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Time-varying data processing with nonvolatile
memristor-based temporal kernel
Yoon Ho Jang1,2, Woohyun Kim 1,2, Jihun Kim1,2, Kyung Seok Woo1,2, Hyun Jae Lee1,2, Jeong Woo Jeon1,2,

Sung Keun Shim1,2, Janguk Han1,2 & Cheol Seong Hwang 1,2✉

Recent advances in physical reservoir computing, which is a type of temporal kernel, have

made it possible to perform complicated timing-related tasks using a linear classifier. How-

ever, the fixed reservoir dynamics in previous studies have limited application fields. In this

study, temporal kernel computing was implemented with a physical kernel that consisted of a

W/HfO2/TiN memristor, a capacitor, and a resistor, in which the kernel dynamics could be

arbitrarily controlled by changing the circuit parameters. After the capability of the temporal

kernel to identify the static MNIST data was proven, the system was adopted to recognize the

sequential data, ultrasound (malignancy of lesions) and electrocardiogram (arrhythmia), that

had a significantly different time constant (10−7 vs. 1 s). The suggested system feasibly

performed the tasks by simply varying the capacitance and resistance. These functionalities

demonstrate the high adaptability of the present temporal kernel compared to the

previous ones.
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Convolutional neural networks (CNNs), which are com-
posed of a convolutional layer and a fully connected
layer1, show outstanding performance in static image

processing (recognition and classification)2,3. However, when the
temporal order of each input vector and the correlation between
the input vectors are essential, such as for natural language
recognition or translation, a method of processing the input
overtime is required, and CNNs are not suitable for this purpose4.
Such an event-sequence or time-dependent network operation
can generally be represented by the relationship between the
present network state, the input, and the previous network state.

A typical network with such characteristics is a recurrent
neural network (RNN) with the long-short-term memory learn-
ing rule5, which mitigates the vanishing gradient-descent problem
of the classical RNN6. Nonetheless, these artificial neural net-
works perform vast amounts of multiplication and accumulation
(MAC) operations during the learning and inference steps. When
these calculations are performed using the conventional archi-
tecture in which the computing unit and memory are separated,
even with the latest graphics processing unit, the cost of achieving
the required processing speed and the energy consumption are
enormous7.

In this regard, the recent upsurge of studies on neural networks
that use a memristor-based cross-bar array (CBA) based on
Ohm’s law and Kirchoff’s law is notable8–13. If the memristor
used in such neural networks can process the event-sequence-
related and temporal information, it can achieve RNN func-
tionality. An even more desirable functionality is to extract the
features of the input information (raw data vector) using a
temporal kernel (TK) and feed them to the next classification
layer. A representative example of such a computing system is
reservoir computing (RC), which is composed of a reservoir and a
readout layer (FCN)14,15.

The core part of the RC system is the reservoir, where the
nonlinear transformation of the input signal is performed based
on the fading-memory properties, and the characteristics of the
input signal are projected into a rich enough feature space. The
result of the projection is called the reservoir state16.

The nonlinear dynamic filtering of RC can be regarded as a
specific type of a more general TK17–19, in which the time-varying
data can be efficiently handled by the fading-memory function-
ality of the reservoir. Nonetheless, RC may have severe limitations
in adapting different time scales of the input data due to its fixed
time constant of the specific fading-memory function. This may
not be the case for other types of TK, based on a physical kernel
combined with other circuit elements, as shown in this work.
Also, non-fading (or nonvolatile) memory can be used as the TK
because the time-varying input can be encoded into the TK by the
effects of the time constant of the entire circuit element. When a
memristor is used as the TK, its resistance must be determined by
the different input pulse signals with varying amplitudes and the
intervals between such input signals. If the input signals have
simple and obviously distinguishable patterns, a memristor can
sufficiently discern them by assigning different resistance values.
However, for complicated and similar input patterns, high
separability is required, which is usually challenging to achieve
with a given type of memristor20,21. Also, the input signals could
have substantially different time constants, which further severely
limits the memristor-based temporal kernel (reservoir)22,23. In
this case, a high-performance kernel machine applicable to
diverse circumstances can be created by incorporating additional
circuit components.

Recently, various studies were conducted on hardware-based
RC systems that use volatile memristors, in which a volatile
memristor was used to process a time-varying input20–23. In those
studies, the reservoirs were constructed based on ionic diffusion

dynamics (diffusive memristors), in which the spontaneously
decaying conductance of low-resistance state (LRS) of the diffu-
sive memristor provided the fading-memory function of a
reservoir.

However, there are several limitations in using such reservoir
dynamics. Firstly, the duration and interval of the input signal are
limited to the time range in which sufficient conductance decay
occurs. For this reason, in the previous studies, it took 1–20 ms
for one memristor to process 4-bit data, which is insufficient
for processing a large amount of data20,21. Secondly, obtaining
a reproducible reservoir state could be challenging. An Ag-
filament-based diffusive memristor exhibits stochastic
switching20, so the variation of the reservoir state will be large.
Finally, reservoir adaptation could be difficult to achieve, given
that the reservoir dynamics are totally determined by the material
property, which renders the previous system useful only for
applications with a time scale similar to that of the specific
memristor21–23.

In this study, a device based on an electron trap/detrap
mechanism was used to solve the aforementioned issues24,25. A
W/HfO2/TiN (WHT) memristor goes into an LRS when the trap
is filled with electrons and shifts to a high-resistance state (HRS)
when the trapped electrons are detrapped. Since the resistance
switching is based on the electron trapping and not the ionic
movement, reproducible results can be achieved (Supplementary
Fig. S1a–d)26,27. In addition, since the work functions between
the top and bottom electrodes differ only slightly, there is limited
built-in potential, so the device has high retention properties
(Supplementary Fig. S2a, b)25,28. Although the WHT memristor
has different time constants of operation according to its con-
ductance level (Supplementary Fig. S2c), it is insufficient to
achieve adaptability with a sufficiently large time constant range.
This problem could be solved by combining the memristor with a
capacitor (C) and a normal resistor (R). Under this circumstance,
the R–C time constant of the circuit can be varied, and the
memristor response to the temporal arrangement of the inputs
can be controlled.

Results
Figure 1a shows the TK system that can control the kernel
dynamics using a memristor, a normal resistor, and a capacitor
(1M1R1C). This is a structure in which the reservoir is replaced
with a 1M1R1C temporal kernel while maintaining the comput-
ing scheme of the RC system. In this TK system, the charging and
discharging of the capacitor transforms the signals applied to the
device into various forms so that the conductance state of the
memristor can be varied depending on the magnitude and
sequential arrangement of the input signal (Supplementary
Fig. S3a, b). The results of input processing in the kernel form a
memristor conductance vector (MCV), which becomes the input
of the subsequent FCN readout layer. Such a configuration of the
TK system allows the arbitrary variation of the response
dynamics by adjusting the sizes of the resistor, capacitor, and
pulse width, etc. Therefore, the optimized TK system can be
configured for tasks with vastly different time scales.

Device analysis. Figure 1b shows the measured current–voltage
(I–V) curve of the WHT device. During the electrical measure-
ment, the W top electrode (TE) was biased, while the TiN bottom
electrode (BE) was electrically grounded. The resistance of the
device was changed from HRS to LRS by a positive bias (SET),
and reverse switching was achieved by a negative bias (RESET).
In both SET and RESET, gradual switching appeared, as shown in
Fig. 1b and Supplementary Figs. S3a, b, which contributed to the
high performance of the TK system. Supplementary Fig. S3c
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shows the cross-sectional scanning transmission electron micro-
scopy (STEM) image of the WHT device, which revealed the W
TE, the TiN BE, and the 4 nm thick HfO2 layer between the TE
and BE. Supplementary Fig. S3d shows the X-ray photoelectron
spectroscopy (XPS) analysis of the W/HfO2 interface in the WHT
device. Analysis of the W peak in the XPS data revealed the
presence of tungsten sub-oxide (WOx, x < 2) and a WO3 layer.
The energy-dispersive X-ray spectroscopy line scan result (Sup-
plementary Fig. S3c, right portion) along the vertical line from TE
to BE in the STEM image implies that a thin WO3 was formed at
the W/HfO2 interface and WOx (x ≪ 3) was formed within the
W bulk. Therefore, the WOx may work as a voltage divider when
the voltage is applied to the device, which will cause gradual SET
and RESET performance29. This is a favorable characteristic,
allowing the TK to have various states. Moreover, this WHT
device does not have an electroforming step (Fig. 1b), which also
contributed to the stable resistance switching operation (Sup-
plementary Figs. S4–5 and Supplementary Note 1). W and TiN
have similar work functions of ~4.5 eV, which may render the
energy band profile symmetric30,31. The symmetric energy band
profile is unfavorable for fluent electronic bipolar resistive
switching (eBRS)25,28. However, the WO3 layer formed at the
W/HfO2 interface can induce a Schottky barrier, whereas the

HfO2/TiN interface constitutes a quasi-ohmic contact29,32.
Especially, the chemical interaction between the HfO2 and TiN
layers can produce defects within the HfO2 layer, which provide
the system with the electron traps that are necessary to induce
the eBRS mechanism. With the application of the positive bias
to the TE, the traps were filled with electrons that were injected
from the TiN BE through the quasi-ohmic contact, which swit-
ched the device to the LRS. Conversely, when the negative bias
was applied, the device switched back to the HRS as the trapped
electrons were detrapped, while the electron injection from the
TE was blocked by the Schottky barrier at the W/HfO2

interface28. Due to the presence of the WOx layer, there was no
need to set current compliance (CC) during the operation.

Temporal kernel generation. We implemented the TK by con-
figuring the circuit, as shown in Fig. 2a. Pulse streams were
generated by a pulse generator (PG), where input signal ‘1’ is
converted to a high level, and ‘0’ is converted to a low level. These
pulse streams were delivered to channel 1 (CH1) and channel 2
(CH2) of an oscilloscope (OSC). A 50Ω resistor was assigned to
CH1, which allowed monitoring of the input pulse shape. In CH2,
a 1MΩ resistor was connected to the device-under-test (DUT,
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circuit composed of a memristor, resistors, and a capacitor. CH1 shows the shape of the input pulse stream, and CH2 shows the voltage applied to a 1MΩ
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in the pulse set (marked by pink) and the right panel shows the circuit used in DC read (marked by blue). b The voltages applied to the memristor with a
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amplitudes represent ‘1’ and ‘0,’ respectively. The voltage across CH2 shows that the charging and discharging rates of the capacitor were asymmetric.
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the memristor) in series. From the estimated voltage from the
CH2 resistor, the voltage applied to the DUT was inferred. Since
the oscilloscope fixes the size of the CH2 resistor at 1 MΩ, the
overall series resistance to the memristor was adjusted by con-
necting a load resistor (RL), as shown in the figure. Also, a
capacitor was connected to the CH2 resistor in parallel, which
stored the charge supplied by the applied pulse voltage. In this
specific experimental setup, its value was fixed at 180 pF, but the
dynamic time constant of the TK system was varied by changing
RL and the capacitance. The measurement consisted of two steps.
In the first step, a pulse was generated at the PG, which caused
SET switching in the memristor, while the circuit part with the
semiconductor parameter analyzer (SPA) was deactivated (Fig. 2a
left panel). In the second step, the conductance state of the
memristor was read through the DC sweep using the SPA, while
the other parts of the circuit were deactivated (Fig. 2a right
panel).

Figure 2b shows the voltages transients over the memristor
with a ‘0101+reference pulse’ (left) and a ‘1010+reference pulse’
(right), and Fig. 2c shows the corresponding voltage transients
read at CH2. In these operations, 4 V, 200 μs, and 0 V, 200 μs
pulses were programmed to represent ‘1’ and ‘0’, respectively. The
initial resistance of the WHT memristor was set to 50MΩ when
measured at 0.5 V. The role of the last reference pulse is explained
as follows. The left panels of Fig. 2b and c show that since the first
signal was ‘0’, no voltage appeared up to 0.2 ms. When the first ‘1’
signal was applied, the DUT showed a peak of up to ~3.5 V due to
the involvement of the capacitive charging current, and it decayed
to ~1.5 V after the capacitor charging was completed. At the same
time, the CH2 voltage showed a corresponding gradual increase
in the capacitor voltage, which was saturated at ~2.5 V. When the
second ‘0’ signal came in, the capacitor was discharged and the
reverse current flowed into the DUT, which made its voltage
negative, while the CH2 showed gradual decay of the capacitor
voltage. It was noted from the CH2 voltage that the capacitor was
not completely discharged during the 0.2 ms duration of ‘0’
signal, so when the subsequent ‘1’ signal came in, the capacitive
charging current was not as high as in the previous ‘1’ signal case
(where the DUT voltage peaked only up to ~2.5 V). Such an effect
can be more evidently seen with the subsequent ‘1’ signal (the
reference pulse), as there was almost no peak in the DUT.
Therefore, in this case, the effective number of SET pulses applied
to the DUT was only two (the first and second ‘1’ among the total
three ‘1’s in the ‘01011’ sequence). After the entire pulse sequence
was over, the memristor resistance was 28.2 MΩ.

In the case of the right panels in Fig. 2b and c, in contrast, each
of the 1 signals is separated by 0 signals, and all the three ‘1’s in
the ‘10101’ sequence are effective, and they switched the DUT to
the SET state, which made its resistance 26.7 MΩ, despite the
application of the same number of set pulses (three) in the two
cases. It should be noted, however, that the last two peaks had a
lower effect in decreasing the memristor resistance than the first
one due to its lower peak height, which was induced by the
incomplete discharging of the capacitor during the intervening ‘0’
pulse cycle. This is not a demerit but actually a merit of this TK
system, which allowed even higher separability and adaptability.
Therefore, this TK system can recognize not only the different
input pulse numbers but also their timing. Figure 2b, c shows
several notable features. First, due to the built-in asymmetry of
the band profile of the WHT memristor, the resistance at the
positive bias of ~2.5 V was ~100 times lower than that at the
negative bias of ~1.5 V. Therefore, the charging was much faster
than the discharging. This is the first factor that allows the TK
system to have higher separability and adaptability. Second, the
capacitance and RL can be arbitrarily taken to vary the charging
and discharging times, which can eventually affect the

effectiveness of the voltage pulse applied to the memristor. Third,
the input voltage pulse height and duration are another knob that
can further change the TK dynamics. These features rendered the
TK system flexible and adaptable to the various requirements, as
shown in the next sections. The reference pulse ‘1’ after the pulse
stream is required to recognize the change in the charge
level. Without the last reference pulse, such a systematic variation
and examination of the memristor state control would have been
improbable.

The WHT memristor in this study shows both nonvolatile and
volatile memory properties, when its conductance is low and
high, respectively. In this study, the WHT memristor was
operated within the conductance range showing nonvolatile
characteristics, but outside that range, the WHT device shows
fading conductance state (Supplementary Fig. S2c). Therefore,
depending on the operation scheme, the 1M1R1C kernel can also
perform a reservoir function, and the results are shown in
Supplementary Fig. S6. In this study, time-series data were
processed based on the unique characteristics of 1M1R1C, not the
fading memory.

Modifying the temporal kernel dynamics. In this TK system
with the given WHT memristor property and capacitance, RL and
the pulse height/duration were varied to examine the separability
of the memristor. The capacitance could also be varied, but it was
fixed in this experiment section. Figure 3 shows several examples
of the different degrees of separability of the TK system when
these parameters were varied. The examples show the current
value read at 0.5 V after the 16 different input patterns, from
‘0000’ to ‘1111’, were programmed to the PG, with the additional
reference pulse added last. Since the output current depends on
the initial resistance, the resistance of the WHT memristor in this
experiment was reset to a constant value (50 MΩ at 0.5 V) before
measurement. The x-axis numbers correspond to the different
input patterns described in the inset table in Fig. 3e, and the
different parameters, such as RL, the input pulse, and the refer-
ence pulse, for each graph in Fig. 3 are summarized in Table 1. It
should be noted that in Fig. 3, the y-axis scales of each graph were
varied to easily compare them. All the detailed pulse responses
and analyses are included in Supplementary Figs. S7–11 and
Supplementary Note 2. In Fig. 3a, wherein RL= 1 MΩ, the signal
pulse = 4 V, 100 µs, and the reference pulse = 4 V, 100 µs, the
five patterns, ‘0000’, ‘0001’, ‘0011’, ‘0111’, and ‘1111’ are not
clearly distinguished (an analysis of the separation of these inputs
is shown in Supplementary Fig. S12). It was also noted that the
‘1000’ pattern resulted in the highest memristor conductance,
although there were only two SET pulses (the first 1 and the
reference pulse at the last SET pulse). This is because the refer-
ence pulse induced the highest peak voltage to the memristor
because the interval between the two pulses, during which the
capacitor was fully discharged, was the longest (the details are
shown in Supplementary Fig. S13).

Of the six graphs in Fig. 3, Fig. 3c shows well the critical
features of this TK system. The only difference of Fig. 3c from
Fig. 3a is the pulse length [100 μs (in a) vs. 200 μs (in c)]. As the
pulse width increases, the capacitor discharging during the 0
input increased, and the subsequent ‘1’ induced a higher peak
voltage. The conductance levels in Fig. 3c can be clearly grouped
into three levels, which are determined by the number of 1’s
immediately after the ‘0’ (not the total number of ‘1’). For
example, ‘0000’ has only one 1 after 0 (the reference pulse), so it
induced the lowest conductance. Interestingly, ‘1111’ has the
same low conductance even though it had five 1 inputs (including
the reference pulse). This is because the only effective ‘1’ was the
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first one because all the other ‘1’s do not have the preceding ‘0’s,
so they cannot produce peak voltage.

Another characteristic and most desirable setting could be seen
in Fig. 3f, in which RL was decreased to 10 kΩ and the pulse
width was decreased to 200 ns. This setting makes the capacitor
charging per one voltage pulse (‘1’ signal) insufficient and its
discharging during the ‘0’ signals faster. Overall, this makes the
memristor conductance more linearly dependent on the total
number of ‘1’s, as shown in Fig. 3f (an example of insufficient
charging and details of the effects are included in Supplementary
Fig. S14). A short pulse length is also beneficial to rapidly process
the input vectors.

By appropriately changing both the C and RL, the kernel
characteristics obtained in Fig. 3 could be implemented at
different time scales. Additional kernels are configured as the
time constants in Supplementary Fig. S15. Based on the analysis
of the effect of each parameter change, a kernel condition suitable
for the task is determined through kernel adaptation, and ex-situ
training is performed, which is followed by inference.

Task optimization: MNIST. To perform the task of recognizing
digit images in the Modified National Institute of Standards and

Technology (MNIST) Database, the kernel dynamics were opti-
mized to implement a TK system suitable for the task. To do this,
the raw MNIST dataset, composed of 784 pixels (28 × 28), had to
be reconfigured to meet the requirement of this specific TK
system, which is basically a binary system (0 and 1 inputs).
Therefore, the data in the 784 pixel images were binarized and
chopped by 4 bits, which resulted in 196 4-bit input signals. To
make the task analysis more efficient, the frequency of the
appearance of inputs in the dataset was investigated, and it was
confirmed that ‘0000’ appeared most frequently, followed by
‘1111,’ ‘1000,’ ‘0011,’ and ‘0001’ (Supplementary Table 1).
Therefore, in this task-optimized TK system, the task was per-
formed effectively by setting the operation parameters so that the
TK system could readily separate the responses to the inputs with
a high frequency of appearance rather than separating the
responses to all the 16 inputs. The data points indicated by the
red circle in Fig. 3f correspond to these frequently appearing
signal sets. Accordingly, the 196 4-bit input image data were
converted to the 196 membered MCV, where the measurements
were performed on a single 1M1R1C circuit, based on Fig. 3f.
Using the 50,000 training images in the MNIST dataset, 50,000
training MCVs were generated. These MCVs were used to train
the 196 × 10 FCN (weights and biases), which were generated in a
PyTorch simulation (Methods section). The trained TK system
was used to infer the 10,000 MNIST test images, and the achieved
accuracy was 90.1% (see Table 2 and Supplementary Tables 2, 3
for the results of combining various kernels and the results of
considering cycle-to-cycle and cell-to-cell variations). When one
hidden layer composed of 200 neurons is added to the FCN, the
accuracy was increased to 96.5%.

This kernel machine took 200 ns of time and ~25 pJ of energy
(Supplementary Fig. S16) to process one input pulse, which is
103–104 times shorter and 100–400 times lower than in the
previous studies20–22. Table 2 shows the comparison with other
RC results using the diffusive memristors and the software-based
single-layer FCN. This study focuses on the only memristive TK

Table 1 The temporal kernel conditions (RL, signal pulse,
and REF pulse) used in Fig. 3a–e.

TK condition RL Signal pulse REF pulse
Fig. 3a 1MΩ 4 V, 100 μs 4 V, 100 μs
Fig. 3b 120 kΩ 4 V, 100 μs 4 V, 100 μs
Fig. 3c 1MΩ 4 V, 200 μs 4 V, 100 μs
Fig. 3d 1MΩ 3.5 V, 100 μs 3.5 V, 100 μs
Fig. 3e 1MΩ 4 V, 100 μs 3 V, 100 μs
Fig. 3f 10 kΩ 3.5 V, 200 ns 3 V, 200 ns
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recognition are shown in (f). Responses to inputs showing high prevalence in the dataset were well separated (marked by red circles).
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system that performs kernel adaptation and that showed the best
performance in terms of accuracy and latency. Supplementary
Table 4 shows the results for the case where the 2-layer FCN is
used as the readout layer, and when 196 × 38 × 10 FCN is used, it
offers 95.1% accuracy. The number of training parameters in this
network (7828) is slightly smaller than that of the software-based
FCN (7840). The readout network size of the TK system could be
further decreased as the number of bits processed by the kernel
(nBPK) increases, for as long as the separability for the higher
nBPK is guaranteed. Supplementary Fig. S17 shows the different
read currents for the 3–6 bits (8–64 input patterns). Obviously,
the separability decayed as the nBPK increased, but they were still
be used to recognize the MNIST dataset because not all the input
patterns mattered equally. Table 3 shows the variation in the test
accuracy of the MNIST dataset using the same method as above,
but with different nBPKs. As the nBPK increased from 3 to 6,
which was accompanied by a decrease in the required memristor
number from 252 to 112, the accuracy decreased from 90.7% to
86.3% (the confusion matrices are included in Supplementary
Fig. S18), which is not much lower than in the software-based
FCN (784 × 10). The next section demonstrates the most crucial
merit of this TK system by showing its capacity to process time-
series data using medical diagnostic data.

Task optimization: medical diagnosis. Medical diagnosis often
requires analyzing time-varying data and making a quick diag-
nosis, but there are inevitable limitations such as high dependence
on operators and high variability across different medical insti-
tutions. For a more accurate and objective medical diagnosis, a
universal diagnosis system adaptable to various situations is
essential. Automatic medical diagnosis using deep learning has
considerable potential, and several studies have been conducted
on it33–35, but most of them rely on the conventional image
classification method, such as CNN. This means that the tradi-
tional medical diagnosis system produces data images and ana-
lyzes them later, mostly ex-situ. This study suggests a method for
in situ medical diagnosis in real-time using a 1M1R1C kernel.
The diagnostic application consists of two sections. The first
section is breast cancer diagnosis using ultrasound images, and
the second section is arrhythmia diagnosis based on electro-
cardiogram (ECG) results. These two applications have vastly
different operating signal frequencies (MHz to Hz). In this study,
a system for efficient medical diagnosis was implemented by
optimizing the TK system for each task.

1) Diagnosis of malignancy in breast lesions. Breast cancer is
the most common cancer in women. Ultrasound is used to
diagnose and monitor this disease. In contrast to the conventional
CNN, where the preprocessed images are identified, the proposed
TK system in this study directly uses ultrasonic raw data without
an imaging process, as shown in Fig. 4a. In the conventional
ultrasound diagnosis, the ultrasound is transmitted to the
piezoelectric material, where electrical signals are generated.
The signal processor processes these signals to generate anT

ab
le

2
C
om

pa
ri
so
n
of

th
e
re
su
lt
s
of

th
e
M
N
IS
T
re
co
gn

it
io
n
us
in
g
m
em

ri
st
iv
e
te
m
po

ra
l
ke

rn
el

co
m
pu

ti
ng

sy
st
em

s2
0
,2
1
an

d
a
so
ft
w
ar
e-
ba

se
d
sy
st
em

1
(s
in
gl
e-
la
ye

r
FC

N
),

sh
ow

in
g
ve

ry
fa
st

pr
oc
es
si
ng

an
d
th
e
hi
gh

es
t
ac
cu
ra
cy

in
th
is

st
ud

y.

G
ro
up

A
cc
ur
ac
y

La
te
nc
y
in

th
e
ke
rn
el

K
er
ne

l
ad
ap
ta
tio

n
N
et
w
or
k
si
ze

Im
ag
e
si
ze

Et
c.

T
hi
s
st
ud

y
9
0
%

(9
5.
1%

—
tw

o
la
ye
r)

1
μs

O
19
6
×
10

(1
9
6
x
38

x
10
)

28
×
28

W
ei
.D
.L
u

8
5%

10
m
s

X
8
8
×
10

22
×
20

14
,0
0
0
/2

,0
0
0

T
ra
in
in
g/

te
st

se
t

Jo
sh
ua

Y
an
g

8
3%

1
m
s

X
22

0
×
10

22
×
20

In
si
tu

tr
ai
ni
ng

So
ft
w
ar
e
(7
8
4
×
10

FC
N
)

9
1%

-
-

78
4
×
10

28
×
28

Table 3 Results of the MNIST recognition while increasing
the number of bits processed in the temporal kernel,
showing that as nBPK increased, both the size of the used
readout layer and the recognition accuracy decreased.

nBPK Readout layer size Accuracy
3 252 × 10 90.7%
4 196 × 10 90.1%
5 140 × 10 88.1%
6 112 × 10 86.3%
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ultrasound image, which the operator analyzes to diagnose the
disease. However, if the TK can directly process the ultrasonic
signal, the imaging process can be skipped, and an automatic
diagnosis will be made at the readout layer. Therefore, this system
makes real-time diagnosis simpler than in the existing ultrasound
diagnosis.

The dataset used in the experiment consisted of an open-access
database of raw ultrasound signals acquired from malignant and
benign breast lesions36. Each sample consisted of 510 ultrasound
(10MHz) echo lines. After they were preprocessed for measure-
ment convenience, they were converted into pulse streams and
applied to the memristor (“Methods” section). Figure 4b shows
the results of the voltage-time (V-t) measurement for one echo
line of a benign sample (inset in Fig. 4b, and “Methods” section).
The test set consisted of 36 samples randomly extracted out of the
total 100 samples, and the training set consisted of the remaining
64 samples. Readout was performed by repeating the process of
randomly extracting the test set from the entire dataset 30 times,
and an average accuracy of 94.6% was obtained.

This method has two main advantages over the existing
ultrasound diagnosis using CNN. First, diagnosis is performed
using a much simpler system without a pre-imaging process.
Second, one of the major difficulties in ultrasound analysis is the
presence of artifacts33. CNN may have difficulty in recognizing
such artifacts because it performs learning and inference with the
information on the artifacts. Using 1M1R1C, even with additional
stimulation by artifacts, the capacitor only maintains the charging
state. Therefore, the kernel state is determined by the overall

contour rather than by fine artifacts, and it can show higher
performance.

2) Real-time arrhythmia diagnosis. Arrhythmia is a condition
in which the heart has an irregular rhythm or an abnormal heart
rate. Since malignant arrhythmia can cause sudden death due to a
heart attack37, real-time ECG monitoring and diagnosis are
required. The purpose of this experiment is to implement a
system capable of real-time diagnosis of arrhythmia in response
to an electrical signal caused by a heartbeat. For the experiment, a
part of the MIT-BIH arrhythmia database38 was used, and a task-
optimized kernel was utilized to distinguish between arrhythmia
and normal cases. A TK capable of responding to a signal with a
frequency of 0.8–1.2 Hz was constructed using a 1 µF capacitor
parallel to CH2. In this case, a simple temporal kernel machine
composed of only one 1M1R1C kernel could be used. Figure 4c
shows a part of the ECG of a patient with arrhythmia. The
electrical signal is generated at approximately 0.8-s intervals, and
then arrhythmia occurs at 1.6 s (marked by a red arrow). When
an electrical signal from a heartbeat is applied to the kernel
machine, the capacitor maintains a high charging level at a
normal beat. When an arrhythmia occurs, the capacitor is
discharged at a longer interval than in the normal case, and SET
switching occurs in the memristor by the next pulse (Supple-
mentary Fig. S19). Since this kernel responds only to arrhythmia,
the memristor conductance can reflect the pulse of the
arrhythmia patient in real-time. Figure 4d shows the results of
5-min TK monitoring based on ECG data of normal (case 1) and
arrhythmic (cases 2 and 3) patients. In cases 2 and 3, 49 and 81
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Fig. 4 The automatic medical diagnosis system using the 1M1R1C temporal kernel and the experiment results in the two sections. a A system for
diagnosing the malignancy of breast lesions, which is much simpler than in the existing method (inset in a). In this system, ultrasonic signals are applied
directly to the kernel machine, so the imaging step is omitted. b V–t graph for one echo line of a benign sample (inset in Fig. 4b). c A part of the
electrocardiogram of a patient with arrhythmia. Long intervals caused by abnormal beats discharged the capacitor, and the conductance of the memristor
increased in the next pulse. d Five-minute temporal kernel monitoring based on the ECG of one normal patient (case 1) and two arrhythmic patients (cases
2 and 3). When arrhythmia occurred, the conductance of the memristor increased. Case 3, which had the most severe arrhythmia symptoms, showed the
highest conductance.
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arrhythmias occurred, respectively. As a result, the conductance
of the TK monitoring in case 3 was the highest, and the
memristor conductance was clearly distinguished according to
the degree of arrhythmia. This single TK system was able to
detect different arrhythmia conditions in real-time with low
energy using a simple 1M1R1C circuit.

Discussion
In this study, a TK system with high kernel separability and
dynamics controllability was demonstrated using a W/HfO2/TiN
memristor. A dynamic kernel was generated by composing a
1M1R1C circuit. From asymmetric charging/discharging of the
capacitor caused by the memristor, separability, which is the basic
property of the TK, was achieved. In addition, the manner in
which the kernel reacted to the input signal was modified by
changing various parameters such as the load resistor, capaci-
tance, pulse width, and pulse height. Using these characteristics,
the TK system was optimized to perform static data-based
MNIST recognition applications and sequential data-based
medical diagnoses (ultrasound diagnosis and ECG-based diag-
nosis). For the MNIST recognition, a task-optimized system was
used to improve the separability of the inputs that frequently
appeared in the dataset. Furthermore, the tradeoff between the
reduction of the readout layer size and the performance was
confirmed by increasing the nBPK. TK system-aided diagnosis
was conducted for two situations with contrasting input fre-
quencies (1 Hz and 10MHz). By implementing a kernel config-
uration suitable for each task (kernel adaptation), the excellent
performance was achieved. In particular, the most crucial point of
this study is its demonstration that dynamic signals with vastly
different time constants can be well distinguished by changing the
resistor or capacitor added to the circuit using only one type of
memristor.

The two types of hardware needed to implement the 1M1R1C
TK system and analysis on the area/cell are shown in Supple-
mentary Fig. S20. In both cases, using a metal-insulator-
semiconductor capacitor, the capacitance can be adjusted by
modifying the R and pulse height (Supplementary Fig. S21).
Therefore, it is expected that the fabrication of the hardware for
the array configuration will be simple and that the TK dynamics
can easily be changed even in the fabricated hardware.

Methods
Memristor fabrication. The array of cross-bar-type W/HfO2/TiN memristors was
fabricated. A 50 nm-thick TiN layer was sputtered (Endura, Applied Materials) on
an SiO2/Si substrate, and the TiN layer was patterned into a line shape to form a
BE. The 2–10 µm wide TiN BEs were patterned using conventional photo-
lithography and the dry-etching system. After the patterning, the residual photo-
resist was removed with acetone and cleaned sequentially with deionized water.
Then 4 nm HfO2 was deposited using atomic layer deposition (ALD) at a 280 °C
substrate temperature using a traveling-wave-type ALD reactor (CN-1 Co. Plus
200). A tetrakis-ethlylmethylamido hafnium (TEMA-Hf) and O3 were used as
precursors for Hf and oxygen, respectively. On the HfO2 layer, 50-nm-thick W TEs
were sputtered using the MHS-1500 sputtering system and patterned into 2–10 µm
wide lines using the conventional lift-off process. After the fabrication, the WHT
device was analyzed using x-ray photoelectron spectroscopy (XPS, AXIS SUPRA,
Kratos) and energy-dispersive x-ray spectroscopy (EDS, JEOL, JEM-ARM200F) to
observe the formation of the tungsten oxide layer. Cross-sectional transmission
electron microscope (TEM) images of the WHT memristor were observed using
scaning transmission electron microscopy (STEM, JEOL, JEM-ARM200F).

Modified National Institute of Standards and Technology database. The
dataset, the Modified National Institute of Standards and Technology (MNIST)
database39, is a large database of handwritten digit images. It is commonly used for
training and testing of image processing systems such as artificial neural networks.
The database was created by “remixing” the digit samples from NIST’s original
datasets40. This database consists of 60,000 training samples and 10,000 test
samples.

Experimental setup for the 1M1R1C TK computing. To compose the temporal
kernel circuit, the WHT device with an area of 10 µm × 10 µm was connected to the
pulse generator (PG, Agilent 81110A) and an oscilloscope (OSC). A 1M1R1C circuit
was constructed by adding a load resistor to the circuit and setting the resistance
values of CH1 and CH2 in the OSC to 50Ω and 1MΩ, respectively. A semiconductor
parameter analyzer (SPA, Hewlett-Packard 4145B) was connected to the WHT device
to monitor the DC sweeps. To process the static and sequential data, the device states
after the pulse streams were measured. After the measurement, the device was reset to
the HRS state and the process was repeated. The TK state was constructed based on
the recorded device states, and the readout layer was trained based on it.

PyTorch simulation for the readout layer of the TK system and 784 × 10 FCN.
The logistic regression algorithm was used to train the readout layer for the MNIST
recognition and breast lesion classification. The TK state (x) in the form of an n × 1
vector (n= 784–112 for the MNIST recognition and n= 510 for the breast lesion
classification) was multiplied by the weight matrix (W) of the readout layer to yield
the weighted sum (z).

z ¼ WTx ð1Þ
The weighted sum was applied to the following softmax function to yield an

output (ŷ):

ŷj ¼ σ zð Þj ¼
ezj

∑n
k¼1e

zk
for j ¼ 1; ¼ ; n: ð2Þ

The sum of the elements of the output vector became 1 and the output of the
softmax function was perceived as a ‘probability.’ The cross-entropy loss was used
for the loss function, which is defined as

loss ¼ � 1
N

∑
N

i¼1
yilog ŷi

� �þ 1� yi
� �

log 1� ŷi
� �� �

; ð3Þ

wherein N is the number of samples, and yi is the target output for input xi. To
minimize the loss, a gradient-descent-based Adam optimizer41 was identically used
for the readout layer and 784 × 10 FCN. Full-batch-type learning of the readout
layer and 784 × 10 FCN was performed in PyTorch.

TK system for medical diagnosis. (1) Ultrasound-based breast lesions diagnosis:
Each sample in the database consisted of 510 ultrasound (10MHz) echo lines, and
the length of each echo line was different for each sample (100–300 µs). For
measurement convenience, samples in which breast lesions appeared within 40 μs
were used for learning and inference. The raw ultrasound data were binarized and
converted into 100 ns pulses, which corresponded to a 10MHz frequency. Pulse
streams that consisted of 400 100 ns long pulses were applied to the memristor.
The measurement setup was set at a 3.5 V pulse height, 4 V reference pulse height,
and a 30 kΩ load resistance. The use of relatively large load resistance and a short
pulse length made the kernel sensitive to consecutive pulses, and the effect of the
signal pulses remained until the reference pulse (Fig. 4b). After the measurement,
the 510 × 2 readout layer was trained based on the TK state that consisted of the
510 kernel responses for each input. (2) ECG-based arrhythmia identification: The
measurement was performed under the conditions of no RL, a 2.5 V pulse height, a
200 ms length, and a 1 µF capacitor.

Data availability
All the relevant data are available from the corresponding authors upon reasonable
request.

Code availability
Computational results were obtained by using Pytorch software programs. Pytorch was
used to perform the calculation of the readout layer. All the relevant codes are available
from the corresponding authors upon reasonable request.
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