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ABSTRACT
Objective: To examine the direct and indirect impact
of comorbidity on the survival.
Design: A historical cohort study.
Setting: Denmark.
Participants: All patients with non-small cell lung
cancer who were registered in the Danish Lung Cancer
Registry in 2010.
Main outcome measures: The influence of
comorbidity on stage misclassification, probability
of resection and survival.
Results: It was estimated that the comorbidity
influences the probability of resection with OR 0.65
and 95% credible interval (0.54; 0.79), the staging
process with OR 1.08 and 95% credible interval (0.96;
1.20), and the survival process with HR 1.08 and 95%
credible interval (1.02; 1.14).
Conclusions: We found that comorbidity has a
significant indirect effect on survival mediated by the
resection process and a slightly direct effect on
mortality.

INTRODUCTION
Primary lung cancer is one of the most
common cancers in Denmark with more
than 4000 new cases/year. The prognosis for
patients with lung cancer is poor with crude
5-year survival proportions of approximately
10–12%. However, there is evidence of some
improvement in patient mortality in most
recent years.1 Approximately 90% of lung
cancers have been attributed to cigarette
smoking,2 3 with age as an additional risk
factor. Furthermore, age4 5 and smoking6 7

are strongly associated with comorbidity, that
is, diseases and conditions coexisting with
lung cancer.8 As our society ages, clinicians

will encounter older patients more fre-
quently and with increasing probability that
patients with lung cancer will have coexisting
diseases. It is well established that comorbid-
ity has an effect on survival.9 10

However, comorbidity may influence sur-
vival in different ways. First, patients with
lung cancer frequently present with other
diseases, including chronic obstructive lung
disease, cerebrovascular diseases, heart
failure and myocardial infarction. Such types
of comorbidity may by itself have a negative
effect on survival. Second, comorbidity may
significantly mask symptoms and delay the
establishment of the diagnosis of lung cancer
or even prevent a full diagnostic evaluation
with proper staging of the disease. Third, sur-
gical intervention has a positive effect on the
survival of lung cancer,11 but comorbidity
may contradict surgical intervention in
patients otherwise eligible for surgery.
“Mostly, comorbidities will have a negative
impact on survival, but it can increase the
person’s contact with the medical practi-
tioners as it may indirectly have a positive
impact on survival by increasing the likeli-
hood of earlier diagnosis.”

Strengths and limitations of this study

▪ The strength of this study is that it is a
population-based study.

▪ In this study, we used Charlson comorbidity
index with only hospital diagnoses. It is, thus,
possible that some patients with comorbid con-
ditions may have been misclassified as having
no comorbidity.
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Simultaneous estimation of models describing a diag-
nostic process, surgical intervention, along with the sur-
vival process, makes more efficient use of available data
and make it possible to estimate the influence of
comorbidity with respect to diagnostic procedures, treat-
ment options and the prognosis in patients with lung
cancer in a situation with partially missing data. Since
non-small cell lung cancer (NSCLC) and small cell lung
cancer (SCLC) differ in the sense of clinical character-
istics, treatment options and survival, this study was
restricted to patients with NSCLC.

METHODS
Patient population and clinical data
The Danish Lung Cancer Registry
Since the establishment in 2000, the Danish Lung
Cancer Registry (DLCR) has accumulated data on all
cases of lung cancer as reported from about 50 depart-
ments involved in the care of primary lung cancer in
Denmark.12 Data are reported to the database when the
diagnostic evaluation has been completed, and when a
specific treatment has been finished. This registry infor-
mation is then supplemented with data on the patient’s
vital status retrieved from the Danish Civil Registration
System, and pathology information related to the lung
cancer case from the Danish Pathology Register.

Diagnostic evaluation and treatment options
Diagnostic procedures in suspected lung cancer are pri-
marily performed to establish that the presence of
disease and the type and clinical staging of lung cancer.
Lung cancer is divided into two main types based on
histology, SCLC (10–15%), and NSCLC (85–90%).
When the type of lung cancer is established, further
investigations are performed to evaluate whether the
patient is eligible for treatment, and if so, what kind of
treatment. Patients with lung cancer with NSCLC are, in
principle, treated with surgical resection or chemother-
apy and/or radiotherapy. Surgical resection of the
tumour is associated with the most favourable survival
rates, but only 20% of the patients are eligible for resec-
tion at the time of diagnosis. The clinical stage is the
most important factor when deciding the choice of treat-
ment. However, the true stage is only identifiable in con-
nection with surgery. The risk of misclassification
depends on how advanced the disease is at the time of
diagnosis. Since it is relatively easy to stage a patient with
an advanced disease (large tumour involving other
organs and/or metastasis corresponding to clinical stage
IIIb or IV), the risk of misclassification is of minor
importance in an advanced disease. On the other hand,
misclassification is more common in a local disease,
where it can be difficult to distinguish between the
denominators defining the different subcategories of
clinical stages I–IIIa. Since the choice of treatment, to a
great extent, depends on the clinical stage, misclassifica-
tion in a local disease does affect the type of treatment

offered to the patient. Furthermore, a range of other
prognostic factors are also taken into account before the
final decision about treatment is made, including age,
alcohol or drug missuse and comorbidity.

Comorbidity
We included information on comorbidity for each
patient up to 10 years before the lung cancer diagnosis,
using the Danish National Patient Register, which was
established in 1977. This register contains data including
coding of all interventions related to diagnostic evalu-
ation and treatment for all somatic patient admissions in
Denmark.13 For the classification of comorbidity, we
used a slight modification of the Charlson comorbidity
index (CCI)14 by excluding all interventions with lung
cancer as the activity diagnosis and registered prior to
the date of diagnosis for the present patient group (see
below). This was carried out in order to avoid the contri-
bution to the CCI from the very few patients who had a
previously registered course of lung cancer in the
Danish National Patient Register. Relevant diseases are
grouped into a total of 19 categories, each of which
assigned a score between 0 and 6 depending on
assumed severity. The CCI is calculated as the sum
across these categories and will range between 0 (with
no diseases in the medical history qualifying for inclu-
sion in the CCI) and 37 (a medical history representing
all diseases of the highest severity, qualifying for inclu-
sion in the CCI). As the Danish National Patient
Register covers all somatic activities, all patients are iden-
tifiable without exceptions. Thygesen et al15 showed that
the predictive value of using the coding practice in the
register to establish the CCI is consistently high. Any
hospital contact represented with a cancer diagnosis
registered within 150 days before the date of lung cancer
diagnosis was excluded from contribution to the CCI.
This was carried out to avoid the influence of misclassifi-
cation by cases with a cancer diagnosis (including
cancers of neighbouring organs) that eventually turned
out to be verified as lung cancer. Based on a sensitivity
analysis, only very few, if any, cancer of other organs
than the lungs will be missed by this procedure. Patients
with lung cancer were, thereafter, grouped according to
the increased level of CCI as follows: (1) persons with a
CCI score of 0; (2) persons with a CCI score of 1–2 and
(3) persons with a CCI score of 3+.

Study population
We have chosen to base our analysis on a subset of
DLCR, which consists of all 3135 patients with NSCLC
who were registered in 2010. We have the information
on age, sex, clinical stage, resection status and district on
2840 of those patients. The DLCR is described in detail
in ref. 12.
The detailed distribution of CCI in the patient sample

can be seen in figure 1. The proportions of patients in
three comorbidity groups are 46.4%, 38.1% and 15.5%.
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Table 1 shows the relationship between clinical and
surgical stages. Only 16% of the patients have a surgical
stage registered. In this subset, the clinical and surgical
stages are identical for 430 (68%) patients, while in 127
(20%) of the patients the clinical stages are classified as
lower than the surgical stage and in 73 (12%) of the
patients the clinical stages are rated higher than the sur-
gical stage.

Model formulation
For each individual, we observe survival data and covari-
ate data. We assume the survival data to be subject to
right censoring. For each individual, there are fully or
partially observed vector of confoundings consisting of
age, sex, comorbidity, clinical stage, surgical stage and
resection status. There are five districts in Denmark in
total. Recently, heterogeneity across Danish districts in
the survival of patients with lung cancer has been
demonstrated.16 This heterogeneity cannot be ignored,
and thus districts will be treated as dummy variables in
the models (see figure 2).
Our proposed method consists of three models. The

first one describes the likelihood model for the resection
status in the form of a logistic regression adjusted for
age, sex, comorbidity and clinical stage. We hereafter
refer to this model as the ‘resection model’.

The second model describes the likelihood model for
the surgical stage in the form of an ordinal logistic regres-
sion adjusted for age, sex, comorbidity and true stage. We
hereafter refer to this model as the ‘staging model’.
The last model is a survival model. Here we estimate

the hazard of failure through the proportional Cox
regression model,17 where the hazard depends on the
covariate through its current value adjusting for age, sex,
comorbidity, resection status and true stage. We here-
after refer to this model as the ‘survival model’. Here we
used a sandwich estimator derived by Lin and Wei.18 Lin
and Wei show that the estimate is consistent and robust
to several possible misspecifications in the Cox model
including the lack of proportional hazard and incorrect
functional form for the covariates.
To estimate the direct and indirect effect of comorbid-

ity on survival, these three models must be estimated
jointly in one simultaneous procedure.

Assumptions
Surgery provides for the optimal possibility of correct
disease staging of the patient. Therefore, in our nota-
tion, the true stage is equal to the surgical stage.
As aforementioned, the true stage is observed only for

the patients who have had surgery, which is less than
20% of all patients. In this study, we assume that the clas-
sification process for patients without surgery is identical
with that for patients with surgery, that is, the missing
data process for observing ‘true stage’ is missing at
random. Using this assumption, we can handle the
missing data problem using one of the common techni-
ques for this purpose: multiple imputation.

Framework for multiple imputation
Generally, there are three mechanisms behind missing
data:19 data can be ‘Missing Completely at Random’

(MCAR), ‘Missing at Random’, (MAR) and data can be
missing in an unmeasured fashion ‘Missing Not at
Random’ (MNAR). See refs. 20 and 21 for review of
important statistical methods for missing data.

Figure 1 Distribution of Charlson comorbidity index in the

study population.

Table 1 Distribution between clinical and surgical stages

in the study population

Clinical

stages

Surgical stages No data

(no surgery) Total0,I II IIIa IIIb IV

0,I 280 56 28 0 4 187 555

II 39 98 33 1 5 153 329

IIIa 8 16 33 1 0 374 431

IIIb 0 1 0 1 0 371 373

IV 3 2 1 0 13 1489 1508

Total 330 173 95 3 22 2573 3196

Figure 2 Graphical representation of the model.
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We assume the missing data in our sample to be MAR.
Imputation and weighting22 23 are two important

approaches in dealing with MAR missing data problems.
Wang and coauthors2 show that in many situations,
some inverse selection probability-weighted estimators
are numerically equivalent to imputation. The perform-
ance of multiple imputation has been well studied and it
has been shown to perform favourably.25–27 If MAR
holds, it has been shown that multiple imputation pro-
duces unbiased parameter estimates which reflect the
uncertainty associated with estimating missing data.
Moreover, multiple imputation has been shown to be
robust to departures from normality assumptions.28

There are many different ways to impute values, con-
structing a complete dataset. In this work, we use the sto-
chastic regression imputation. Missing values were
replaced by predicted values from a regression model-
contained covariates: age, sex, comorbidity and clinical
stage plus residuals, drawn to reflect uncertainty in the
predicted values.
According to King et al,29 about 5 or 10 imputed data-

sets are often satisfactory. In Bayesian simulation, the dis-
tribution of variables in missing data process simulated
jointly as well as parameters in a regression equation,
that is, in WinBugs30 (estimation platform for Bayesian
simulations), the programme is going to treat all of the
missing elements of the data as if they were unknown
model parameters.

RESULTS
Table 2 shows the descriptive characteristics of the study
population.
Table 3 shows the estimated effect of comorbidity and

other adjusting parameters. First, consider the results for
the resection model. The model shows that the increasing
level of comorbidity significantly reduces the probability
of resection. Models also show that increasing age
reduces the probability of resection; sex has no statistic-
ally significant effect on the probability of resection; a

high clinical stage reduces the probability of resection
substantially.
The staging model is most influenced by the missing

data process and the staging model shows, as expected,
that the true stage is negatively correlated with the clin-
ical stage. The model also indicates that age and sex
have an influence on the staging process. Moreover, it
shows that increasing comorbidity has a slight, but not
significant, effect on the staging process.
The survival model shows that increased comorbidity

increases the mortality significantly. Increased age and
advanced clinical stage are associated with the signifi-
cantly increased mortality. Women have a significantly
better survival compared with men. Resection is asso-
ciated with a substantial reduction in mortality.
In addition, we performed an analysis with an alterna-

tive assumption about the missing data process, namely,
that there is no misclassification of stages for patients
without surgery. In that case, the measurement of clin-
ical stage was used in models (2) and (3) instead of true
stage, for the patients without surgery. The results of
both analyses are very similar with respect to direct and
indirect effects of comorbidity on survival.

DISCUSSION
In this paper, we used an estimation method that allows
a combination of different models in order to estimate
the direct and indirect impact of comorbidity on survival
in a situation with partially incomplete data.
In our study, the missing data problem concerns the

lack of information on the true stage in patients who
have not had surgery. We manage this problem by apply-
ing assumptions that represent two clinically extreme

Table 2 Descriptive characteristics of the study

population

N (%)

Age

<67) 1209 (42.6)

≥67 1631 (57.4)

Sex

Male 1467 (51.6)

Female 1373 (48.4)

Operation

Yes 540 (19)

No 2300 (81)

CCI

0 1318 (46.4)

1 1082 (38.1)

>1 440 (15.5)

Table 3 Estimating results of the combination of models

based on 2000 Monte Carlo dataset simulations reported

by HR with 95% credible interval for the Cox regression

(Survival model) and OR with 95% credible interval for the

logistic regression (resection model) and for the ordered

logistic regression (classification model)

Model Parameter

HR/OR

(2.5%; 97.5%)

Resection Age (≥67 vs <67) 0.47 (0.36; 0.63)

Sex (female vs male) 1.01 (0.79; 1.35)

Comorbidity (growing) 0.65 (0.54; 0.79)

Clinical stage (growing) 0.19 (0.16; 0.21)

Classification Age (≥67vs <67) 0.53 (0.47; 0.66)

Sex (female vs male) 1.23 (1.08; 1.49)

Comorbidity (growing) 1.08 (0.96; 1.20)

True stage (growing) 0.41 (0.38; 0.45)

Survival Age (≥67 vs <67) 1.30 (1.16; 1.40)

Sex (female vs male) 0.87 (0.78; 0.93)

Comorbidity (growing) 1.08 (1.02; 1.14)

Resection status (yes vs

no)

0.17 (0.15; 0.21)

True stage (growing) 0.13 (0.08; 0.16)
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scenarios, ‘no misclassification at all for patients without
resection’ and ‘misclassification at random’. We cannot
be certain which scenario is closer to the reality, but clin-
ical experience suggests that the real misclassification
process for the patients, who were not operated, is some-
where in between these two scenarios. In clinical practice,
it is well known that treatment with the intention of cure,
such as resection, requires precise pretreatment patient
evaluation including valid clinical staging. Owing to this,
it is plausible that misclassification in this group of
patients is smaller than in patients selected for a palliative
treatment. On the other hand, it is often easier and faster
to come to a diagnostic conclusion in patients with
advanced disease, and decisions about treatment are,
therefore, made before all investigations are finished,
thus making the staging more uncertain. Despite the fact
that we used two clinically opposite assumptions about
the missing data process, the direct effect of comorbidity
on the estimated survival, using both approaches, is sub-
stantially equal. This may be because our model is quite
stable, but could also be explained by bias in both esti-
mates. Further work is needed to clarify this.
In this study, the variable resection was treated as

known at baseline. We are aware that it potentially could
be a source of bias. We believe that this bias is dispar-
aged to be small, and therefore could be ignored. As all
the information needed to decide about resection is pre-
sented at the baseline and mortality in the group of
potentially inoperable patients is very small, in the
period from baseline (day of diagnose) to operation day.
From a clinical point of view, our results seem plaus-

ible. The estimated effects of age, sex, stage and resec-
tion are generally as expected concerning the
probability of resection, staging and survival. It appears
that the direct and indirect effects of comorbidity in
general are as expected.
In this study, we used CCI with only hospital diagnosis

of diseases as a measure of comorbidity. It is, thus, pos-
sible that some patients with comorbid conditions may
have been misclassified as having no comorbidity. It will
be relevant to perform the same analysis using CCI
based on diagnoses from general practice; unfortunately,
these data are not available yet. In the future work, we
will investigate the prognostic effect of the individual dis-
eases contributing to the overall CCI on the survival of
patients with lung cancer.
We conclude that our work represents a useful solution

to the statistical management of the complex influence
of comorbidity on survival under incomplete data. We
have used NSCLC, but the approach seems applicable to
other diseases with similar complexity. The proposed
approach can be easily generated to other applications.

CONCLUSION
We found that comorbidity has a significant indirect
effect on survival of NSCLC patients mediated by the
resection process, and a slightly direct effect on

mortality. Further research is needed to compare the
performance of the CCI to other comorbidity indices.
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