fascin cDNA or H477A/H477K human fascin cDNA.
Importantly, rescued migration of WT fascin was sensitive to MGSTA-3 while rescued migration
by H477A or H477K fascin was not (Figure 7d). Similar results were obtained in vivo using various
fascin mutants in mouse fascin shRNA-treated 4T1 cells in the presence or absence of MGSTA-3
(Figure 7e). In 2013, Król and co-workers [19] examined the effect of MGSTA-2 to 3, MGSTA-8 to

http://www.nature.com/
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10 and MGSTA-13 in canine mammary cell lines. The study was carried out using CMT-W1 and
CMT-W2 cells and their corresponding lung metastasis CMT-W1M and CMT-W2M cells [100,101].
A preliminary screen using the wound-healing assay (WHA) showed that MGSTA-3 and MGSTA-13
were the most promising analogs. Further single concentration studies (Boyden chamber assay)
showed that MGSTA-13 was the most promising compound. MGSTA-13 inhibited cell migration
of CMT-W1, CMT-W1M, CMT-W2 cells, with an IC50 in the molar range (Figure 8b). Surprisingly,
no effect was observed in CMT-W2M cells. They next examined the invasive phenotype [102,103] of
CMT-W1, CMT-W1M, CMT-W2 cells cultured on reconstituted basement membrane (MatrigelTM) in the
presence or the absence of MGSTA-13. After 24 h, cells cultured in control conditions showed typical
branching formation. In contrast, all cells treated with MGSTA-13 showed a remarkable inhibition of
branch formation (Figure 7c). This observation indicates that this compound has an effect on actin
machinery, which is responsible for filopodia formation and thus for cell migration. Given these
findings, the authors focused their attention on fascin, an actin-bundling protein responsible for
the development and maintenance of straight and tight F-actin bundles [104–106]. Using confocal
microscopy, they demonstrated that actin strongly co-localized with fascin1 in CMTW1 cells, while
after treatment with MGSTA-3 this co-localization decreased dramatically (Figure 8d). In addition,
CMT-W1 cells in control conditions showed several filopodia and protrusions, which disappeared after
treatment with MGSTA-13 (Figure 8e). Similar results were obtained with CMT-W1 and CMT-W2
cells. With these results in hand, the authors analyzed the expression of phospho-fascin1 protein
(phospho-FSCN1(ser39)) in the four cell lines. The expression of fascin1 in CMT-W2M cells, which
were not sensitive to MGSTA-3 and 13, was lower than in the other cell lines (Figure 8f).
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phospho-FSCN1(Ser39) in canine mammary cancer cell lines; the unpaired t-test was applied. * p < 0.05.
Adapted from PLoS ONE, 2013, 8, e76789.

In 2014, Murphy and Anderson [14] studied the effect of MGSTA-3 on epithelial cadherin
(E-cadherin) dynamics in vivo and in vitro. Misregulation of epithelial E-cadherin is associated with the
ability of cancer cells to detach from the primary tumor and to become invasive and metastatic [107–109].
E-Cadherin is a cell-cell adhesion protein involved in the maintenance of the epithelial architecture [110].
Reduced levels of E-cadherin have been found in colon, breast, prostate and ovarian cancer [111–114].
Pancreatic ductal adenocarcinoma (PDAC) cells were treated with MGSTA-3, and E-cadherin dynamics
was studied using fluorescence recovery after bleaching (FRAP). These cells are highly invasive because



Molecules 2017, 22, 198 19 of 26

of expression of a mutant form of the tumor suppressor p53 [115]. MGSTA-3 had no effect on the
immobile fraction of E-cadherin, a measure of the amount of E-cadherin immobilized at cell-cell junctions.
PDAC cells were therefore injected subcutaneously into nude mice, and tumors were allowed to grow for
seven days. The mice were treated with MGSTA-3 (20 mg/kg) for three days, and E-cadherin dynamics
were studied using FRAP. MGSTA-3 treatment increased the immobile fraction, an effect expected to
strengthen cell-cell adhesion and therefore impede metastasis.

In 2015, Murphy and co-workers reported the biological activity of several migrastatin core
analogs. MGSTA-8 to 16 were tested against three breast (MCF7, MCF7-Dox, MDA-MB361) and
one pancreatic (HPAC) cancer cell lines in WHA. All analogs inhibited cell migration, and none
were toxic up to 100 µM. Selected analogs (MGSTA-3, MGSTA-12 to 13, MGSTA-15 to 16) were
therefore tested in transwell assays in MCF7, MDA-MB-361 and HPCA cells (Figure 9). All these
compounds inhibited cell migration in the nanomolar range, with the exception of MGSTA-13 in
MCF-7 cells. Since MSTA-13 inhibited cell migration in the highly metastatic MDA-MB-361 cell but
not in the less invasive MCF7 cells, the authors claimed that this effect could be related to cytoskeleton
proteins targeted by migrastatin analogs [14,93]. Interestingly, MGSTA-13 was tested against a panel
of 55 targets known to be related to adverse drug reactions (ADRs). MGSTA-13 showed only weak
inhibitory capacity over adenosine receptor A2A (27%) and prostanoid EP4 receptor (39%). It has been
reported that a promiscuity index (percentage of targets giving more than 50% inhibition at 10 µM in
a set of at least 50 targets) of more than 20% is linked to market withdrawal and clinical trial failure.
Unsaturated macroketone MGSTA-13 registered a promiscuity index of between 0% and 5%, and is
therefore a promising candidate for further biological studies.
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The biological activity of migrastatin-core analogs has attracted the attention of cancer biologists
in recent years. Several synthetic approaches have been developed for these compounds, and their
relatively simple structure has allowed the preparation of small libraries and scale-up for in vivo studies.

Migrastatin analogs act as anti-metastatic agents by inhibition of the cell motility machinery and
they have no effect in tumor growth or proliferation. The mechanism by which migrastatin analogs
interfere with cell migration is still debated and further studies are necessary in order to confirm their
primary target. Preliminary data suggest that migrastatin analogs selectively reduced cell migration
in cancer cells without interfering with non-transformed cells. New findings in this direction will
definitely help medicinal chemist to design new analogs with enhanced biological activity and stability.

In addition, this class of compound displayed low cytotoxic activity and recently it have been
demonstrated that MGSTA-13 present low affinity for several targets related to adverse drug reactions
(ADRs). Since high affinity of targets related with ADRs result in preclinical/clinical or market withdrawal,
migrastatin analogs could be valuable molecules for further preclinical development. Efforts in this
direction could lead to the identification of preclinical candidates with enhanced safety profile.
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We also believe that the preparation of synthetic migrastatin analogs with enhanced water
solubility and plasma stability it is also necessary. It has been demonstrated that free hydroxyl group
in migrastatin core could be modified with the introduction of a carboxymethyl moiety or sugar moiety
without drastically affect the biological activity. Moreover, modification of hydrophobic left hand side
of migrastin-core analogs has not be explored.

From the clinical point of view, migrastatin analogs could act as prophylactic agents that prevent
tumor cells to metastasize. Safe and efficient migrastatin analogs could be administrated after liver or
lung metastasis resection and this could prevent metastasis relapse. Alternatively, migrastatin analogs
could be administrated during or after chemotherapy standard treatment.

We hope that this review serves to inspire the preparation of novel analogs with enhanced
pharmacological properties, thus paving the way for their application in the treatment of patients with
metastatic cancer.
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List of Abbreviations Used

2,6-lutidine 2,6-dimethylpyridine
BAIB (Diacetoxyiodo) benzene
CSA camphorsulfuric acid
DCC N,N’-dicyclohexylcarbodiimide
DIBAL diisobutylaluminium hydride
DIPEA N,N-Diisopropylethylamine
DMP Dess-Martin periodinane
DMAP 4-dimethylaminopyridine
DPPA diphenylphosphoryl azide
DTBMP 2,6-di-tert-butyl-4-methylpyridine
DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene
EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide

Grubbs II
(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)
(tricyclohexylphosphine) ruthenium

(+)Ipc2BOMe (+)-B-methoxydiisopinocampheylborane
MS molecular sieves
MeOTf methyl trifluormethanesulfonate
MOMCl chloromethyl methyl ether
NMO N-methylmorpholine-N-Oxide
Proton sponge 1,8-bis(dimethylamino)naphthalene
TBDPSCl tert-butyldiphenylsilyl chloride
TBAF tetrabutylammonium fluoride
TBSCl tert-butyldimethylsilyl chloride
TBSOTf tert-butyldimethylsilyl trifluoromethanesulfonate
Tebbe reagent Bis(cyclopentadienyl)-µ-chloro-(dimethylaluminum)-µ-methylenetitanium
TEMPO 2,2,6,6,-tetramethyl-1-piperidinyloxy
TPAP tetrapropylammonium perruthenate
p-TSA p-toluenesulfonic acid
White catalyst 1,2-bis(phenylsulfinyl)ethane palladium (II) acetate
WHA wound-healing assay



Molecules 2017, 22, 198 21 of 26

List of Cell Lines

4T1 (mammary mouse cancer)
A549 (lung carcinoma)
CMT-W1 (canine mammary cancer)
CMT-W2 (canine mammary cancer)
CMT-W1M (canine lung metastasis)
CMT-W2M (canine lung metastasis)
EC17 (mouse esophageal cancer)
H1299 (lung cancer)
H1975 (lung adenocarcinoma)
HPAC (human pancreas adenocarcinoma)
HUVECs (human healthy endothelial cells)
LM2-4175 (lung metastatic cells derived from MDA-MB-231)
Lovo (human colon cancer)
MCF7 (human breast cancer)
MDAB-MB-361 (human breast cancer)
MCF-10A normal human mammary-gland epithelial
MDA-MB-231 (human breast cancer)
MDA-MB-435 (human breast cancer)
P388/VCR (vincristine-resistant mouse leukemia)
PC-3 (human prostate cancer)
PDAC (pancreatic ductal adenocarcinoma)
VJ-300 (vincristine-resistant human epidermoid carcinoma)
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