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Abstract
The anthropogenic greenhouse gas (GHG) emission has risen dramatically during the last

few decades, which mainstream researchers believe to be the main cause of climate

change, especially the global warming. The mechanism of market-based carbon emission

trading is regarded as a policy instrument to deal with global climate change. Although sev-

eral empirical researches about the carbon allowance and its derivatives price have been

made, theoretical results seem to be sparse. In this paper, we theoretically develop a math-

ematical model to price the CO2 emission allowance derivatives with stochastic conve-

nience yields by the principle of absence of arbitrage opportunities. In the case of American

options, we formulate the pricing problem to a linear parabolic variational inequality (VI) in

two spatial dimensions and develop a power penalty method to solve it. Then, a fitted finite

volume method is designed to solve the nonlinear partial differential equation (PDE) result-

ing from the power penalty method and governing the futures, European and American op-

tion valuation. Moreover, some numerical results are performed to illustrate the efficiency

and usefulness of this method. We find that the stochastic convenience yield does effect the

valuation of carbon emission derivatives. In addition, some sensitivity analyses are also

made to examine the effects of some parameters on the valuation results.

Introduction
As we all have known, climate change is one of the main environmental problems. Over the
last decades, numerous scientific studies have proved that greenhouse gases such as carbon di-
oxide undoubtedly contribute to the climate change a lot. The accumulation of greenhouse
gases, particularly CO2, contributes to the high concentration of solar energy in the air, and the
greenhouse effects can be reflected by the increase of the number of extreme weather events,
such as tsunamis, floods and droughts. The greenhouse gas emission increases so fast that the
temperature in the atmosphere is rising, which is now a big threat to all the species on the
earth, and leads to the glacier melting and the sea level rising. Thus, one of the tasks for the

PLOSONE | DOI:10.1371/journal.pone.0125679 May 26, 2015 1 / 35

a11111

OPEN ACCESS

Citation: Chang S, Wang X (2015) Modelling and
Computation in the Valuation of Carbon Derivatives
with Stochastic Convenience Yields. PLoS ONE 10
(5): e0125679. doi:10.1371/journal.pone.0125679

Academic Editor: Gui-Quan Sun, Shanxi University,
CHINA

Received: December 11, 2014

Accepted: March 17, 2015

Published: May 26, 2015

Copyright: © 2015 Chang, Wang. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: This project was supported in part by the
National Basic Research Program (2012CB955804),
the Major Research Plan of the National Natural
Science Foundation of China (91430108), the
National Natural Science Foundation of China
(11171251), and the Major Program of Tianjin
University of Finance and Economics (ZD1302). The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0125679&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0125679&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0125679&domain=pdf
http://creativecommons.org/licenses/by/4.0/


environmental management is to mitigate the above changes, that is to find a way to reduce the
CO2 emission effectively.

In response to climate changes, the Kyoto Protocol proposed a carbon emission trading
scheme to establish a market and reduce the concentration of GHG in the atmosphere. Several
national and regional emission markets such as Chicago Climate Exchange (CCX) have been
established. The European Union Emission Trading Scheme (EU ETS), which is the world’s
largest single market for CO2 emission allowances, was also formed under the Kyoto Protocol
in 2005 and is referred to as a cap-and-trade system. The cap means the pre-allocated amounts
of greenhouse gas that the emitter can release freely. It started with a period, 2005–2007, fol-
lowed by the Kyoto commitment period 2008–2012. The third period will last from 2013 to
2020.

Emission permits trade of carbon is an environmental management method specifical for
carbon dioxide emission, and it is an effective way of reducing emissions. In fact, it is estimated
that the carbon emission permits trading implemented and to be planned will be able to reduce
330 million tons of carbon dioxide equivalent emissions each year at least, which accounts for
about 7% of global annual emissions. America is the first to carry out the study on the theory of
the emission trading. Croker [1] proposed a property method to control the air pollution,
which has laid a theoretical foundation for emission permits trading. Montgomery [2] studies
the joint cost minimization in a market equilibrium of competition, and proves theoretically
that the market-based emission permits trading is superior to the traditional environmental
governance policy obviously. Hahn [3] believes that the initial allocation of emission permits
may influence the monopolistic behavior of sewage plants with the monopoly power, and influ-
ence further the market efficiency. In fact, the pollutant emission permits trading is always a
means of local governments to implement environmental management. However, the carbon
emission reduction problem is a global environmental problem, and the environmental effect
is obviously cross-regional, so the carbon emission permits trading has become a global envi-
ronmental problem. In this case, the old theories are no longer enough, and a series of new
studies is required.

The basic idea of carbon emission permits trading, which is regarded as a key environmental
management method, is to limit the total amount of emission by creating rights to emit a cer-
tain amount of carbon, which is called the cap, and to make these rights tradable. Because of
the difference in the efficiency of using energy and emitting CO2 for different countries and re-
gions, the emission permits have become a scarce resource under the quota system. Due to the
scarcity of emission permits, the emitters have to bear higher costs for production, which
should encourage them to reduce emissions as soon as possible. The management for emission
permits trading is to analyze efficiently the costs of emission reduction, and utilize the markets
to reach the goal of management. In the emission permits trading system, which has been es-
tablished for the purpose of environmental management, the emitters can trade their own
excessive permits.

In the studies of carbon trading based on the global environmental management in the past
decades, Edwards and Hutton [4] simulate the allocation of carbon permits in the United King-
dom, and pointed out that the auctioning of emission permits can allow much of the potential
‘double dividend’ to be realized. Cramton [5] proposed that auction is a better way to allocate
the cap of emission permits, as it distributes the costs flexibly, incents innovations, and reduces
the contentious arguments among members. Klaassen [6] conducts three experiments for the
six largest carbon emission regions by taking advantage of experimental economics, of which
the first is a single bid auction and the second is a Walrasian, and the third relies on the bilater-
al trading. Moreover, the three measures can all capture a significant part of the potential cost
savings of emission trading. Many disputes exist and some theoretical issues still need to be
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completed further by the scholars from all countries, of which the valuation of carbon deriva-
tives is the most important.

The growing CO2 derivatives market attracts a wide range of industries and financial insti-
tutions. There are two meanings about such a market. On one hand, CO2 derivatives contracts
meet the primary need of risk transfer from those who are risk averse to those who are willing
to accept the risk of permits shortage situation. By hedging the price risk through carbon deriv-
atives, buyers and sellers can make better plans about their businesses. On the other hand, the
project investments, i.e. investments committed under the so-called Clean Development Mech-
anism (CDM) and Joint Implementation Mechanism (JIM), which return the CO2 emission re-
duction payoff that depends on the CO2 permit market price at a fixed period, can be
considered as real option contracts. It is reasonable to regard these projects as contracts whose
values depend on the CO2 permit spot prices. Similarly, the saved costs or revenue from the
emission permits market may encourage the emitters to increase the technological
abatement investments.

CO2 emission allowances markets have become more and more liquid, and may grow up to
the most prosperous commodities markets around the world in the near future. Moreover, the
literature is available for examining the CO2 allowance prices from the econometric or risk
management angle. For instance, see the survey paper by Mnif and Davison [7]. Also, in [8]
and [9] the dynamics of short-term price of CO2 emission allowances in EU ETS is studied by
Benz and Truck, and some statistical properties is obtained. In [10], an empirical framework is
proposed for the pricing and hedging of intra-phase and inter-phase futures and options on fu-
tures, in which it has been pointed out that for inter-phase futures, the cost-of-carry model is
still applicable, but a stochastic and mean reverting convenience yield is needed for accurate
pricing. In addition, the ADF, ECM-GARCH, and ECM-TGARCH models are used to probe
the mean-reversion properties and volatility features of stochastic convenience yields for CO2

emissions allowances in [11]. Furthermore, see [12–14] for the empirical studies of risk premia
in CO2 allowance spots and futures prices and the forecasting ability of volatility, respectively,
and the evaluation of the progress of this market from the trial phase to the next commitment
period (Phase II). Specially, it has been suggested that the marginal costs of abatement are
equal for each company [15], and the equilibrium price for European Union Allowances
(EUAs) equals the marginal costs of abatement [16].

However, to the best of our knowledge, there are very few theoretical studies in the previous
literature for the valuation of carbon emission permits derivatives. From [11] and [10] we can
see that the convenience yields for CO2 emission allowances show a mean-reverting process.
Convenience yields are defined as the benefits or premiums associated with holding an under-
lying product or physical good, rather than the contract or derivatives product [17]. Spot hold-
ers can achieve potential benefits due to price volatility, but the holders of futures contracts can
not attain such benefits. The pricing problem, which contains a stochastic convenience yield,
can not be done as the one in a complete market. As we all know, the derivative can be replicat-
ed by a portfolio of existing assets such as stocks and bonds, and the risk exposure can be elimi-
nated in a complete market, while it is not valid in an incomplete market. Schwartz et al. [18,
19] and Hilliard [20] have studied the valuation of oil contingent claims and other derivatives
with stochastic convenience yield. Besides, from the viewpoint of game theory, many re-
searches have been done on how people make decisions to adapt climate change. See, for exam-
ple, [21–28].

In order to bridge the gap between theory and practice, in this paper we theoretically derive
the pricing partial differential equations of CO2 emission allowance derivatives, futures and op-
tions, with stochastic convenience yields by using the no-arbitrage principle and risk premium.
Since the value of an American option is determined by a linear complementarity problem, a
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power penalty approach is proposed for the linear complementarity problem. That is, we will
approximate the linear complementarity problem by a nonlinear parabolic PDE in two spatial
dimensions with an lk penalty term. In addition, a so-called finite volume method is presented
for the numerical solution of the two-dimensional nonlinear partial differential equation. The
innovation of this method is in that it combines a finite volume formulation with a fitted ap-
proximation. The finite volume method possesses a special feature of the local conservativity of
the numerical flux, and is becoming more and more popular. See, for instance, Wang [29] for
degenerate parabolic problems, Leveque [30] for hyperbolic problems, and Liu [31] for elliptic
problems. Here we aim to present the theoretical valuation of carbon emission derivatives
using partial differential equations coupled with numerical methods.

The paper is organized as follows. In Section 2, the pricing PDEs of the CO2 emission allow-
ance derivatives are obtained, and the final and boundary conditions are prescribed for differ-
ent contingent claims. Then, a power penalty method is introduced for the American option in
Section 3. In Section 4, a so-called fitted volume method is proposed for the discretization of
the pricing PDE. Some numerical experiments are performed to illustrate the efficiency and
usefulness of the numerical method in Section 5. In addition, some sensitivity analyses are also
made to examine the effects of some parameters on the valuation results in Section 6. Finally,
some comments are given in Section 7.

The pricing model of CO2 contingent claims
In order to achieve the pricing equation, which applies to any contingent claims for CO2 emis-
sion allowance spot prices, we assume that the spot price of CO2 emission allowance St at time
t and the convenience yield δ follow a joint diffusion process specified by (see, for example, [10,
32])

dSt ¼ ks mðtÞ � ln ðStÞ þ
1

ks

1

2
s2
s þ

dm
dt

� �� �
� d

� �
Stdt þ ssStdW

P
s ; ð1Þ

dd ¼ kcðyc � dÞdt þ scdW
P
c ; ð2Þ

where ks and kc denote the speeds of mean-reversion of spot price and convenience yield, σs
and σc denote the constant volatilities of spot price and convenience yield, respectively, θc is the
long-run mean yield, and μ(t) = ln (the marginal abatement cost) + ξt is the logarithm of the
marginal abatement cost Cs growing at rate ξ. In addition, dWP

s and dW
P
c are correlated incre-

ments to standard Brownian process under the historical measure P, and they have the correla-
tion coefficient ρsc. From the concept of absence of arbitrage opportunities, if the market prices
of spot and convenience yield are given, then we know

WQ
s ¼ WP

s þ
Z t

0

lsðtÞdt and WQ
c ¼ WP

c þ
Z t

0

lcðtÞdt

are Brownian motions under the risk-neutral measureQ, where λs and λc are the market prices
of spot and convenience yield, respectively.

Note that Eq (1) is based on the relationship between the CO2 emission spot price and the
marginal abatement cost given by

ln ðStÞ ¼ mðtÞ þ Xt; ð3Þ
where Xt is governed by an Ornstein-Uhlenbeck process with a zero long run mean, a speed of
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adjustment ks, and a constant volatility σs:

dXt ¼ �ksXtdt þ ssdW
p
s :

Eq (3) implies that the natural logarithm of the CO2 emission allowance spot price deviates
around a mean-reversion level, and this level grows with the discount rate ξ and is determined
by the marginal cost of abatement Cs. Moreover, it is expected to be mean-reversed for conve-
nience yields because of the strong tendency, and short-term random convenience yields con-
verge to their mean values in the long run.

The partial differential equation for the price of carbon derivatives
Assume that the price of carbon derivative F(S, δ, t) is a twice continuously differentiable func-
tion of S and δ, where we omit the subscript t of S for brevity. Then, we can use Itô’s lemma to
derive the instantaneous price change as follows:

dF ¼ @F
@t

dt þ @F
@S

dSþ @F
@d

ddþ 1

2

@2F
@S2

ðdSÞ2 þ 1

2

@2F

@d2
ðddÞ2 þ @2F

@S@d
dSdd

¼
�
@F
@t

þ ðksðnðtÞ � ln SÞ � dÞS @F
@S

þ kcðyc � dÞ @F
@d

þ 1

2
s2
s S

2 @
2F

@S2
þ 1

2
s2
c

@2F

@d2

þrscssscS
@2F
@S@d

�
dt þ ssS

@F
@S

dWP
s þ sc

@F
@d

dWP
c ;

from which the relative change can be obtained via dividing both sides by F

dF
F

¼
��

@F
@t

þ ðksðnðtÞ � ln SÞ � dÞS @F
@S

þ kcðyc � dÞ @F
@d

þ 1

2
s2
s S

2 @
2F

@S2
þ 1

2
s2
c

@2F

@d2

þrscssscS
@2F
@S@d

�
=F

�
dt þ ssS

@F
@S

=F

� �
dWP

s þ sc

@F
@d

=F

� �
dWP

c ;

where

nðtÞ ¼ mðtÞ þ 1

ks

1

2
s2
s þ

dm
dt

� �
:

For simplicity, we define

k ¼
�
@F
@t

þ ðksðnðtÞ � ln SÞ � dÞS @F
@S

þ kcðyc � dÞ @F
@d

þ 1

2
s2
s S

2 @
2F

@S2
þ 1

2
s2
c

@2F

@d2

þrscssscS
@2F
@S@d

�
=F; ð4Þ

L1 ¼ ssS
@F
@S

� �
=F; L2 ¼ sc

@F
@d

� �
=F: ð5Þ

Following Brennan and Schwartz [33], we construct a portfolio P by investing amounts of x1,
x2, and x3 in three options of maturities τ1, τ2, and τ3, respectively. Then, the rate of return on
this portfolio is given by

dP
P

¼ ½x1kþ x2kþ x3k�dt þ ½x1L1 þ x2L1 þ x3L1�dWP
s þ ½x1L2 þ x2L2 þ x3L2�dWP

c ; ð6Þ

which is non-stochastic if the portfolio proportions are chosen so that the coefficients of dWP
s
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and dWP
c in Eq (6) are zero. That is,

x1L1 þ x2L1 þ x3L1 ¼ 0; x1L2 þ x2L2 þ x3L2 ¼ 0: ð7Þ

To eliminate the arbitrage opportunity, the above return on the portfolio must be risk-free over
short time intervals, this is, the return rate is equal to r, the instantaneous risk-free interest rate.
As a consequence, the portfolio risk premium is zero:

x1ðkðt1Þ � rÞ þ x2ðkðt2Þ � rÞ þ x3ðkðt3Þ � rÞ ¼ 0: ð8Þ

The arbitrage free condition Eq (8) and the two zero risk conditions Eq (7) have a solution only
if

k� r ¼ lsL1 þ lcL2; ð9Þ

where λs and λc are the market prices of per unit spot and convenience yield, respectively.
Subsequently, substituting Eqs (4) and (5) into Eq (9) results in�

@F
@t

þ ðksðnðtÞ � ln SÞ � dÞS @F
@S

þ kcðyc � dÞ @F
@d

þ 1

2
s2
s S

2 @
2F

@S2
þ 1

2
s2
c

@2F

@d2

þ rscssscS
@2F
@S@d

�
=F � r ¼ ls ssS

@F
@S

� �
=F þ lc sc

@F
@d

� �
=F:

That is,

@F
@t

þ ðksðnðtÞ � ln SÞ � d� lsssÞS
@F
@S

þ ðkcðyc � dÞ � lcscÞ
@F
@d

þ 1

2
s2
s S

2 @
2F

@S2

þ 1

2
s2
c

@2F

@d2
þ rscssscS

@2F
@S@d

� rF ¼ 0;

ð10Þ

which is the partial differential equation for the contingent claims depending on the evolution
of the spot price S and the convenience yield δ.

Remark 1. In the case of futures contract, the return rate on the portfolio Eq (6) should be
zero [34], such that the Eq (8) changes into x1 k(τ1) + x2 k(τ2) + x3 k(τ3) = 0. Then, the pricing
partial differential equation becomes

@F
@t

þ ðksðnðtÞ � ln SÞ � d� lsssÞS
@F
@S

þ ðkcðyc � dÞ � lcscÞ
@F
@d

þ 1

2
s2
s S

2 @
2F

@S2

þ 1

2
s2
c

@2F

@d2
þ rscssscS

@2F
@S@d

¼ 0:

ð11Þ

Remark 2. The same pricing partial differential equation can be also obtained by using two-
dimensional version of the Feynman-Kac formula.

Boundary and final conditions for different carbon derivatives
It stands to reason that we should prescribe the final conditions for different derivatives to fully
define the problem. In addition, to solve the pricing PDE numerically, we also need the bound-
ary conditions. In this paper, we propose three kinds of derivatives, European and American
options as well as futures, which are the popular derivatives in any financial market.

Options. We only take the call option’s final and boundary conditions into consideration,
since the put option is similar. The most common final condition is the vanilla option’s payoff
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given by

FðS; d;TÞ ¼ max ð0; S� KÞ; S 2 ð0; Smax Þ; ð12Þ

where K denotes the exercise price of the option satisfying 0< K< Smax. A second choice is the
cash-or-nothing payoff given by

FðS; d;TÞ ¼ BHðS� KÞ; S 2 ð0; Smax Þ; ð13Þ
where B> 0 is a constant andH denotes the Heaviside function. Obviously, this final condition
is a step function, which is zero if S< K and B if S� K.

The price of any derivatives except the futures contract will satisfy Eq (10), and the bound-
ary conditions have to be adjusted according to the specific exercise features of derivatives. In
the case of European options, there are four boundaries in the solution domain: S = 0, S = Smax,
δ = δmin, and δ = δmax. Obviously, the boundary conditions at S = 0 and S = Smax are simply
taken to be the extension of the final condition:

Fð0; d; tÞ ¼ Fð0; d;TÞ ¼ 0 and FðSmax ; d; tÞ ¼ FðSmax ; d;TÞ: ð14Þ

In the case of American options, since they can be exercised at any point in time before maturi-
ty, part of the valuation problem involves identifying the optimal exercise policy, or the exercise
time that maximizes the option value. The boundary condition at S = Smax should be replaced
by the following two classic value-matching and smooth-pasting boundary conditions [35]:

FðS?ðtÞ; d; tÞ ¼ S?ðtÞ � K; ð15Þ

@FðS?ðtÞ; d; tÞ
@S

¼ 1; ð16Þ

for the American call option.
To determine the boundary conditions at δ = δmin and δ = δmax, we need to model the pric-

ing Eq (10) again for two particular values δ = δmin and δ = δmax, and solve the two resulting
one-dimensional equations. These two approximate boundary conditions will be used to im-
plement our numerical methods.

Futures. In the case of futures, the way to determine the boundary conditions is similar to
that for European options. We ignore the discussion about boundary conditions and only pro-
pose the final condition in this subsection. As mentioned in [36], when the delivery period is
being reached, the futures price is very close or even equal to the spot price, which means that
the final condition for futures should be

FðS; d;TÞ ¼ S: ð17Þ

The power penalty approach
Since the valuation of American option is a free boundary problem, its exact solution is not
available analytically. Therefore, numerical approximation to the solution is normally sought
in practice. In fact, we formulate the free boundary problem as a linear complementarity prob-
lem, and then develop a power penalty method to solve it. That is, a nonlinear parabolic PDE
in two spatial dimensions with an lk penalty term is utilized to approximate the linear comple-
mentarity problem. Moreover, in the next section, a fitted finite volume method is proposed to
solve the penalized nonlinear equation.
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Formulation of the problem into a complementarity problem
Denote the value of the American option with expiry date T by F(S, δ, t) and define

LF ¼ � @F
@t

� 1

2
s2
s S

2 @
2F

@S2
þ 2rscssscS

@2F
@S@d

þ s2
c

@2F

@d2

� �
� hðS; d; tÞ @F

@S
þ gðd; tÞ @F

@d

� �
þ rF; ð18Þ

where h(S, δ, t) = S(ks(n(t) − ln S) − λs σs − δ) and g(δ, t) = kc(θc − δ) − λc σc. Here we define h(0,
δ, t) = 0 to keep the continuity of h(S, δ, t) at S = 0. The free boundary S?(t) divides the domain
O = (0, Smax) × (δmin, δmax) into the continuation region S1 and the stopping region S2. In the
continuation region S1, F> F(S, δ, T), LF = 0; in the stopping region S2, note that S> K, F = S
− K, then LF> 0. In a word, the American option value F satisfies the following partial differ-
ential complementarity problem:

LF � 0;

F � F? � 0;

LF � ðF � F?Þ ¼ 0;

ð19Þ

8>>><
>>>:

for (S, δ, t) 2 O × [0, T) with the boundary conditions:(
Fð0; d; tÞ ¼ 0; FðSmax ; d; tÞ ¼ Smax � K;

FðS; dmin ; tÞ ¼ g1ðS; tÞ; FðS; dmax ; tÞ ¼ g2ðS; tÞ;
ð20Þ

and the terminal condition

FðS; d;TÞ ¼ F?ðS; dÞ; ð21Þ

where

F?ðS; dÞ ¼ maxðS� K; 0Þ

is the payoff function, g1, and g2 are the boundary conditions to be determined in the
next section.

For the ease of theoretical analysis, we rewrite Eq (18) as the following divergent form:

LF ¼ � @F
@t

�r � ðArF þ bFÞ þ �cF; ð22Þ

where

A ¼
a11 a12

a21 a22

 !
¼

1

2
s2
s S

2 1

2
rscssscS

1

2
rscssscS

1

2
s2
c

0
BBB@

1
CCCA;

b ¼
b1

b2

 !
¼

ksðnðtÞ � ln SÞS� lsssS� dS� s2
s S

kcðyc � dÞ � lcsc �
1

2
rscsssc

0
B@

1
CA;

ð23Þ

�c ¼ r þ ksðnðtÞ � ln SÞ � d� lsss � s2
s � ks � kc:

Since the homogeneous Dirichlet boundary conditions are convenient for theoretical dis-
cussion, we transform Eqs (19)–(21) to be homogeneous, which is not necessary in
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computations. To this purpose, we introduce a new function

uðS; d; tÞ ¼ ebtðF0 � FÞ; ð24Þ

where b ¼ 1
2
ðs2

s þ s2
c Þ and F0(S, δ) is a twice differentiable function satisfying the boundary

conditions in Eq (20). Transforming F in Eq (19) into the new function u, we have

Lu � f ;

u� u? � 0;

ðLu� f Þ � ðu� u?Þ ¼ 0;

ð25Þ

8>>><
>>>:

where (
Lu ¼ �ut �r � ðAruþ buÞ þ cu;

c ¼ �c þ b; u? ¼ ebtðF0 � F?Þ; f ðS; d; tÞ ¼ ebtLF0:
ð26Þ

At the same time, the boundary and the terminal conditions in Eqs (20)–(21) are also trans-
formed into

uð0; d; tÞ ¼ 0 ¼ uðSmax ; d; tÞ; t 2 ½0;T� and d 2 ½dmin ; dmax �;
uðS; dmin ; tÞ ¼ 0 ¼ uðS; dmax ; tÞ; t 2 ½0;T� and S 2 ½0; Smax �;

and u(S, δ, T) = u?(S, δ), respectively.

Formulation of the complementarity problem into a variational inequality
problem
Next we reformulate Eq (25) as a variational inequality problem in an appropriate functional
setting. To this end, we first introduce some standard notations. We define O = (0, Smax) ×
(δmin, δmax) and Γ as the computational domain and its boundary, respectively. Let Lp(O) be
the space of all p-integrable functions for any 1� p�1 on O with the norm k�kLp(O). For the
standard Sobolev space Hm,p(O), for p = 2 we use Hm(O) and k�km,O to stand for Hm,2(O) and
k�km,2,O, respectively. Moreover, a weighted Sobolev space H1

oðOÞ and its norm k�k1,ω are de-
fined as follows:

H1
oðOÞ ¼ fv : v; SvS; vd 2 L2ðOÞg; k v k2

1;o¼
Z
O

ðS2v2S þ v2d þ v2ÞdO:

Also, we define

H1
0;oðOÞ ¼ fv : v 2 H1

oðOÞ; vjG ¼ 0g;

K ¼ fvðtÞ : vðtÞ 2 H1
0;oðOÞ; vðtÞ � u?ðtÞ; a:e: in ð0;TÞg;

where u?(t) is defined by Eq (26). Clearly,K is a convex and closed subset of H1
0;oðOÞ. We also

define the norm of Lp(0, T;H(O)) for any Hilbert space H(O) as follows:

k vð�; �; tÞ kLpð0;T;HðOÞÞ ¼
Z T

0

k vð�; �; tÞ kpH dt

� �1=p

:

Hereinafter, v(�, �, t) will be written simply as v(t) when there is no confusion.
Now, we are in the position to define our variational inequality problem.
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Problem 1. Find u 2K such that for all v 2K,

� @u
@t

; v � u

� �
þ Bðu; v � u; tÞ � ðf ; v � uÞ a:e: in ð0;TÞ; ð27Þ

where B(�, �; t) is a bilinear form defined by

Bðu; v; tÞ ¼ ðAruþ bu;rvÞ þ ðcu; vÞ; u; v 2 H1
0;oðOÞ: ð28Þ

For this variational inequality problem, we have the following theorem.
Theorem 1. Problem 1 is the variational form of the complementarity problem Eq (25).
Proof. For any w 2K, it follows from the definition ofK that

w� u? � 0 a:e: on Y ¼ O� ð0;TÞ:

Multiplying both sides of the first inequality of Eq (25) by w − u?, we obtain by integration that

� @u
@t

;w� u?

� �
� ðr � ðAruþ buÞ � cu;w� u?Þ � ðf ;w� u?Þ; a:e: in ð0;TÞ:

Using the Gauss-divergence theory, we obtain

� @u
@t

;w� u?

� �
þ Bðu;w� u?; tÞ � ðf ;w� u?Þ; a:e: in ð0;TÞ: ð29Þ

Since K is a convex and closed subset ofH1
0;oðOÞ, we may write w as w = θv + (1 − θ)u,

where u, v 2K and θ 2 [0, 1]. Therefore, Eq (29) becomes

� @u
@t

; yðv � uÞ
� �

þ Bðu; yðv � uÞ; tÞ

� ðf ; yðv � uÞÞ � � @u
@t

; u� u?

� �
þ Bðu; u� u?; tÞ � ðf ; u� u?Þ

� �
:

ð30Þ

On the other hand, from the third relationship of Eq (25) we know that

ðLu� f ; u� u?Þ ¼ 0;

i.e.

� @u
@t

; u� u?

� �
þ Bðu; u� u?; tÞ � ðf ; u� u?Þ ¼ 0:

Therefore, Eq (30) reduces to

� @u
@t

; yðv � uÞ
� �

þ Bðu; yðv � uÞ; tÞ � ðf ; yðv � uÞÞ;

from which we can obtain

� @u
@t

; v � u

� �
þ Bðu; v � u; tÞ � ðf ; v � uÞ; a:e: in ð0;TÞ:
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Lemma 1. There exist positive constants C and M, such that for any v;w 2 H1
0;oðOÞ, there

hold

Bðv; v; tÞ � C k v k21;o and jBðv;w; tÞj � Mk v k1;ok w k1;o:

Proof. For any v 2 H1
0;oðOÞ, we have via integration by parts that

Z
O

bv � rvdO ¼
Z
@O

v2b � nds�
Z
O

vr � ðbvÞdO ¼ �
Z
O

vb � rvdO�
Z
O

v2r � bdO; ð31Þ

which leads to

Z
O

bv � rvdO ¼ � 1

2

Z
O

r � bv2dO:

From Eqs (28) and (31) we obtain

Bðv; v; tÞ ¼ ðArv þ bv;rvÞ þ cðv; vÞ
¼ ðArv;rvÞ þ ðbv;rvÞ þ cðv; vÞ

¼
Z
O

ðs2
s S

2v2S þ s2
c v

2
dÞdOþ c� 1

2
r � b

� �
ðv; vÞ

¼
Z
O

ðs2
s S

2v2S þ s2
c v

2
dÞdOþ 1

2
ðksðnðtÞ � ln SÞ � lsss � y � s2

s � ks � kcÞ þ r þ b
� �

k v k20
� C k v k21;o :

Now, let us show the continuity of B. For any v;w 2 H1
0;oðOÞ, we have

jBðv;w; tÞj ¼ jðArv þ bv;rwÞ þ cðv;wÞj � jðArv;rwÞj þ jðbv;rwÞj þ jcðv;wÞj: ð32Þ

For j(Arv,rw)j in Eq (32), it follows from the Cauchy-Schwartz inequality that

jðArv;rwÞj ¼
����
Z
O

1

2
s2
s S

2vSwS þ
1

2
s2
c vdwd

� �
dO

����

� 1

2

Z
O

s2
s S

2v2SdO
� �1

2
Z
O

s2
s S

2w2
SdO

� �1
2

þ 1

2

Z
O

s2
c v

2
ddO

� �1
2
Z
O

s2
cw

2
ddO

� �1
2

� M
Z
O

ðs2
s S

2v2S þ s2
c v

2
dÞdO

� �1
2
Z
O

ðs2
s S

2w2
S þ s2

cw
2
dÞdO

� �1
2

� Mk v k1;ok w k1;o:

For jðbv;rwÞj in Eq (32), it follows from the expression of b in Eq (23) and the Cauchy-
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Schwarz inequality that

jðbv;rwÞj ¼
����
Z
O

bv � rwdOj ¼ j
Z
@O

vwb � nds�
Z
O

wr � ðbvÞdO
����

¼
�����
Z
O

wb � rvdO�
Z
O

vwr � bdO
����

�
����
Z
O

wb � rvdOj þ j
Z
O

vwr � bdO
����

�
����
Z
O

wðb1vS þ b2vdÞdO
����þ
����
Z
O

vwr � bdO
����

� Mk w k0k v k1;o þMk v k0k w k0:

For jcðv;wÞj in Eq (32), it is easy to see

jcðv;wÞj � Mk v k0 k w k0 :

Summarizing the above, the continuity of B is obtained as follows:

Bðv;w; tÞ � Mðk v k1;ok w k1;o þ k w k0k v k1;o þ k v k0k w k0Þ � Mk v k1;ok w k1;o:

Remark 3. From Lemma 1 we know that k � kB ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Bð�; �Þp

is a norm.
Lemma 1, together with the theory of abstract variational inequalities, yields the

following theorem.
Theorem 2. Problem 1 has a unique solution.

The power penalty approach
First of all, we introduce the following nonlinear variational inequality to obtain the power
penalty method:

Seek ul 2 H1
0;oðOÞ to satisfy that for all v 2 H1

0;oðOÞ,

� @ul

@t
; v � ul

� �
þ Bðul; v � ul; tÞ þ jðvÞ � jðulÞ � ðf ; v � ulÞ a:e: in ð0;TÞ; ð33Þ

where

jðvÞ ¼ lk
kþ 1

½v � u?�
kþ 1

kþ ; k > 0; l > 1;
ð34Þ

and [z] + = max{0, z}. According to Lemma 1 and the lower semi-continuity of j, the problem
has a unique solution. In addition, j(v) is differentiable, which means that Eq (33) is equivalent
to the following problem.

Problem 2. Seek ul 2 H1
0;oðOÞ to satisfy that for all v 2 H1

0;oðOÞ,

� @ul

@t
; v

� �
þ Bðul; v; tÞ þ ðj0ðulÞ; vÞ ¼ ðf ; vÞ a:e: in ð0;TÞ; ð35Þ

where

j0ðvÞ ¼ l½v � u?�
1

k
þ :

ð36Þ
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Note that the penalized variational equation of variational inequality Eq (27) is just Eqs
(35)–(36), and the penalized equation, which approximates Eq (25), can be written as:

Lul þ l½ul � u?�
1

kþ ¼ f ; ðS; d; tÞ 2 O� ½0;TÞ; ð37Þ

with the following boundary and final conditions:

ulðS; d; tÞjG ¼ 0 and ulðS; d;TÞ ¼ u?ðS; dÞ: ð38Þ

It has been proved in several papers [37–40] that the solution of Eq (37) converges to that of
Eq (19) at the rateO(λ − k/2) in a Sobolev norm as λ! +1.

The fitted finite volumemethod
As the valuation models for futures and European options are the special forms of Eq (37), the
so-called fitted finite volume method is presented only for the American option model here,
and it can be also applied to the other two models. The innovation of this method is that it
combines two existing techniques, a finite volume method and a fitted approximation, togeth-
er, in which the flux of a given function is approximated by a constant locally, yielding a locally
nonlinear approximation to the function. In what follows, we will develop the method for our
two-dimensional nonlinear partial differential equation with a penalty term.

Boundary conditions
First of all, how to determine the boundary condition functions g1(S, t) and g2(S, t) is
discussed below.

1. The boundary condition g1(S, t) on the boundary δ = δmin is determined by solving the fol-
lowing parabolic partial differential equation:

� @F
@t

� 1

2
s2
s S

2 @
2F

@S2
� hðS; dmin ; tÞ

@F
@S

þ rF � l½F� � F�
1

k
þ ¼ 0;

Fð0; tÞ ¼ 0; FðSmax ; tÞ ¼ Smax � K;

FðS;TÞ ¼ max ðS� K; 0Þ:

ð39Þ

8>>>>><
>>>>>:

2. The boundary condition g2(S, t) on the boundary δ = δmax is determined by solving the fol-
lowing initial-boundary problem:

� @F
@t

� 1

2
s2
s S

2 @
2F

@S2
� hðS; dmax ; tÞ

@F
@S

þ rF � l½F� � F�
1

k
þ ¼ 0;

Fð0; tÞ ¼ 0; FðSmax ; tÞ ¼ Smax � K;

FðS;TÞ ¼ max ðS� K; 0Þ:

ð40Þ

8>>>>><
>>>>>:
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The fitted finite volume method
From Eq (24) we can easily find that the problem Eqs (37)–(38) can be rewritten as

�Ft �r � ðArF þ bFÞ þ �cF � l½F� � F�
1

k
þ ¼ 0; ðS; d; tÞ 2 O� ½0;TÞ ð41Þ

with the boundary and the terminal conditions Eqs (20)–(21). In what follows, we let IS = (0,
Smax) and Iδ = (δmin, δmax), and divide the intervals IS and Iδ into NS and Nδ sub-intervals, re-
spectively:

ISi≔ðSi; Siþ1Þ; Idj≔ðdj; djþ1Þ; i ¼ 0; 1; � � � ;NS � 1; j ¼ 0; 1; � � � ;Nd � 1;

in which

0 ¼ S0 < S1 < � � � < SNS
¼ Smax and dmin ¼ d0 < d1 < � � � < dNd

¼ dmax :

This defines a mesh on IS × Iδ with all mesh lines perpendicular to one of the axes.
Next we define another partition of IS × Iδ by letting

Si�1
2
¼ Si�1 þ Si

2
; Siþ1

2
¼ Si þ Siþ1

2
; dj�1

2
¼ dj�1 þ dj

2
; djþ1

2
¼ dj þ djþ1

2

for i = 1, 2, � � �, NS − 1 and j = 1, 2, � � �, Nδ − 1, and S�1
2
¼ 0, SNSþ1

2
¼ Smax, d�1

2
¼ dmin, and

dNdþ1
2
¼ dmax. Also, we put hSi

¼ Siþ1
2
� Si�1

2
and hdj

¼ djþ1
2
� dj�1

2
for each i = 0, 1, � � �, NS and

j = 0, 1, � � �, Nδ.
Integrate Eq (41) overRi;j ¼ ½Si�1

2
; Siþ1

2
� � ½dj�1

2
; djþ1

2
� to obtain

�
Z S

iþ1
2

S
i�1

2

Z d
jþ1

2

d
j�1

2

@F
@t

dSdd�
Z S

iþ1
2

S
i�1

2

Z d
jþ1

2

d
j�1

2

r � ðArF þ bFÞdSdd

þ
Z S

iþ1
2

S
i�1

2

Z d
jþ1

2

d
j�1

2

�cFdSdd� l
Z S

iþ1
2

S
i�1

2

Z d
jþ1

2

d
j�1

2

½F� � F�
1

k
þdSdd ¼ 0;

for i = 1, 2, � � �, NS − 1, j = 1, 2, � � �, Nδ − 1. Applying the mid-point quadrature rule to the
above equation, we have

� @Fi;j

@t
Ri;j �

Z
Ri;j

r � ðArF þ bFÞdSddþ �ci;jFi;jRi;j � l½F�
i;j � Fi;j�

1

k
þRi;j ¼ 0 ð42Þ

for i = 1, 2, � � �, NS − 1, j = 1, 2, � � �, Nδ − 1, where Ri;j ¼ ðSiþ1
2
� Si�1

2
Þ � ðdjþ1

2
� dj�1

2
Þ,

�ci;j ¼ �cðSi; dj; tÞ, Fi,j = F(Si, δj, t), and F�
i;j ¼ F�ðSi; dj; tÞ:
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Now we consider how to approximate the second term in Eq (42). First of all, it follows
from the definition of flux ArF þ b�F and integration by parts thatZ

Ri;j

r � ðArF þ bFÞdSdd ¼
Z
@Ri;j

ðArF þ bFÞ � lds

¼
Z

S
iþ1

2
;d
jþ1

2

� �
S
iþ1

2
;d
j�1

2

� �ða11FS þ a12Fd þ b1FÞdd

�
Z

S
i�1

2
;d
jþ1

2

� �
S
i�1

2
;d
j�1

2

� �ða11FS þ a12Fd þ b1FÞdd

þ
Z

S
iþ1

2
;d
jþ1

2

� �
S
i�1

2
;d
jþ1

2

� �ða21FS þ a22Fd þ b2FÞdS

�
Z

S
i�1

2
;d
j�1

2

� �
S
iþ1

2
;d
j�1

2

� �ða21FS þ a22Fd þ b2FÞdS;

ð43Þ

where l denote the unit vector outward-normal to @Ri,j.
Next we deal with Eq (43) term by term. In fact, for the first term we can approximate the

integral by a constant, i.e,Z
S
iþ1

2
;d
jþ1

2

� �
S
iþ1

2
;d
j�1

2

� �ða11FS þ a12Fd þ b1FÞdd 	 ða11FS þ a12Fd þ b1FÞj
S
iþ1

2
;dj

� � � hdj
:

Clearly, we now need to derive approximations of the ðArF þ bFÞ � l defined above at the
mid-point, ðSiþ1

2
; djÞ, on the interval ISi for any i = 0, 1, � � �, NS − 1. Next we discuss it in detail.

Case 1: For i� 1.
According to Eq (23) we have

a11FS þ a12Fd þ b1F ¼ 1
2
s2
s S

2FS þ 1
2
rscssscSFd þ SðksðnðtÞ � ln SÞ � d� lsss � s2

s ÞF
¼ S 1

2
s2
s SFS þ 1

2
rscssscFd þ ðksðnðtÞ � ln SÞ � d� lsss � s2

s ÞF
� 	

:
ð44Þ

Following the idea in [29], we approximate the term a11 FS + b1 F by solving the following two-
point boundary value problem:

1

2
s2
s SFS þ ðksðnðtÞ � ln SÞ � d� lsss � s2

s ÞF
� �0


 aSFS þ biþ1
2;j
F

� �0
¼ 0; ð45aÞ

FðSi; djÞ ¼ Fi;j; FðSiþ1; djÞ ¼ Fiþ1;j; ð45bÞ

where a ¼ 1
2
s2
s and b ¼ ksðnðtÞ � lnSÞ � d� lsss � s2

s , biþ1
2;j
¼ bðSiþ1

2
; djÞ, and Fi,j and Fi + 1,j

denote the values of F at (Si, δj) and (Si + 1, δj), respectively. Evidently, from Eq (45a) we can ob-
tain

aSFS þ biþ1
2;j
F ¼ C1;

where C1 is an arbitrary constant and can be determined by the boundary condition Eq (45b)
as follows [29, 41]:

C1 ¼ biþ1
2;j

S
ai;j
iþ1Fiþ1;j � S

ai;j
i Fi;j

S
ai;j
iþ1 � S

ai;j
i

;
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where ai;j ¼
b
iþ1

2
;j

a
. Then,

a11FS þ a12Fd þ b1F 	 Siþ1
2

biþ1
2;j

S
ai;j
iþ1Fiþ1;j � S

ai;j
i Fi;j

S
ai;j
iþ1 � S

ai;j
i

þ d � Fd

 !
; ð46Þ

where d ¼ 1
2
rscsssc. Additionally, the derivative Fδ can be approximated by a forward differ-

ence

Fi;jþ1 � Fi;j

hdj

:

Then, we have

ða11FS þ a12Fd þ b1FÞj
S
iþ1

2
;dj

� � � hdj
	 Siþ1

2
biþ1

2;j

S
ai;j
iþ1Fiþ1;j � S

ai;j
i Fi;j

S
ai;j
iþ1 � S

ai;j
i

þ di;j
Fi;jþ1 � Fi;j

hdj

 !
� hdj

; ð47Þ

where di,j = d(Si, δj). In the same way, we can also approximate the second term in Eq (43) as
follows:

ða11FS þ a12Fd þ b1FÞjðS
i�1

2
;djÞ � hdj

	 Si�1
2

bi�1
2;j

S
ai�1;j
i Fi;j � S

ai�1;j
i�1 Fi�1;j

S
ai�1;j
i � S

ai�1;j
i�1

þ di;j
Fi;jþ1 � Fi;j

hdj

 !
� hdj

: ð48Þ

Case 2: For i = 0.
As the Eq (45a) is degenerate on (0, S1), we should rethink the problem Eqs (45a)–(45b) on

(0, S1) below:

aSFS þ b1
2;j
F

� �0

 C2; ð49aÞ

Fð0; djÞ ¼ F0;j; FðS1; djÞ ¼ F1;j; ð49bÞ

where b1
2;j
¼ bðS1

2
; djÞ and C2 is an unknown constant to be determined next. After integrating

both sides of above equation, we can obtain

aSFS þ b1
2;j
F ¼ C2Sþ C3:

Thus, we have

ða11FS þ a12Fd þ b1FÞjðS1
2

;djÞ � hdj
	 1

2
aþ b1

2;j

� �
F1;j � a� b1

2;j

� �
F0;j

h i
þ d1;j

F1;jþ1 � F1;j

hdj

( )
� hdj

: ð50Þ

In the approximations of last two terms of Eq (43), we do not need to consider the case 2 as be-
fore, since δ0 6¼ 0. We apply the similar method to the above and get the following results:

ða21FS þ a22Fd þ b2FÞjðSi ;djþ1
2
Þ � hSi

	 �bi;jþ1
2

e�a i;jdjþ1Fi;jþ1 � e�a i;jdj Fi;j

e�a i;jdjþ1 � e�a i;jdj
þ �di;j

Fiþ1;j � Fi;j

hSi

 !
� hSi

; ð51Þ

ða21FS þ a22Fd þ b2FÞjðSi;dj�1
2
Þ � hSi

	 �bi;j�1
2

e�a i;j�1djFi;j � e�a i;j�1dj�1Fi;j�1

e�a i;j�1dj � e�a i;j�1dj�1
þ �di;j

Fiþ1;j � Fi;j

hSi

 !
� hSi

; ð52Þ

for j = 0, 1, � � �, Nδ − 1, where �a i;j ¼
�b
i;jþ1

2

�aj
, �a ¼ 1

2
s2
c ,
�b ¼ kcðyc � dÞ � lcsc � 1

2
rscsssc, and
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�di;j ¼ 1
2
rscssscSi. Hence, we obtain the following equations by combining Eqs (43), (47), and

(48) with Eqs (50)–(52):

� @Fi;j

@t
Ri;j þ ei;ji�1;jFi�1;j þ ei;ji;j�1Fi;j�1 þ ei;ji;jFi;j þ ei;ji;jþ1Fi;jþ1

þei;jiþ1;jFiþ1;j � l½F�
i;j � Fi;j�

1

kþRi;j ¼ 0;

ð53Þ

for i = 1, 2, � � �, NS − 1 and j = 1, 2, � � �, Nδ − 1, where

e1;j0;j ¼ � 1
2
S1
2

hdj
a� b1

2;j

� �
; e1;j1;j�1 ¼ �

�b1;j�1
2
e�a1;j�1dj�1hS1

e�a1;j�1dj � e�a1;j�1dj�1
; ð54Þ

e1;j1;j ¼ hS1

�b1;jþ1
2
e�a1;jdj

e�a1;jdjþ1 � e�a1;jdj
þ

�b1;j�1
2
e�a1;j�1dj

e�a1;j�1dj � e�a1;j�1dj�1
þ d1;j

 !

þS3
2

hdj

b3
2;j
S
a1;j
1

S
a1;j
2 � S

a1;j
1

þ 1

2
S1
2

hdj
aþ b1

2;j

� �
þ �c1;jR1;j;

ð55Þ

e1;j1;jþ1 ¼ �hS1

�b1;jþ1
2
e�a1;jdjþ1

e�a1;jdjþ1 � e�a1;jdj
þ d1;j

 !
; e1;j2;j ¼ �S3

2

b3
2
; j

S
a1;j
2 hdj

S
a1;j
2 � S

a1;j
1

; ð56Þ

for j = 1, 2, � � �, Nδ − 1, and

ei;ji�1;j ¼ �Si�1
2
hdj

bi�1
2;j
S
ai�1;j
i�1

S
ai�1;j
i � S

ai�1;j
i�1

; ei;ji;j�1 ¼ �
�bi;j�1

2
e�a i;j�1dj�1hSi

e�a i;j�1dj � e�a i;j�1dj�1
; ð57Þ

e1;j1;j ¼ hSi

�bi;jþ1
2
e�a i;jdj

e�a i;jdjþ1 � e�a i;jdj
þ

�bi;j�1
2
e�a i;j�1dj

e�a i;j�1dj � e�a i;j�1dj�1
þ di;j

 !

þhdj
Siþ1

2

biþ1
2;j
S
ai;j
i

S
ai;j
iþ1 � S

ai;j
i

þ Si�1
2

bi�1
2;j
S
ai�1;j
i

S
ai�1;j
i � S

ai�1;j
i�1

 !
þ �ci;jRi;j;

ð58Þ

ei;ji;jþ1 ¼ �hSi

�bi;jþ1
2
e�a i;jdjþ1

e�a i;jdjþ1 � e�a i;jdj
þ di;j

 !
; ei;jiþ1;j ¼ �Siþ1

2
biþ1

2;j

S
ai;j
iþ1hdj

S
ai;j
iþ1 � S

ai;j
i

; ð59Þ

for i = 2, 3, � � �, NS − 1, j = 1, 2, � � �, Nδ − 1, and ei;jm;n ¼ 0 ifm 6¼ i − 1, i, i + 1 and n 6¼ j − 1, j, j +

1. It can be easily seen that Eq (53) is an (NS − 1)2 × (Nδ − 1)2 linear system of equations for

F ¼ ðF1;1; � � � ; F1;Nd�1; F2;1; � � � ; F2;Nd�1; � � � ; FNS�1;1; FNS�1;2; � � � ; FNS�1;Nd�1Þ>:

Note that for i = 1, 2, � � �, NS and j = 1, 2, � � �, Nδ, F0, j(t), Fi,0(t), F0, Nδ
(t) and FNS,0(t) are equal to

the given boundary conditions. Obviously, the coefficient matrix of Eq (53) is penta-diagonal.
Let

Ei;j ¼ ð0; � � � ; 0; ei;ji�1;j; 0; � � � ; 0; ei;ji;j�1; e
i;j
i;j; e

i;j
i;jþ1; 0; � � � ; 0; ei;jiþ1;j; 0; � � � ; 0Þ

for i = 1, 2, � � �, NS − 1 and j = 1, 2, � � �, Nδ − 1. Now we are in the position to discuss the time-
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discretization of the system Eq (53). To this purpose, we first rewrite Eq (53) as

� @Fi;j

@t
Ri;j þ Ei;jF þ pðFi;jÞ ¼ 0; ð60Þ

where

pðFi;jÞ ¼ �lRi;j½F�
i;j � Fi;j�

1

k
þ :

ð61Þ

Then, we selectM − 1 points numbered from t1 to tM − 1 between 0 and T and let T = t0, tM = 0
to form a partition: T = t0 > t1 > � � �> tM = 0. Thus, the full discrete form of Eq (60) can be ob-
tained by applying the two-level implicit time-stepping method with a splitting parameter y 2
½1
2
; 1� to it as follows:

ðyEmþ1 þ GmÞFmþ1 þ yDðFmþ1Þ ¼ ðGm � ð1� yÞEmÞFm � ð1� yÞDðFmÞ; ð62Þ

where

Fm ¼ ðFm
1;1; � � � ; Fm

1;Nd�1; F
m
2;1; � � � ; Fm

2;Nd�1; � � � ; Fm
NS�1;1; � � � ; Fm

NS�1;Nd�1Þ>;
Em ¼ ðEm

1;1; � � � ; Em
1;Nd�1; E

m
2;1; � � � ; Em

2;Nd�1; � � � ; Em
NS�1;1; � � � ; Em

NS�1;Nd�1Þ>;
Gm ¼ diag ð�R1;1=Dtm; � � � ;�RNS�1;Nd�1=DtmÞ>;

DðFmÞ ¼ ðpðFm
1;1Þ; � � � ; pðFm

NS�1;Nd�1ÞÞ>;

ð63Þ

form = 0, 1, � � �,M − 1. Note that Δtm = tm + 1 − tm < 0, Em
i;j ¼ Ei;jðtmÞ, and Fm denotes the ap-

proximation of F at t = tm.

The solution of the discrete system
The standard Newton method is employed to solve the nonlinear discrete system Eq (62). Eq
(61) clearly indicates that p0ðVm

i;j Þ ! 1 as F�
i;j � Fi;j ! 0þ when k> 1. So, we need to smooth

out pðFm
i;jÞ by redefining it as follows:

pðFm
i;jÞ ¼

�lRi;j½F�
i;j � Fm

i;j �
1

k
þ ; F�

i;j � Fm
i;j � �;

�lRi;j

�
�
1
k�nþ1 n� 1

k

� 	½F�
i;j � Fm

i;j �n�1

þ

þ�
1
k�n 1

k
� nþ 1

� 	½F�
i;j � Fm

i;j �nþ
�
; F�

i;j � Fm
i;j < �;

ð64Þ

8>>>>>>>><
>>>>>>>>:

where k> 0, n is a positive integer, and 0< �� 1 is a transition parameter. Applying Newton
method to Eq (62), we can get

½yEmþ1 þ Gm þ yJDðoq�1Þ�doq ¼ ½Gm � ð1� yÞEm�Fm � ð1� yÞDðFmÞ
� ðyEmþ1 þ GmÞoq�1 � yDðoq�1Þ;

oq ¼ oq�1 þ g � doq;

ð65Þ

for q = 1, 2, � � �, where ω0 is a given initial guess, JD(ω) denotes the Jacobian matrix of the col-
umn vector D(ω), and γ 2 (0, 1] is a damping parameter used to accelerate convergence. Then,
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we choose

Fmþ1 ¼ lim
q!1

oq;

as the solution of Eq (65).
Remark 4. For the European options and futures, the system Eq (62) degenerates to a linear

system and can be solved using normal methods.
What is more, we have the following theorem.
Theorem 3. For m = 1, 2, � � �,M − 1, if jΔtmj is sufficiently small and �c � 0, then the system

matrix of Eq (65) is an M-matrix.
Proof. From the definition of D(F) in Eq (63), it is easy to see that its Jacobian is the follow-

ing diagonal matrix:

JDðolÞ ¼ diagðp0ðFm
1;1Þ; � � � ; p0ðFm

NS�1;Nd�1ÞÞ:

From Eq (64) we know that p0ðFm
i;jÞ � 0 for all i = 1, � � �, NS − 1 and j = 1, � � �, Nδ − 1. Thus, to

show that the system matrix of Eq (65) is anM-matrix, it suffices to show that θEm + 1 + Gm is
anM-matrix.

First, we note that ei;jm;n � 0 for allm 6¼ i, n 6¼ j, since

biþ1
2;j

S
ai;j
iþ1 � S

ai;j
i

> 0;
�bi;jþ1

2

e�a i;jYjþ1 � e�a i;jYj
> 0 ð66Þ

for any i and j, and for any α = b/a and any �a ¼ �b=�a. This is because the function Sα is increas-

ing when b> 0 and decreasing when b< 0, and the function e�ad is increasing when �b > 0 and

decreasing when �b < 0. Eq (66) also holds when biþ1
2;j
! 0, �bi;jþ1

2
! 0. Furthermore, from Eqs

(54)–(56) we know that when �ci;j � 0, for all i = 1, � � �, NS − 1, j = 1, � � �, Nδ − 1, there holds

ðei;ji;jÞmþ1 � jðei;ji�1;jÞmþ1j þ jðei;ji;j�1Þmþ1j þ jðei;ji;jþ1Þmþ1j þ jðei;jiþ1;jÞmþ1j þ �cmþ1
i;j Ri;j

¼
XNS�1

p¼1

XNd�1

q¼1

jðei;jp;qÞmþ1j þ �cmþ1
i;j Ri;j:

Therefore, Em + 1 is a diagonally dominant with respect to its columns. Hence, from the above
analysis, we see that for all admissible i, j, Em + 1 is a diagonally dominant matrix with positive
diagonal elements and non-positive off-diagonal elements. This implies that Em + 1 is anM-
matrix.

Second, Gm of the system matrix Eq (65) is a diagonal matrix with positive diagonal entries.
In fact, when jΔtmj is sufficiently small, we have

y�ci;jRi;j þ
Ri;j

�Dtm
> 0;

which demonstrates that θEm + 1 + Gm is anM-matrix.
Here we emphasize that Theorem 3 implies that the fully discrete system Eq (65) satisfies

the discrete maximum principle and the discretization is monotone, such that Eq (65) has a
unique solution.

Numerical results
In this section, some numerical results are presented to demonstrate the efficiency and the use-
fulness of the numerical method proposed in the above. Furthermore, the varieties of
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derivatives prices with respect to the spot price, convenience and time, are examined. These are
of interest to market participants.

Test 1: The European call option with the cash-or-nothing final condition Eq (13).
Parameters: Smax = 500, δmin = − 1, δmax = − 0.25, T = 1, r = 0.1, ρsc = 0.9, σs = 0.3, λs = −

0.2, σc = 0.3, λc = − 0.3, ks = 0.04, kc = 0.02, θc = − 0.2, ξ = 0.03, Cs = 21, K = 200, B = 100.
To solve the pricing problem numerically, we divide (0, Smax), (δmin, δmax), and (0, T) uni-

formly into 50, 50, and 50 sub-intervals, respectively. The boundary conditions are given by
Eqs (14), (39), and (40), and the numerical values of these boundary conditions determined by
1D initial-boundary problems are plotted in Fig 1. By means of these initial and boundary con-
ditions, the European option values for Test 1 are computed and the intersection surfaces of
different time points are plotted in Fig 2.

We show some option values at some special points in Table 1.
Next the convergence rates of the discretization method is gauged. To this end, we define

three discrete norms k � k1,hS, k � k1,hδ, and k � k0,h as follows [42]:

k vh k21;hS¼
XNS�1

i¼1

XNd�1

j¼1

S2iþ1=2biþ1=2;jhdj

S
ai;j
iþ1 þ S

ai;j
i

S
ai;j
iþ1 � S

ai;j
i

ðviþ1;j � vi;jÞ2;

k vh k2
1;hd

¼
XNS�1

i¼1

XNd�1

j¼1

d2jþ1=2
�biþ1=2;jhSi

d
�a i;j
jþ1 þ d

�a i;j
j

d
�a i;j
jþ1 � d

�a i;j
j

ðvi;jþ1 � vi;jÞ2;

k vh k2
0;h¼

XNS�1

i¼1

XNd�1

j¼1

v2i;jRi;j;

from which we can define the following weighted discreteH1-norm:

k vh k2H1¼k vh k21;hS þ k vh k2
1;hd

þ k vh k20;h :

Fig 1. The boundary conditions at δ = δmin and δ = δmax for Test 1. (a) the boundary condition F(S, δmin, t); (b) the boundary condition F(S, δmax, t)

doi:10.1371/journal.pone.0125679.g001
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Fig 2. The European cash-or-nothing option values at the time points for Test 1.

doi:10.1371/journal.pone.0125679.g002

Table 1. The European cash-or-nothing option values for some points.

t t = 0 t = 0.25 t = 0.5 t = 0.75
(S, δ)

(240, − 1) 93.1038 93.6169 95.0070 96.9608

(240, − 0.64) 90.1785 91.4336 93.3164 95.4086

(240, − 0.25) 82.5970 83.9493 86.1757 89.9564

doi:10.1371/journal.pone.0125679.t001
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In addition, the ratio is defined as:

ratio ¼ k FDt
h � F kg

k FDt=2
h=2 � F kg

with g ¼ 1 or H1:

In Test 1, we employ the numerical solution on the mesh with NS = 128 = Nδ andM = 128 as
the “exact” solution F, and list the errors in the discrete L1-norm and the weighted discrete
H1-norm at the final time step t = 0 for four consecutive meshes in Table 2. Moreover, the line-
ar regression is used to show that these data obey the basic error estimates as follows:

k F � Fh k1 	 0:3136h1:0597 and k F � Fh kH1 	 2:0922h1:6493:

Note that these results are reasonable because of the non-smoothness of the solution due to the
pay-off function Eq (13).

From Figs 1, 2, and Table 1 we can conclude that

1. The European cash-or-nothing option values are higher when the option comes to maturity.
This is acceptable in that the European option can be only exercised at maturity, and one
can not get more benefits when holding a European option that is not closed to maturity,
which is different from the American option.

2. The greater convenience yield δ, the lower the option value. This can be explained as fol-
lows: since the convenience yield δmeasures the benefits from holding the carbon emission
permits rather than the derivatives contract, people will hold more carbon emissions spots
when facing a higher convenience yield, which leads to the demand reduction for derivatives
and the option price down.

3. As the value of carbon emission spots rises, the value of call option also rises. This is because
the holder of call option will get more chances for benefits from the derivatives. This result
is similar to the general call options.

Test 2: The American call option with the ramp payoff final condition Eq (12).
Parameters: Smax = 500, δmin = − 1, δmax = − 0.25, T = 1, r = 0.1, ρsc = 0.9, σs = 0.3, λs = −

0.2, σc = 0.3, λc = − 0.3, ks = 0.04, kc = 0.02, θc = − 0.2, ξ = 0.03, Cs = 21, K = 200, λ = 100,
k = 16.

To solve the American call option with the above parameters in Test 2, we divide (0, Smax),
(δmin, δmax), and (0, T) uniformly into 30, 30, and 30 sub-intervals, respectively. The final and
boundary conditions are given by Eqs (20), (21), (39), and (40), and the numerical values of
these boundary conditions determined by the 1D initial-value problems are plotted in Fig 3.
According to these initial and boundary conditions, the American call option problem for Test

Table 2. Computed errors in the L1-norm and theH1-norm at t = 0.

mesh L1-norm ratio H1-norm ratio

4 × 4 × 4 67.1832 6.2069e + 003

8 × 8 × 8 17.1719 3.9124 1.6034e + 003 3.8711

16 × 16 × 16 10.8381 1.5844 712.2445 2.2512

32 × 32 × 32 8.1675 1.3270 204.2685 3.4868

64 × 64 × 64 2.4752 3.2997 57.2606 3.5673

doi:10.1371/journal.pone.0125679.t002
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2 is solved and the intersection surfaces of different time points are depicted in Fig 4. We also
show some option values at some special points in Table 3.

From Figs 3, 4 and Table 3, we have the conclusions as follows:

1. The American vanilla call option values are lower when the option comes to maturity. An
American option can be exercised at any time between the date of purchase and the expira-
tion date. As the option comes to maturity, the benefits from the early exercise of option are
reduced, and then the option prices decrease. This is the same as the popular financial
option contracts.

2. Unlike European options, for American options the greater convenience yield δ does not
mean a lower option value (see the last two lines of Table 3). As we all have known, the
value of American option contains an early exercise premium. Therefore, although the
greater convenience yield reduces the demand for derivatives and decreases the option
price, the early exercise premium may also increase the option price oppositely. So, there is
no certain relationship between the convenience yield and the option value.

3. As the value of carbon emission spots rises, the value of the call option also goes up. This is
because the holder of the call option can get more chances to benefit from it. This result is
similar to general call options.

Financial engineers could pay more attention to the optimal exercise boundary compared
with the option value in the case of American option. We determine the boundary S?(t) by Eq
(16), and the results are plotted in Fig 5. The blue line is the optimal exercise boundary, the left
of the blue line is the continuation region, and the right of the blue line is the stopping region.
We can clearly see that as the convenience yield increases, the stopping region becomes
smaller. Note that our pricing model is different from the classical Black-Scholes model in de-
tails, and this result should be reasonable.

Test 3: The futures with the final condition Eq (17).

Fig 3. The boundary conditions at δ = δmin and δ = δmax for Test 2. (a) the boundary condition F(S, δmin, t); (b) the boundary condition F(S, δmax, t)

doi:10.1371/journal.pone.0125679.g003
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Fig 4. American call option values at time points for Test 2.

doi:10.1371/journal.pone.0125679.g004

Table 3. American call option values for some points.

t t = 0 t = 0.25 t = 0.5 t = 0.75
(S, δ)

(100, − 0.6) 0 0 0 0

(200, − 0.6) 48.3564 36.5279 21.7587 8.9085

(300, − 0.6) 158.9589 152.3870 139.0894 115.0307

(200, − 1) 240.3643 206.7208 137.2206 54.2146

(200, − 0.6) 48.3564 36.5279 21.7587 10.5838

(200, − 0.3) 50.8563 39.9947 26.0251 11.6181

doi:10.1371/journal.pone.0125679.t003
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Parameters: Smax = 500, δmin = − 1, δmax = − 0.25, T = 1, r = 0.1, ρsc = 0.9, σs = 0.3, λs = −
0.2, σc = 0.3, λc = − 0.3, ks = 0.04, kc = 0.02, θc = − 0.2, ξ = 0.03, Cs = 21.

To solve the futures with the above parameters in Test 3, we divide (0, Smax), (δmin, δmax),
and (0, T) uniformly into 50, 50, and 50 sub-intervals, respectively. The boundary conditions
are given by Eqs (14), (39), and (40), and the numerical values of these boundary conditions
determined by the 1D initial-value problems are plotted in Fig 6. According to these initial and
boundary conditions, the futures problem for Test 3 is solved, and the intersection surfaces of
different time points are depicted in Fig 7.

Some futures values at some special points are shown in Table 4.
From Figs 6, 7 and Table 4, we have the conclusions as follows:

1. The futures prices are lower when the futures contract comes to the maturity. This is be-
cause the futures prices converge to the spot prices when the futures contract comes to the

Fig 5. Optimal exercise boundaries about different δ for Test 2.

doi:10.1371/journal.pone.0125679.g005
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maturity. With time approaching to the maturity date, the uncertainty, which should in-
crease the futures prices, is reducing.

2. The greater the convenience yield δ, the lower the futures value. This can be explained as fol-
lows: since the convenience yield δmeasures the benefits from holding the carbon emission
permits rather than the derivatives contract, people will hold more carbon emission spots
when facing a higher convenience yield, which leads to the demand reduction for derivatives
and the futures price down.

3. As the value of carbon emission spots goes up, the value of futures also rises. This is because
the holder of futures will get more chances to benefit from the derivatives. This result is sim-
ilar to general futures.

Discussions
In this section, we examine the sensitivity of above results to the parameters variations. There
are four parameters which are likely to have an impact on the price of emission
allowance derivatives.

Discussion 1.We examine the effects of some parameters on the European cash-or-nothing
option prices in Fig 8, where we fix t = 0 and δ = − 1.

From Fig 8 we can see that

a. The option price increases with the higher growing rate of marginal abatement costs. The
higher growing rate of marginal abatement costs will make the abatement costs change
quickly and the enterprises will live in a more uncertain world when they must choose in-
vesting on clean technology or trading the emission permits. To eliminate this uncertainty,
enterprises will buy more derivatives such as options, which leads to the option
value increasing.

Fig 6. The boundary conditions at δ = δmin and δ = δmax for Test 3. (a) the boundary condition F(S, δmin, t); (b) the boundary condition F(S, δmax, t)

doi:10.1371/journal.pone.0125679.g006
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b. The effect of the marginal abatement costs is negligible. The purpose to trade the emission
permits is just to hedge the risk of marginal abatement costs, and if marginal abatement
costs increase, people will hold more emission permit spots, and the spots price will increase
and vice versa. So, it is natural that the option value does not change following the move-
ment of marginal abatement costs.

c. Increasing the speed of mean-reversion ks reduces the option prices. This is because emis-
sion permit prices have a stronger tendency towards the mean value, the price risk of emis-
sion permits decreases, and then people need not to hold many derivatives to hedge the risk.
The decrease of demand will reduce the option prices.

Fig 7. Futures values at time points for Test 3.

doi:10.1371/journal.pone.0125679.g007

Table 4. Futures values for some points.

t t = 0 t = 0.25 t = 0.5 t = 0.75
(S, δ)

(250, − 1) 477.8765 451.4826 393.4370 322.6292

(250, − 0.82) 410.0061 372.1902 327.5114 282.7984

(250, − 0.61) 354.9645 322.1501 293.8633 267.3085

doi:10.1371/journal.pone.0125679.t004
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d. The effect of the volatility σs is irregular compared with the classical Black-Scholes model.
In the Black-Scholes world, the higher volatility of underlying assets increases the risk of in-
vestment, and the derivatives price will increase. In our model, since the stochastic conve-
nience yield is considered, the effect of volatility on option prices may be counteracted by
the stochastic convenience yield. So, there is no certain relationship between the volatility
and the option price when there is a stochastic convenience yield.

Note that the above sensitivity analysis results are also satisfied by the following American
option and futures, as they are all the derivatives used to hedge the price risk.

Additionally, the effects of stochasticity of convenience yield on the valuations of carbon
European options are also examined in Fig 9, where t = 0 is fixed. Note that the solid line states
the deterministic convenience yield simulation results and the dash line represents the
stochastic ones.

Fig 8. The effects of some parameters on the European option prices for Test 1.

doi:10.1371/journal.pone.0125679.g008
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Discussion 2. The effects of some parameters on the American option price are examined
in Fig 10, in which t = 0 and δ = − 1.

From Fig 10, again we can see that

a. The option price increases with the higher growing rate of marginal abatement costs.

b. The effect of the marginal abatement costs is negligible.

c. Increasing the speed of mean-reversion ks reduces the option prices.

d. The effect of the volatility σs is irregular compared with the classical Black-Scholes model.

Similarly, the effects of stochasticity of convenience yield on the valuation of carbon Ameri-
can option are also examined in Fig 11, where t = 0 is fixed. Note that the solid line states the
deterministic convenience yield simulation results and the dash line represents the
stochastic ones.

Fig 9. The effects of stochasticity of convenience yield on the European option prices for Test 1.

doi:10.1371/journal.pone.0125679.g009
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Discussion 3. The effects of some parameters on the futures prices are examined in Fig 12,
in which t = 0 and δ = − 1.

From Fig 12 we can see that

a. The futures price increases with the higher growing rate of marginal abatement costs, which
increases the uncertainty.

b. The effect of the marginal abatement costs is negligible.

c. Increasing the speed of mean-reversion ks reduces the futures price, because the emission
permits price trends to the mean value more quickly, and the uncertainty of emission per-
mits price would become smaller.

d. There is no certain effect of the volatility on futures prices.

Fig 10. The effects of some parameters on the American option prices for Test 2.

doi:10.1371/journal.pone.0125679.g010
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Once again, the effects of stochasticity of convenience yield on the valuations of carbon fu-
tures are examined in Fig 13 with the fixed t = 0. Note that the solid line corresponds to the de-
terministic convenience yield simulation results and the dash line represents the
stochastic ones.

From the above discussions, we can summarize some experiences about risk management.
Firstly, as the Kyoto Protocol came into force in 2005, several countries are expanding their in-
vestment scales on the new technologies to reduce carbon emissions, and thus the emission al-
lowance derivatives are also becoming a risk hedging tool for market participants. Secondly, a
firm may not be scarce to the emission allowance derivatives when it can adjust its marginal
abatement costs well. Finally, the impact of volatility of carbon emission allowances price is dif-
ficult to measure when a stochastic convenience yield is involved.

Concluding remarks
This paper presents a methodology for modelling and computing the valuation of carbon de-
rivatives with stochastic convenience yields. The principle of absence of arbitrage opportunities

Fig 11. The effects of stochasticity of convenience yield on the American option prices for Test 2.

doi:10.1371/journal.pone.0125679.g011

Modelling and Computation in the Valuation of Carbon Derivatives

PLOS ONE | DOI:10.1371/journal.pone.0125679 May 26, 2015 31 / 35



and the stochastic calculus are used to develop the mathematical model, the partial differential
equation, satisfied by carbon derivatives. For American options, we formulate the pricing prob-
lem to a linear parabolic variational inequality, and develop a power penalty method to solve it.
Then, a so-called fitted finite volume method is designed to solve the nonlinear partial differen-
tial equation resulting from the power penalty method, which governs the futures, European
and American option valuation.

Also, we discuss the effects of the stochastic convenience yield on the prices of carbon deriv-
atives in details. First of all, a greater convenience yield means a lower European option price
and futures price while it does not mean a lower American option price. Therefore, the proper-
ty of optimal exercise boundary makes the American option quite different from the European
option. Furthermore, from the sensitivity analysis we can see that (a) the derivatives price in-
creases with the higher growing rate of marginal abatement costs; (b) the effect of the marginal
abatement costs is negligible; (c) increasing the speed of mean-reversion ks reduces the

Fig 12. The effects of some parameters on the futures price for Test 3.

doi:10.1371/journal.pone.0125679.g012
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derivatives price; (d) there is no certain effect of the volatility on derivatives price compared
with the classical Black-Scholes model.

The carbon market participants, such as investors, hedgers and arbitragers, may get help
from our theoretical results, and they can work out better hedging strategies, adjust portfolio
structures and strengthen their capabilities to manage risks. We expect that our work can em-
phasize the importance of the convenience yield concept for the emission allowance pricing. At
the same time, we also anticipate that our derivatives pricing methodology from the perspective
of partial differential equations combined with numerical methods can make a few contribu-
tions to the development of carbon market.
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Fig 13. The effects of stochasticity of convenience yield on the futures prices for Test 3.
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