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a b s t r a c t

Viral infections represent a major health concern worldwide. The alarming rate at which SARS-CoV-2
spreads, for example, led to a worldwide pandemic. Viruses incorporate genetic material into the host
genome to hijack host cell functions such as the cell cycle and apoptosis. In these viral processes, pro-
tein–protein interactions (PPIs) play critical roles. Therefore, the identification of PPIs between humans
and viruses is crucial for understanding the infection mechanism and host immune responses to viral
infections and for discovering effective drugs. Experimental methods including mass spectrometry-
based proteomics and yeast two-hybrid assays are widely used to identify human-virus PPIs, but these
experimental methods are time-consuming, expensive, and laborious. To overcome this problem, we
developed a novel computational predictor, named cross-attention PHV, by implementing two key tech-
nologies of the cross-attention mechanism and a one-dimensional convolutional neural network (1D-
CNN). The cross-attention mechanisms were very effective in enhancing prediction and generalization
abilities. Application of 1D-CNN to the word2vec-generated feature matrices reduced computational
costs, thus extending the allowable length of protein sequences to 9000 amino acid residues. Cross-
attention PHV outperformed existing state-of-the-art models using a benchmark dataset and accurately
predicted PPIs for unknown viruses. Cross-attention PHV also predicted human–SARS-CoV-2 PPIs with
area under the curve values >0.95. The Cross-attention PHV web server and source codes are freely avail-
able at https://kurata35.bio.kyutech.ac.jp/Cross-attention_PHV/ and https://github.com/kuratahiroyuki/
Cross-Attention_PHV, respectively.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Viral infections represent a major health concern worldwide.
The alarming rate at which severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) spreads, for example, led to a world-
wide pandemic. According to the World Health Organization, more
than 280 million people have been infected with SARS-CoV-2, and
5 million people had died by December 2021 [1].
Viruses enter host cells by interacting with receptors on the
plasma membrane or by inducing endocytosis or membrane fusion
[2–4]. To create an environment that promotes clone proliferation,
viruses then incorporate its genetic material into the host genome
to hijack host cell functions such as the cell cycle and apoptosis [5–
7]. In these viral processes, protein–protein interactions (PPIs) play
critical roles. Therefore, the identification of human and virus PPIs
is crucial for understanding the infection mechanism and host
immune responses and for discovering effective drugs. Experimen-
tal methods including mass spectrometry-based proteomics and
yeast two-hybrid assays are widely used to identify human-virus
PPIs (HV-PPIs). Specifically, high-throughput methods provided a
large amount data related to PPIs [8]. However, these experimental
methods are not suitable for measuring all protein pairs because
they are time-consuming, expensive, and laborious. To comple-
ment these existing experimental methods, various computational
approaches have been adapted. Many protein structure–based PPI
predictors have been proposed [9–11], but these tools are limited
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to predicting proteins for which the structure is known. As amino
acid sequences are abundant and accessible, sequence-based pre-
diction methods using machine and deep learning approaches have
attracted attention.

Eid et al. proposed a sequence-based HV-PPI predictor, Denovo,
which exhibited biological soundness and robust predictions by
using two important methods [12]. First, they constructed test
datasets that included PPIs of viruses that are taxonomically far
from viruses involved in PPIs of the training dataset according to
rank in a taxonomy tree. Second, they employed a ‘‘dissimilarity-
based negative sampling” method. Generally, negative data are
essential for training models, but databases including non-
interacting protein pairs do not exist, as far as we know. Therefore,
negative samples need to be generated artificially. Many studies
randomly sampled negative PPI pairs without any experimentally
verification [13], but this resulted in the generation of numerous
false-negative results [14]. To deal with this issue, a
dissimilarity-based negative sampling method was used.

In the prediction of PPIs using machine learning models, amino
acid sequences were encoded based on physicochemical proper-
ties, domain profiles, and sequence composition [15,16]. Zhou
et al. and Alguwaizani et al. generated feature vectors using com-
positional information to build SVM models [17,18]. Their meth-
ods, which were evaluated with Denovo’s datasets, predicted HV-
PPIs with an accuracy (AC) of around 85 %. Furthermore, to enable
predictions involving unknown viruses, the models were evaluated
with a test dataset that excluded the virus species employed in the
training dataset.

It is difficult for classical machine learning methods to extract
local sequence patterns because they do not directly encode amino
acid sequence-order information. Deep learning–based models
have overcome such problems. For example, Yang et al. embedded
local features such as binding motifs into feature matrices and cap-
tured their patterns using a convolutional neural network (CNN)
[19]. They applied two different transfer learning methods to
improve the generalizability of the model. Liu-Wei et al. developed
a CNN-based HV-PPI predictor called DeepViral [20] by using not
only sequence data but also disease phenotypes such as signs
and symptoms.

Recently, the word2vec [21] and doc2vec [22] methods, which
were invented in the field of natural language processing, have
been applied for various biological predictions, including DNA
N6-methyladenine site prediction [23], bitter peptide prediction
[24], anti-virus peptide prediction [25], and prediction of
compound-protein interactions [26]. These methods employ unsu-
pervised embedding techniques to vectorize documents and
words. For the prediction of HV-PPIs, Yang et al. used doc2vec-
based embedding to extract contextual information from amino
acid sequences [27]. We developed the long short-term memory
LSTM-PHV [28] by adopting word2vec to consider consecutive 4-
mers of amino acid sequences as words and captured the repre-
sented contextual information using an LSTM-based neural net-
work. We demonstrated that LSTM-PHV accurately predicted HV-
PPIs, whereas LSTM-PHV exhibited high computational and mem-
ory costs due to the recurrent LSTM computations. These methods
exhibited good PPI prediction performance, but there is still room
for improvement in predicting PPIs of unknown virus species.

To overcome such problems, we developed a novel sequence-
based HV-PPI prediction model named cross-attention PHV. Neural
networks have led to breakthroughs in various fields including nat-
ural language processing [29,30] and image processing [31,32]. We
adopted the cross-attention PHV, an attention-based neural net-
work, because the attention mechanisms directly capture the com-
plicated relationship among local sequence features than CNN-
type and RNN-type neural networks. Furthermore, we proposed
the cross-attention network which extracts some relationships
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between local sequences in the human and virus proteins by
simultaneously inputting the human and virus sequences-related
information into a single attention-based neural network. It should
be noted that this is the first application of cross-attention to PPI
prediction, to the best of our knowledge. Furthermore, we applied
a one-dimensional-CNN (1D-CNN) approach to increase the calcu-
lation speed, which resulted in extending the allowable length of
protein sequences for training to 9000 residues, whereas recent
neural network-based methods target proteins with sequence less
than 2000 residues. The proposed method outperformed state-of-
the-art models on Denovo’s datasets and accurately predicted
unknown viral HV-PPIs.
2. Materials and methods

2.1. Dataset construction

We employed a benchmark dataset constructed by Eid et al. to
compare the cross-attention PHV with previous models and con-
structed two datasets to assess the generalizability and robustness
of models without overestimating [12]. The numbers of long and
short proteins were presented in the Table S1.

2.1.1. Denovo’s dataset
Firstly, we used Denovo’s dataset which was used in many pre-

vious studies for HV-PPIs prediction. It consists of a training data-
set with 5020 positive and 4734 negative samples and an
independent test dataset with 425 positive and 425 negative sam-
ples [12]. We removed from the training dataset HV-PPIs that
involved proteins with non-standard amino acids. The resultant
training dataset included 5016 positive samples and 4732 negative
samples.

2.1.2. Human–unknown virus PPI dataset
Secondly, to verify whether our proposed model predicts PPIs

involving unknown viruses, we constructed a human–unknown
virus PPI (HuV-PPI) dataset consisting of datasets of three influenza
viruses, H1N1, H3N2, and H5N1. The HuV-PPI datasets were com-
posed of training datasets without any samples of influenza viruses
and the independent test datasets that included only samples of
the influenza viruses, as shown in Table 1. In each dataset, to
reduce the bias depending on the sample sizes in positive and neg-
ative samples, we randomly collected the negative samples so that
the number of negative samples was equal to that of positive sam-
ples. Each dataset was divided into the training and validation data
at a ratio of 4:1.

Details regarding construction of the HuV-PPI datasets are
described as follows. The PPIs and protein sequences were down-
loaded from the HVIDB [33] and UniProtKB (Swiss-Prot and
TrEMBL) databases [34], respectively. We then removed the HV-
PPIs involving proteins with a length of less than 30 or greater than
9000 residues and included non-standard amino acids. Negative
samples were constructed using the dissimilarity-based negative
sampling method reported by Eid et al. [12] with the same param-
eters as in our previous study [28]. Eid et al. hypothesized that the
virus proteins with similar sequences could interact with the many
common host proteins. This method uses a sequence similarity
measure to search the protein pairs that are unlikely to interact
with each other. When virus protein A interacts with human pro-
tein B, the method assumed that virus protein C, which exhibits
less sequence similarity to virus protein A at an identity threshold
of T, does not interact with human protein B. The pair of human
protein B and virus protein C is thus a candidate negative sample.
According to this approach, we compiled the negative PPI samples
as follows. We combined human proteins registered in the



Table 1
Statistical features of the HuV-PPI dataset.

Name Virus in training data Virus in test data Training samples Test samples

H1N1 Viruses other than H1N1 H1N1 64,934 18,136
H3N2 Viruses other than H3N2 H3N2 81,554 1516
H5N1 Viruses other than H5N1 H5N1 81,868 1170
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UniProtKB/Swiss-Prot database with virus proteins included
among the positive PPI samples. From the resulting human and
virus protein pairs, we removed the pairs of the positive PPIs and
further deleted the pairs of the human proteins and virus proteins
that exhibited higher similarity (T > 0.2) to the human protein-
interacting virus proteins. We computed the sequence similarities
for all the pairs of virus proteins included in the positive PPI sam-
ples by using the Needleman-Wunsch algorithm with BLOSUM62
[35].
2.1.3. Human–SARS-CoV-2 PPI dataset construction
Thirdly, to investigate the usefulness of prediction in human-

SARS-CoV-2 PPIs, we constructed the human-SARS-CoV-2 PPI data-
set. PPIs between human and SARS-CoV-2 were downloaded from
the BioGRID database (COVID-19 Coronavirus Project 4.4.205) [36].
The sequence of each protein was retrieved from the UniProtKB
database [34]. We removed PPIs involving proteins with a length
of greater than 9000 residues or less than 30 residues and those
that included non-standard amino acids. The remaining 14,218
PPIs were used as positive samples. Negative samples were gener-
ated by applying the dissimilarity-based negative sampling
method to human proteins retrieved from the UniProtKB/Swiss-
Prot database [34]. The identity threshold was set to 0.2. The resul-
tant dataset was named the human–SARS-CoV-2 PPI dataset. To
build the balanced and imbalanced datasets, negative samples
were randomly selected so that the ratios of positive to negative
samples were 1:1 and 1:5, respectively. While non-interacting pro-
tein pairs are extremely abundant than interacting ones, we
included 5 times more negative samples than positive samples in
the data in terms of sample size and model training time. As shown
in Table 2, the balanced and imbalanced datasets consisted of
28,436 and 85,308 samples, respectively. The resultant datasets
were divided into training and test datasets at a ratio of 4:1.
2.2. Feature encoding methods

The query sequences of human and virus proteins were encoded
into feature matrices using word2vec, which generates distributed
representations of words through a task that predicts a target word
from its surrounding words (Continuous Bag-of-Words Model;
CBOW) or predicts surrounding words from a target word (Contin-
uous Skip-Gram Model; Skip-Gram). Although CBOW was
employed in our previous study due to low computational cost
[28], Skip-Gram was used in the present study because of its
greater capacity to learn contextual information than CBOW [21].
Protein sequences were tokenized into consecutive k-mer amino
acids (Fig. 1A).

To train the word2vec model, we used the protein sequences in
the UniProtKB/Swiss-Prot database [34] (Fig. 1B). Sequences with
non-standard amino acids and those with a length greater than
Table 2
Statistical features of the SARS-CoV-2-PPI dataset.

Dataset All samples Positive samples

Balanced 28,436 14,218
Imbalanced 85,308 14,218
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9000 residues were excluded, and redundant sequences were then
removed using CD-HIT with a threshold of 0.9 [37]. The remaining
sequences were used to train the word2vec model. The maximum
distance between a target k-mer and its surrounding k-mers (win-
dow size) and training iteration were set to 5 and 100, respectively.

Consecutive k-mer amino acids of protein sequences were
transformed by the trained word2vec model into 128-
dimensional feature vectors. These vectors were concatenated in
the order of the sequences (Fig. 1C) to arrange the feature matrixes
with a shape of (9000 � k + 1) � 128, where zero-padding was
applied so that the maximum sequence size was 9000. We con-
structed the word2vec model using Genism (version: 3.8.3) in
the Python package (version: 3.8.0).

2.3. Neural networks

2.3.1. 1D-CNN with max-pooling layer
To extract the features of local sequences such as binding

motifs, 1-D convolutional layers were used. In these layers, input
matrix X with n length and s channels was converted to feature
matrix C with ðn�wÞ=t þ 1 length and f channels using sliding
with shift width t and f filters with size w. The i-th element Ci;k

of the matrix generated by the k-th filter Mk is given by:

Ci;k ¼
Pw

j¼1

Ps
l¼1Mk;j;lXiþj�1;l 1 � i � n�wð Þ=t þ 1;1 � k � fð Þ ð1Þ

The pooling layer was placed at the position following the con-
volutional layers to suppress overfitting and increase generaliza-
tion ability. The max-pooling layer samples the maximum values
from the certain area of the input as follows:

Pi;k ¼ max Ci;k;Ciþ1;k; � � � � � � Ciþp;k

� � ð2Þ
where p represents the size of the pooling window. Zero-padding
was applied to the input matrix so that the lengths of the input
and output of the pooling layer were the same. A global max-
pooling layer generated a vector by sampling the maximum value
from each channel of the output as follows:

Pk ¼ max C1;k;C2þ1;k; � � � � � � C n�wð Þ=tþ1;k
� � ð3Þ
2.3.2. Attention mechanism
Attention mechanism has been an important contributor to the

remarkable advances that have occurred in neural network devel-
opment, and it has been incorporated in recent neural network
models such as BERT [38] and Transformer [39]. In the attention
mechanism, output feature Yout is generated by updating pre-
updated feature Ypre with information-giving feature X. For the
update, three representations, known as Query, Key, and Value,
are generated by applying three different learnable weights, WQ ,
WK , and WV , to these features, as follows:
Negative samples Human proteins Virus proteins

14,218 14,426 14
71,090 20,192 14



Fig. 1. Workflow of word2vec-based encoding. (A) Amino acid sequences were converted into arrangements of consecutive 4-mers. (B) Amino acid sequences in the
UniProtKB/Swiss-Prot database were converted as representations of 4-mers and used for training the word2vec model. (C) Each 4-mer in the amino acid sequence was
converted into a feature vector using the trained word2vec model. The resultant feature vectors were concatenated into a feature matrix.
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q yprei

� � ¼ yprei WQ ð4Þ

k xið Þ ¼ xiW
K ð5Þ

v xið Þ ¼ xiW
V ð6Þ

where yprei and xi indicate the i-th feature vectors of Ypre and X,
respectively, and q �ð Þ, k �ð Þ, and v �ð Þ represent the transformation
functions for calculating Query, Key, and Value, respectively. Next,
attention weight ai;j, which determines the degree of influence of
xj on the calculation of updated vector youti of yprei , is given by scaling
the dot-product between Key and Query with dimension dkey of Key
and by applying the masking and softmax functions to the scaled
dot-product, as follows:

ai;j ¼ softmax Mask
q yprei

� �
k xj
� �Tffiffiffiffiffiffiffiffi

dkey

p
 ! !

ð7Þ

In the masking, the elements of padding position are set to
minus infinity. Consequently, the effect of zero-padding can be
neglected after applying the softmax function. To selectively
extract information from the Value, depending on the relationship
between Key and Query, the weighted sum of Value is calculated
with the attention weights, as follows:

Attentioni ¼
Xn
j¼1

ai;jv xj
� � !

ð8Þ

Next, the feature Yout is updated as follows:

yout;i ¼ AttentioniWo þ yprei ð9Þ

where learnable weight Wo is applied to the weighted sum. In the
multi-head attention layers, the weighted sums are calculated in
parallel in each ‘‘head”, concatenated, and applied by Wo.
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2.4. Cross-attention PHV

As shown in Fig. 2, cross-attention PHV is composed of three
sub-networks: (1) convolutional embedding modules, (2) a cross-
attention network module, and (3) a feature integration network.
The key technologies are to use 1D-CNN, which effectively extracts
the features of long-length sequences of human and virus proteins
and to develop a cross-attention module that extracts some feature
interactions between human and virus proteins as the core of the
learning method. Importantly, the attention modules represent
human and virus proteins to capture global information regarding
the amino acid sequences. We crossed the two attention modules
to mutually consider the features of human and virus proteins.

In the convolutional embedding modules, the word2vec-
generated matrices of human and virus proteins were filtered by
1D-CNN layers with 128 filters and by max-pooling layers with a
pooling window of 3. The size and shift width of the filters were
set to 20 and 10, respectively. Based on a previous study [40], we
inserted a dropout layer with a ratio of 0.5 between the 1D-CNN
and the pooling layers. This transformation provides two advan-
tages. One advantage is that it significantly decreases computa-
tional cost and memory usage for the next layers due to the
reduced dimension of the feature matrix. Another advantage is that
each vector of these feature matrices is generated from consecutive
k-mer amino acids, which makes it possible to learn the dependen-
cies among local patterns such as motifs.

In the cross-attention network module, the filtered matrices of
human and virus proteins in the first sub-network were input into
cross-attention modules consisting of two multi-head attention
modules. We crossed the two attention modules to extract the fea-
tures of human and virus proteins while referring to virus and
human protein features, respectively. Specifically, one attention
module applied the Query from the human feature matrix to the
Keys from the virus feature matrix to calculate the attention



Fig. 2. Structure of cross-attention PHV. Cross-attention PHV is composed of three sub-networks. The word2vec (W2V)-based feature matrices of humans and viruses were
input into the convolutional embedding module. To extract interaction features between two protein sequences, multi-head attention layers were employed in the cross-
attention module. Finally, the feature vectors generated by the global max-pooling layer were concatenated to compute a final score through three linear layers.
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weights, generating the attention of the Values of the virus feature
matrix. This attention was used to extract virus protein features
related to the Query from human protein features. In the same
manner, the other attention module extracted the human protein
features related to the virus protein features. The number of heads
and the dimension of feature representations (Query, Key, Value)
were set to 4 and 32, respectively.

In the feature integration network, the feature matrices pro-
cessed by the cross-attention modules were transformed into fea-
ture vectors by global max-pooling layers having a dropout layer
with a dropout ratio of 0.5. The feature vectors were then concate-
nated and transferred to the three fully connected layers to com-
pute the final output. The hidden vectors from the first and
second fully connected layers were dropped out at a ratio of 0.3.
The vector dimensions from the first and second fully connected
layers were set to 64 and 16, respectively. We constructed the
whole neural network model using PyTorch in the Python package
(version: 3.8.0).

2.5. Training and testing

In the training scheme, loss was calculated using a binary cross-
entropy function for each mini-batch of size 32. Optimization was
executed using the Adam optimizer with a learning rate of 0.0001.
To prevent over-learning, the training was stopped (early stopping)
when the maximum area under the curve (AUC) was not improved
for 20 consecutive epochs.

2.6. Measures

Six statistical measures were employed to evaluate the trained
model: sensitivity (SN; recall), specificity (SP), accuracy (AC), Mat-
thews correlation coefficient (MCC), F1-score (F1), and AUC. The
formulas for calculating the measures other than AUC are given by:
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SN ¼ TP
TPþ FN

ð10Þ
SP ¼ TN
TNþ FP

ð11Þ
AC ¼ TPþ TN
TPþ TNþ FPþ FN

ð12Þ
MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TNþ FNð Þ � TPþ FPð Þ � TNþ FPð Þ � TPþ FNð Þp ð13Þ
F1 ¼ 2� precision� recall
precisionþ recall

ð14Þ

where TP, FP, TN, and FN indicate the numbers of true-positive,
false-positive, true-negative, and false-negative samples, respec-
tively. The threshold responsible for determining whether PPIs
occur was set to 0.5. In addition to the standard measurements of
SN, SP, AC, and AUC, to evaluate the performances on imbalanced
datasets, Matthews correlation coefficient (MCC) and F1-score
(F1) were used. MCC is regarded as a good measure that considers
all four entries of the confusion matrix. F1 is a reasonable accuracy
metric given by the precision and recall that take into account class
imbalance. F1 scores ignore the count of true negatives and is highly
influenced by which class is labeled as positive. These measures
were computed by using scikit-learn of the Python package [41].
2.7. Visualization of features

To visualize feature vectors, we used t-distributed stochastic
neighbor embedding (t-SNE) [42]. Compared with classical linear
mapping methods such as principal component analysis and mul-
tiple discriminant analysis, t-SNE precisely projects both local and
global structures of high-dimensional vectors into low-
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dimensional representations and is suitable for visualization of
nonlinear data. The perplexity in t-SNE was set to 50.
Fig. 4. Comparison of performance between the word2vec-based and binary
encodings in cross-attention PHV. Models trained via 5-fold cross-validation were
evaluated with Denovo’s test dataset.

Fig. 5. Comparison of performance between cross-attention–based and self-atten-
tion–based neural networks. Models trained via 5-fold cross-validation were
evaluated with Denovo’s test dataset.
3. Results and discussion

3.1. Optimization of cross-attention PHV

We encoded the protein sequences into the feature matrices
using the word2vec model and trained cross-attention PHV using
Denovo’s training dataset. To achieve the best model, we optimized
the k-mer value between 2 and 4 via 5-fold cross-validation, where
the all k-mers in sequences were covered by the training dataset of
word2vec. The training data were divided into 5 subsets, and then
4 subsets were used for training the model; the remaining subset
was used for validation. Cross-attention PHV presented AUCs > 0.97
on average, and the 4-mer model provided the highest values in
terms of AC, MCC, AUC, and F1 (Fig. 3). Thus, we set the k-mer
value to 4.

To demonstrate the superiority of word2vec, we used a binary
encoding as the reference to construct the binary encoding–based
cross-attention PHV. The binary encoding concatenated the one-
hot vectors of each amino acid in the order of the protein sequence.
The word2vec-based and binary encoding–based models were
trained via 5-fold cross-validation on Denovo’s training dataset
and evaluated using Denovo’s test dataset. To compare the two
encoding methods, a two-sample t-test was applied to the AUC
and AC values. As shown in Fig. 4, the word2vec-based model
(cross-attention PHV) provided significantly better performance
than the binary encoding–based model (AUC; p-value < 0.01, AC;
p-value < 0.05), suggesting that word2vec efficiently represents
protein sequence contextual information.

The cross-attention modules were expected to extract features
of human and virus proteins by considering various relationships
between local patterns in the two protein sequences. We compared
cross-attention PHV with a self-attention–based neural network in
which the features of human and virus proteins were input sepa-
rately to multi-head attention modules without any interactions
(Fig. S1). Both the cross-attention PHV and the self-attention–
based neural network were trained via 5-fold cross-validation with
Denovo’s training dataset. The cross-attention PHV presents a little
higher values in 5 out of 6 measurements than the self-attention
network on the independent test (Fig. 5). Particularly, the AUCs
of the cross-attention PHV was significantly higher than that of
the self-attention-based neural network (one-sided two-sample
paired t-test; p-value < 0.05). AUC is independent of the threshold
value and measures the abilities of model’s discriminability in bin-
ary classification. We suggest that the extraction of relationship
between local sequences in human and virus proteins is effective
for the human-virus PPI prediction.
Fig. 3. Prediction performance of word2vec-based cross-attention PHV with
respect to k-mer value. The models were evaluated via 5-fold cross-validation on
Denovo’s training dataset.
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3.2. Prediction of cross-attention PHV for long proteins

To validate the performances of cross-attention PHV in PPIs
with long proteins, we compared the prediction performances of
the PPIs composed of long human or virus proteins with those
composed of short human and virus proteins in the independent
test with Denovo’s dataset, where the length of long proteins is
more than 2000 and that of short proteins is less than 2000. As
shown in Table S2, in prediction for long proteins, cross-attention
PHV presented the AUC of more than 0.96 and accuracies of more
than 0.94 which are slightly low or comparable measure values as
that for short proteins, respectively, suggesting the usefulness of
cross-attention PHV for the prediction of PPIs with long proteins.
3.3. Comparison of state-of-the-art methods

We compared the performance of cross-attention PHV with
seven state-of-the-art methods, including Denovo [12], Zhou
et al.’s SVM-based method [17], Alguwaizani et al.’s SVM-based
method [18], Yang et al.’s random forest–based and Doc2vec-
based method [27], DeepViral [20], and Yang et al.’s CNN-based
method [19], using Denovo’s test dataset. As shown in Table 3,
cross-attention PHV predicted the PPIs with an AC value >0.95
and outperformed the state-of-the-art models in five metrics,
including SN, AC, AUC, MCC, and F1, demonstrating the superiority
of cross-attention PHV. Generally, conventional descriptors includ-
ing amino acid composition, physicochemical properties and evo-
lutionary information have difficulty in capturing contextual
information of sequences because they do not hold the information
regarding the order of amino acid residues. On the other hand, the
word2vec, which is employed by cross-attention PHV, captures the
contextual information because it learns the distributed represen-
tation of words. Compared with the CNN-type and RNN-type neu-
ral networks, attention-based neural networks directly extract
some relationships between local sequence features. We consider
that the high prediction performance of cross-attention PHV is
attributed to capturing of contextual, interrelated information



Table 3
Comparison of the performance of cross-attention PHV with existing state-of-the-art models on Denovo’s test dataset. Data regarding the performance of existing models were
obtained from the respective papers. Bold values indicate the highest value for each measurement.

SN SP AC MCC AUC F1

Denovo [2015] 0.807 0.831 0.819 NA NA NA
Zhou et al.’s model [2018] 0.800 0.889 0.845 0.692 0.897 NA
Alguwaizani et al.’s model [2018] 0.864 0.866 0.865 0.729 0.926 NA
Yang et al’s model (Doc2vec + RF) [2020] 0.903 0.962 0.932 0.866 0.981 0.931
DeepViral (seq) [2021] 0.894 0.969 0.931 0.865 0.960 0.929
DeepViral (joint)[2021] 0.903 0.976 0.939 0.881 0.976 0.937
Yang et al.’s model (CNN) [2021] 0.908 0.974 0.941 NA NA 0.939
Cross Attention-PHV 0.944 0.967 0.956 0.912 0.988 0.955
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between the two feature matrices of human and virus protein
sequences, which are critically important for the PPI prediction.

3.4. Performance in predicting PPIs between humans and unknown
virus species

To evaluate the PPI prediction performance between humans
and unknown viruses, we employed the HuV-PPI (H1N1, H3N2,
and H5N1) datasets. It should be noted that the training dataset
excluded the PPIs of the influenza species employed in the inde-
pendent test dataset. Twenty percent of the training data were
used for validation of early stopping. We compared cross-
attention PHV with LSTM-PHV [28], which exhibited the best per-
formance in the year 2021. In the training of LSTM-PHV, proteins
with a sequence length greater than 1000 residues were removed
in the same manner [28] because the method has a significant
memory and time cost. As shown in Fig. 6, cross-attention PHV
exhibited AC and AUC values >0.91 and >0.96, respectively, on
the independent datasets. Cross-attention PHV outperformed
LSTM-PHV, demonstrating the high generalizability of cross-
attention PHV. As the encoding method (word2vec) used in
Fig. 6. Comparison of the performance of cross-attention PHV and LSTM-PHV
in predicting PPIs for unknown viruses. (A) Performance on the H1N1 dataset,
which regards H1N1 as an unknown virus. (B) Performance on the H3N2
dataset, which regards H3N2 as an unknown virus. (C) Performance on the H5N1
dataset, which regards H5N1 as an unknown virus.
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cross-attention PHV is the same as that of LSTM-PHV, the cross-
attention–based network was found to be more predictive than
the LSTM-based network. Furthermore, cross-attention PHV does
not require the recursive calculations employed by LSTM-PHV,
which greatly reduces computation time. This is also major advan-
tage of cross-attention PHV, as it enables us to process long
sequences for the training scheme.
3.5. Performance in predicting PPIs between humans and SARS-CoV-2

We also investigated whether cross-attention PHV can predict
PPIs between humans and SARS-CoV-2 using the human–SARS-
CoV-2 PPI dataset. The models were trained via 5-fold cross-
validation with the training dataset and evaluated with its inde-
pendent test dataset. All measures were averaged over the five
models. We characterized cross-attention PHV in comparison with
LSTM-PHV and machine learning methods including decision tree
(DT), linear regression (LR), random forest (RF), and support vector
machine (SVM) with parameters as show in Table S3. To train the
LSTM-PHV, we removed PPIs involving proteins with a sequence
length greater than 1000 residues to minimize the computational
cost. In those machine learning methods, each amino acid in the
human and virus protein sequences was transformed into a feature
vector by one-hot encoding and word2vec, and each element of the
vectors was averaged in the sequence direction. As shown in Fig. 7,
cross-attention PHV exhibited AUCs > 0.95 with both the balanced
and imbalanced datasets. Furthermore, cross-attention PHV exhib-
ited better performance than LSTM-PHV for all measures except SN
(Fig. 7) and machine learning-based methods for all measures
except SP (Tables S4-S5). In particular, when the model was trained
Fig. 7. Comparison of the performance of cross-attention PHV with LSTM-PHV in
predicting human–SARS-CoV-2 PPIs. (A) Performance on a balanced dataset
(positive:negative = 1:1). (B) Performance on an imbalanced dataset (positive:
negative = 1:5).
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on a limited number of negative samples in the balanced dataset,
cross-attention PHV demonstrated higher generalization ability
than LSTM-PHV.
3.6. Visualization and analysis of feature vectors and matrices

To investigate how each subnetwork of cross-attention PHV
contributes to the prediction of PPIs between humans and
unknown viruses, t-SNE was used to visualize the three features
during testing of the HuV-PPI datasets: the word2vec-based fea-
ture matrices, hidden feature matrices, and feature vectors
(Fig. 2). Before visualization, the word2vec-based feature matrices
and hidden feature matrices were transformed into vectors by
sampling the maximum values of each feature. The feature vectors
for humans and viruses were then concatenated. As shown in
Fig. 8, for all the three datasets, the distributions of positive and
negative PPI samples became clearly separated during testing, sug-
gesting that the convolutional embedding and cross-attention
modules extract important features responsible for the prediction.
Furthermore, we visualized the concatenated human and virus
feature vectors. Interestingly, the shapes of the feature vector
Fig. 8. t-SNE–based visualization of features generated during prediction of PPIs using
matrices, and feature vectors were retrieved from the neural networks. The feature matri
The human and virus feature vectors were then concatenated. The t-SNE maps for the H
Blue, yellow, green, and red marks indicate false-positive, false-negative, true-negative, a
in this figure legend, the reader is referred to the web version of this article.)

5571
distributions differed between humans and viruses (Fig. 9), reflect-
ing the evolutionary or taxonomic differences between human and
virus proteins.
3.7. Limitation

Our proposed neural network was able to increase the allow-
able length of protein sequences to 9000 residues because a 1D-
CNN was adopted to reduce the dimension of the sequences. How-
ever, such a feature extraction method makes it difficult for the
attention weight to identify k-mer amino acid residues responsible
for interactions. In future work, we hope to propose a methodology
to identify amino acids important for interactions.
3.8. Webserver construction

To facilitate access for the research community, we built a web-
server application of the HV-PPI prediction tool using Apache
(2.4.18) and Flask (1.1.2). Users can access the server from
https://kurata35.bio.kyutech.ac.jp/Cross-attention_PHV/ to input
the HuV-PPI test datasets. The word2vec-based feature matrices, hidden feature
ces were transformed into vectors by sampling the maximum values of each feature.
1N1, H3N2, and H5N1 datasets are shown at the left, center, and right, respectively.
nd true-positive samples, respectively. (For interpretation of the references to colour

https://kurata35.bio.kyutech.ac.jp/Cross-attention_PHV/


Fig. 9. t-SNE–visualized map of the respective human and virus feature vectors on the HuV-PPI datasets.

S. Tsukiyama and H. Kurata Computational and Structural Biotechnology Journal 20 (2022) 5564–5573
or upload human and virus sequences of interest. For other over-
views, refer to the help page of the website.
4. Conclusions

To construct the cross-attention PHV predictor for PPIs between
humans and viruses, we applied two key technologies, a cross-
attention mechanism and a 1D-CNN. The cross-attention mecha-
nism was very effective in achieving enhanced prediction and gen-
eralization to unknown virus species. Application of the 1D-CNN to
word2vec-generated feature matrices extended the allowable
length of protein sequences to 9000 residues for training scheme.
We employed the word2vec model to embed the protein
sequences and optimized the k-mer value of the word2vec model.
Cross-attention PHV outperformed the state-of-the-art models for
the five measures of SN, AC, MCC, AUC, and F1 using Denovo’s
benchmark dataset. Furthermore, cross-attention PHV outper-
formed the best model of the year 2021 (LSTM-PHV) in predicting
PPIs for unknown viruses. Finally, we demonstrated that cross-
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attention PHV captures the features responsible for virus infec-
tion–related proteins and distinguishes taxonomic and evolution-
ary differences between human and virus proteins. While we
employed a linguistic approach using the word2vec and attention
mechanism (Transformer encoder) in this study, we did not con-
sider any conventional descriptors including physicochemical, evo-
lutionary and structural properties. We can combine the linguistic
approach and conventional descriptors for enhanced prediction
performance. Furthermore, since recently deep learning methods
have made a breakthrough in constructing 3D structures in pro-
teins [43,44], it would be interesting if we integrate the recent
structural approaches into the linguistic approaches.
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