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The present knowledge of microbial community mainly focus on total sponge, the spatial distribution of
microbes in sponges is rarely known, especially those with potential ecological functions. In this study, based
on gene library and |-LIBSHUFF analysis, the spatial distribution of prokaryotic symbionts and nitrogen
cycling genes in the cortex and endosome sections of sponge Astrosclera willeyana were investigated. A
significance difference of bacterial phylotypes between the cortex and endosome was revealed. For example
Bacteroidetes, Frankineae and Propionibacterineae were detected only in the endosome, whereas
Cyanobacteria, Planctomycetacia and Micrococcineae were only associated with the cortex. Some branches
of a-Proteobacteria, y-Proteobacteria, Corynebacterineae, Acidimicobidae, Crenarchaeota and
Euryarchaeota also showed distribution difference. Bacterial denitrifiers and ammonia oxidizing bacteria
(AOB) were observed using nirS and amoA genes as markers. Particularly, AOB were only associated with
the endosome. This study highlighted the spatial distribution of bacterial symbionts especially those with
ammonia oxidization function.

arine sponges are hosts of diverse marine microorganisms'~. The association between microorganisms

and their host has been studied firstly using microscopic observation and culture-dependent approach™®’.

Nucleic acid-based culture-independent molecular techniques have demonstrated the extraordinary
microbial diversity associated with sponges>**7, and sponge-specific microbes which are different from those in
the environmental seawater have been suggested*’. In recent years deep sequencing has demonstrated the
presence of as many as 27 bacterial phyla and 8 candidate divisions in sponges®'°. However there is only limited
information on the spatial distributions of these populations as most studies have focused on the microbial
population of the complete sponge.

As sessile filter-feeding organisms, sponges pump large amounts of water through their channel system. As a
consequence of seawater pumping in and out the sponge body, an oxygen concentration gradient in sponge body
may occur'"'?. Thus, it can be hypothesized that a spatial distribution of microorganisms in sponges probably
exists because of the filtering by canals with different apertures and the different inner-environments e.g. oxygen.
It is reasonable that the microbial population on the sponge surface is different form that in the sponge mesohyl".
But, the microbial spatial distribution in the sponge body remains largely unknown. The exploratory survey of
spatial distribution of microorganisms in sponge body was first made in 2000 to investigate the spatial arrange-
ment of Desulfovibrionaceae'*. Since 2007, the microbial spatial distribution in sponges has drawn people’s more
attention'>""”. However different results have been observed, for example, the spatial distribution of microorgan-
isms within the body of sponges Polymastia cf. corticata and Tethya aurantium was found to be specific>'®, while
a homogeneous spatial distribution of microorganisms in sponge T. californiana was indicated'’. Meanwhile, to
date, we have no information on the distribution of Euryarchaeota in sponges. In addition, though many reports
have suggested the nitrogen cycling mediated by the sponge-associated microbes since 2006'*~*!, only the spatial
distribution of ammonia monooxygenase amoA gene in sponge Polymastia cf. corticata has been investigated'®.
Thus, more investigations need to be carried out on the spatial distribution of microbial symbionts especially
those with ecological functions in different sponges to provide more evidence for the spatial distribution hypo-
thesis and increase the understanding of related microbial functions.
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The sponge Astrosclera willeyana provides an ideal species for
microbial spatial distribution investigation because it is characterized
by a round sphere shape. In this study, using gene library-based
molecular approach and statistical |-LIBSHUFF analysis, the spatial
distribution of prokaryotic symbionts, especially those with nitrogen-
cycling function, in the cortex and endosome of sponge A. willeyana
were investigated. The spatial distribution difference of microbial sym-
bionts in the cortex and endosome of A. willeyana, particularly ammo-
nia oxidizing bacteria (AOB) in the endosome is suggested. This is the
first time that the spatial distribution of bacterial denitrifiers with nirS
gene and Euryarchaeota in sponges has been demonstrated.

Results

Four 16S rRNA gene libraries of bacteria, actinobacteria, cyanobac-
teria and archaea and two functional gene libraries of nirS and amoA
genes were constructed. Diverse bacterial phylotypes including acti-
nobacteria and cyanobacteria, and archaeal phylotypes were detected
in sponge A. willeyana. The ammonia monooxygenase amoA gene
and the nitrite reductase nirS gene were also observed. In contrast,
the bacterial anaerobic ammonia oxidation of bacteria, archaeal
ammonium oxidation, nitrite reductase nirK, nitric oxide reductase
norB, cytochrome nitrite reductase nrf, nitrite oxidoreductase nxr
and nitrogen fixation nif genes were not detected (Table 1). A total
of 334 clones from these six gene libraries were sequenced success-
fully, and the number of sequenced sequences was saturated based on
rarefaction analysis (Fig. S1). According to Table 1, bacteria includ-
ing those with nirS gene, archaea and actinobacteria were detected in
both endosome and cortex samples. Notably, cyanobacteria were
only observed in the cortex and the amoA gene was only found in
the endosome suggesting some extent of spatial distribution. At the
level of OTU, these results also indicated different microbial popula-
tions between the cortex and endosome of sponge A. willeyana.

The spatial distribution of bacteria. Based on the 16S rRNA gene
library using universal primer for bacteria (Fig. 1-1), diverse bacterial
phylotypes including Planctomycetes, Cyanobacteria, Bacteroidetes,
Firmicutes, o-Proteobacteria, vY-Proteobacteria and Actinobacteria
were observed in the endosome and cortex of sponge A. willeyana.
v-Proteobacteria dominated in both endosome and cortex samples
(51.72% and 30%, respectively) followed by a-Proteobacteria.
Firmicutes were also found in endosome and cortex. Particularly,
Bacteroidetes (8.62%) was only associated with the endosome (Fig. 1-
1A), while Planctomycetes (28.33%) and Cyanobacteria (10%) were
only observed in the cortex (Fig. 1-1B). As shown in Fig 2, 2 of 5
OTUs of y-Proteobacteria were detected only in the cortex, the other
2 OTUs were detected only in the endosome, while the remaining one
was overlapped. In the case of o-Proteobacteria, 3 of 5 OTUs were
detected only in the cortex, 1of 5 was present only in the endosome and
the remaining one was overlapped in two sections.

In Fig. 1-1A, actinobacteria were found in the endosome rather
than in the cortex. However, using actinobacteria specific primer, a
total of 118 actinobacteria 16S rRNA gene sequences were ob-
served in the cortex and endosome sections. Acidimicrobidae and

Actinobacteridae including Propionibacterineae, Frankineae, Micro-
coccineae and Corynebacterineae were found (Fig. 1-2). Acidimi-
crobidae dominated the actinobacterial community in the endosome
and cortex (73.85% and 77.14%) followed by Corynebacterineae.
Particularly, Propionibacterinea (6.15%) and Frankineae (3.08%)
were only found in the endosome, while Micrococcineae (8.57%)
was only found in the cortex. Fig. 3 shows that 6 of 10 OTUs of
Acidimicrobidae were detected only in the endosome and 2 only in
the cortex. The remaining 2 OTUs were overlapped. One OTU of
Propionibacterineae, one OTU of Frankineae and 2 of 3 OTUs of
Corynebacterineae were only present in the endosome, while 2 OTUs
of Micrococcineae were only observed in the cortex. Therefore, acti-
nobacteria also exhibited obvious spatial distribution difference.

The spatial distribution of archaea. A total of 36 archaea 16S rRNA
gene sequences were obtained. As shown in Fig. 1-3, Crenarchaeota
and Euryarchaeota were detected in both endosome and cortex
sections with Crenarchaeota as the predominant group, i.e. 88.89%
and 61.11% in the endosome and cortex, respectively. As shown in
Fig. 4, Crenarchaeota and Euryarchaeota were observed in both
sections, but some OTUs were found only in the cortex.

The spatial distribution of ammonia-oxidizing bacteria and
bacterial denitrifiers. As for microbial functional genes, 1 of 2
OTUs of bacterial nirS gene was found only in the cortex, while
another was overlapped between two samples (Fig. 5). Both OTUs
of bacterial amoA genes were only found in the endosome indicating
their space-specific distribution in this sponge (Fig. 6).

The comparison of prokaryotic populations and nitrogen cycling
genes between the cortex and endosome of sponge Astrosclera
willeyana. Fig. 7 summarizes the spatial distribution of sponge
prokaryotic symbionts and their nir and amoA genes (represented
by OTUs). Obviously, different spatial distribution of bacteria and
those with nirS and amoA genes in the cortex and endosome was
indicated. For example, Bacteroidetes, Frankineae, Propionibacterin-
eae and AOB (with dotted line box in Fig. 7) are space-specific in the
endosome, while Cyanobacteria, Planctomycetacia and Micrococcin-
eae (with solid line box in Fig. 7) are cortex-specific. In addition,
some o-Proteobacteria, y-Proteobacteria, Corynebacterineae and
Acidimicobidae show spatial distribution difference. In the case of
functional genes involved in the ammonia-oxidization and denitri-
fication, the amoA gene is only associated with the endosome section.

The result of statistical analysis of bacterial community, archaeal
community and nirS gene spatial distribution difference between the
cortex and endosome by |-LIBSHUFF is exhibited in Table S1 (the
gene libraries of cyanobacteria and actinobacteria were included in
the bacterial library). Because amoA gene shows certain spatial
specificity, the amoA gene sequences were not analyzed by |-
LIBSHUFF. According to Table S1, a significance difference of
bacterial phylotypes between the cortex and endosome is suggested
because of the P-value below 0.098 at the 0.05 level. Though some
archaeal OTUs are associated only with cortex (Fig. 4), no statistically

Table 1 | The results of OTU analysis based on gene libraries

Number of clones

Sequenced successfully

Number of OTUs

sequenced (cortex/

denitrification (nirS)

Target gene endosome) cortex endosome  onlycortex only endosome  both total
Bacteria 16S rRNA gene 70/65 + + 11 5 4 20
Actinobacteria 16S rRNA gene 60/58 + + 5 9 3 17
Cyanobacteria specific 16S rRNA gene 12/- + - 2 0 0 2
Archaea 16S rRNA gene 18/18 + + 4 0 2 6
Ammonium oxidation of bacteria (amoA) -/10 - + 0 2 0 2
Dissimilatory nitrate reduction and 11/12 + + 1 0 1 2
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Figure 1 | Diversity of bacteria (part 1), actinobacteria (part 2) and archaea (part 3) in the endosome and cortex of sponge A. willeyana. A: endosome, B:

cortex.

significant difference of spatial distribution of archaea was suggested
according to [-LIBSHUFF analysis. Meanwhile, bacterial nirS genes
in endosome and cortex also did not exhibit a significant difference.

Discussion

In common with most sponges, A. willeyana contains a large popu-
lation of Proteobacteria, especially y-Proteobacteria, as the dominant
group of its bacterial community>*”'°. However there is only

spatial differentiation within a few of its branches. Similarly,
Acidimicrobidae, which has been grouped into sponge-specific
microorganisms®, shows no spatial specificity. In contrast,
Bacteroidetes, Cyanobacteria and Planctomycetacia show obvious
spatial distribution specificity. Cyanobacteria has been observed
widely in sponges®, its space-specific distribution in the cortex of
sponge A. willeyana maybe related to its biological functions e.g.
photosynthesis*. Interestingly, Cyanobacteria was detected only in
the endosome of sponge Tethya aurantium Pallas 1766'°, which
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Figure 2 | NJ-phylogenetic tree based on bacteria 16S rRNA gene sequences (1,420-1,520bp) without actinobacteria. Bootstrap values (1,000
replicates) lower than 50% are not shown. A mark means the OTU only in the cortex, and A mark means the OTU only in the endosome. @ mark means
the OTU in both cortex and endosome samples. The number inside the parenthesis means the number of sequences within each OTU.
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Figure 3 | NJ-phylogenetic tree based on actinobacteria 16S rRNA gene sequences (639 bp). Bootstrap values (1,000 replicates) lower than 50% are not
shown. A mark means the OTU only in the cortex, and A mark means the OTU only in the endosome. @ mark means the OTU in both cortex and
endosome samples. The number inside the parenthesis means the number of sequences within each OTU.

indicated that microbial spatial distribution maybe sponge species-
dependent.

Diverse sponge-associated actinobacteria have been revealed**>°.
In this study actinobacteria did show a strong selectivity in the spatial
location, for example Frankineae, Propionibacterineae in the endo-
some, and Micrococcineae in the cortex. Meanwhile, the abundance
of actinobacteria in the endosome is greater than that in the cortex. It
is worth mentioning that, in this study, a significant difference of
DNA specificity between bacterial 16S rRNA gene universal primer
and actinobacteria 16S rRNA gene specific primer was observed.
Actinobacterial 16S rRNA gene specific primer is much more sens-
itive to sponge-associated actinobacteria DNA than bacterial 16S
rRNA gene universal primer. For instance, using bacteria 16S
rRNA gene universal primer only one actinobacteria OTU was

detected. In contrast, Acidimicrobidae, Corynebacterineae, Propioni-
bacterineae, and Micrococcineae were detected using actinobacterial
specific primer. This result suggests that the species-specific primers
are very important for the diversity study of sponge microbial
symbionts.

Group I Crenarchaeota are widely distributed in the marine envir-
onment”. Almost all sponge-associated archaea belong to this
group®®?!, while Euryarchaeota appeared in few sponges®. In this
study, both Crenarchaeota and Euryarchaeota were detected in
sponge A. willeyana. It was the first time to reveal the homogeneous
spatial distribution of Euryarchaeota in sponges. Though some
archaeal OTUs were only observed in the cortex, archaea show no
significant distribution difference between the cortex and endosome
of sponge A. willeyana.
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Figure 4 | NJ-phylogenetic tree based on archaea 16S rRNA gene sequences (913bp). Bootstrap values (1,000 replicates) lower than 50% are not shown.
A mark means the OTU only in the cortex, and @ mark means the OTU in both cortex and endosome samples. The number inside the parenthesis means

the number of sequences within each OTU.

In the process of nitrification, ammonia monooxygenase (armo) is
an important enzyme for oxidizing ammonia to hydroxylamine. The
process of turning nitrite to nitrogen oxide catalyzed by nitrite reduc-
tase is an important limiting step of denitrification. Nitrite reductase
can be classified into two types, copper-type nitrite reductase (the
product of the 7irK) and cytochrome-type (the product of the nirS)*.
In the absence of appropriate 16S rRNA gene to look for specific
ammonia-oxidizing bacteria and denitrifying bacteria, genes encod-
ing ammonia monooxygenase (amoA) and nitrite reductase (nirK
and nirS) are often used as molecular markers to study homologous
microbial diversity*~**. In this study, bacterial nirS and amoA genes
were found in the South China Sea sponge A. willeyana, suggesting
the presence of bacterial denitrifiers and ammonia-oxidizing bacteria
in this sponge.

It should be mentioned that, the amoA gene of B-Proteobacteria
showed no spatial distribution difference in sponge Polymastia cf.
corticata'®. However in this study, the bacterial amoA genes were
found only in the endosome of sponge A. willeyana exhibiting
spatial distribution specificity. This maybe a result of different
Proteobacteria groups in these different two sponges, e.g o-
Proteobacteria and vy-Proteobacteria rather than B-proteobacteria
were observed in sponge A. willeyana. It is suggested that ammo-
nia-oxidizing archaea (AOA) dominate the process in low ammonia

nitrogen level area, while in an area of high level ammonia nitrogen,
AOB may take on the dominator role instead of archaea®. In this
study AOB was found in sponge A. willeyana, which is in consist with
the results of sponge Polymastia cf. corticata'®, indicating the import-
ant nitrification role of AOB in sponges because of high level of
ammonia nitrogen released by the host as a metabolic waste.
Denitrification is generally considered as a process medicated by
bacteria under low oxygen concentration*’"*. During sponge’s filter-
feeding, the internal oxygen concentration changes because of the
water pumping'"*. If the oxygen concentration reduces to a low level
when water pumping out, it just creates a condition for denitrifica-
tion process. In this study, nirS gene was detected in cortex and
endosome sections. It was the first time to investigate the spatial
distribution of bacterial denitrifiers with nirS gene in sponges.
Sponge microbial symbionts are proposed to be captured by a
combination of horizontal and vertical transmission®. As filter fee-
ders, sponges are suggested to select microorganisms in the different
areas of their bodies*'. The microbial spatial distribution hypothesis
is helpful to explain the different microbial community in different
spatial locations within one sponge, and then understand the related
microbial functions. The revealed complex but unique microbial
communities in the cortex and endosome of sponge A. willeyana
in this study provide new evidence for the spatial distribution
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Figure 5 | NJ-phylogenetic tree of nirS (290 amino acids). Bootstrap values (1,000 replicates) lower than 50% are not shown. A mark means the OTU
only in the cortex, @ mark means the OTU in both cortex and endosome samples. The number inside the parenthesis means the number of sequences
within each OTU.
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100 Freshwater sediment clone 30 M13F-47 F11 1104018725J JF905796
Nitrosospira multiformis ATCC 25196 DQ228454
Coastal of Gulf of Mexico clone NOAOB-11 GQI06697
Nitrososphaera gargensis cone GA15P03 EU281321

10
Figure 6 | NJ-phylogenetic tree of amoA (163 amino acids). Bootstrap values (1,000 replicates) lower than 50% are not shown. A mark means the OTU
only in the endosome. The number inside the parenthesis means the number of sequences within each OTU.
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Figure 7 | Spatial distribution of the prokaryotic symbionts and functional genes in the South China Sea sponge A. willeyana. The outer orange circle of
the lower half represents the cortex sample. The inner yellow circle represents the endosome sample. The upper half of the figure means the shared
microbes or genes in two samples. The phylum which was detected only in the cortex sample or only in the endosome sample was surrounded by solid line

box or dotted line box. Number refers to the number of OTUs.

hypothesis on sponge microbial symbionts. It is suggested that more
sponge species with different shape and different microbial com-
munity should be investigated to provide more information for the
microbial spatial distribution in sponges. Meanwhile, further
research should be undertaken to confirm that whether there is a
particular selective mechanism in sponges resulting in the spatial
distribution of microbial community.

Methods

Sponge sampling. Sponge was collected from the Yongxing island (112°20'E,
16°50'N) in the South China Sea by diving at a depth of ca. 20 m. It was placed in an
ice-cooled box and transported to the laboratory immediately. The sponge sample
was identified as Astrosclera willeyana according to 28S rRNA gene with 99% identify.

DNA extraction and PCR amplification. Sponge was rinsed 3 times by artificial
seawater (ASW) (1.1 g CaCl,, 10.2 g MgCl,*6H,0, 31.6 g NaCl, 0.75 g KCL, 1.0 g
Na,SO,, 2.4 g Tris-HCI, 0.02 g NaHCOs, 1 L distilled water, pH 7.6). A-endosome
sample and B-cortex sample were obtained from the cortex and endosome sections of
sponge A. willeyana, respectively (six parallel samples from each section, Fig. S2). The
spatial samples were washed 3 times with ASW and separately grinded using sterilized
mortars and pestles. Then the genomic DNA was extracted and purified using the
QIAGEN DNeasy Tissue Kit following the manufacturer’s protocol. The mixed DNA
from three parallel samples for each section was used for PCR.

The primers and PCR conditions used to amplify 16 S rRNA gene and functional
gene fragments are shown in Table $2°****>-*>, The PCR mixture (50 pL) contained
200 ng template DNA, 250 pM dNTPs, 0.2 uM of each primer, 2.5 U of TransStart
Fastpfu DNA polymerase (TransGen) and 1XTransStart FastPfu Buffer (20 mM
Tris-HCI, pH 8.8, 10 mM KCl, 10 mM (NH,4),SO,, 2 mM MgSOy,).

Gene library construction, phylogenetic and f—LIBSHUFF analysis. The amplified
products were recovered and purified using Agarose Gel DNA Purification Kit

(Takara, Dalian). Purified PCR products were cloned with the pEASY-Blunt Cloning
kit (TransGen) following the manufacturer’s instructions. The positive recombinants
were screened on X-Gal (5-bromo-4-chloro-3-indoly-B-D-galactopyranoside)-IPTG
(isopropyl-B-D-thiogalactopyranoside) -ampicillin plates by color-based
recombinant selection. The positive clones were further identified by vector primers
M13F/R. Sequencing of plasmids was performed using vector primers on ABI 3730xl
capillary sequencers (Applied Biosystems).

Using DOTUR software, sequences of all 16S rRNA genes with similarities > 97%
were considered as one operational taxonomic unit (OTU), while functional gene
sequences with similarities > 92% were considered as one OTU*. The diversity was
determined by rarefaction analysis using OriginPro (Version 8). DNA sequences
were aligned with Clustal W and classified using the RDP (http://rdp.cme.msu.edu/
index.jsp) classifier with a confidence threshold of 70%. All OTUs’ representative
sequences, their nearest neighbors and some reference sequences were imported in
MEGA (Version 5). Neighbor-Joining phylogenetic tree was constructed using
software package PHYLIP*. The difference analysis between the two libraries of
cortex and endosome samples was carried out with [-LIBSHUFF,

Nucleotide sequence accession number. All representative sequences were
deposited in Genbank under accession numbers: JQ362353 (sponge Astrosclera
willeyana 28S rRNA gene), IN113042-JN113058 (actinobacteria 16S rRNA gene),
JN113059-JN113064 (archaea 16S rRNA gene), IN113065-JN113084 (bacteria 16S
rRNA gene), JN113085-JN113086 (cyanobacteria 16S rRNA gene), JN113087-
JN113088 (nirS gene) and JN113089-JN113090 (amoA gene).
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