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Abstract

An important question in human face perception research is to understand whether the neural representation of faces is
dynamically modulated by context. In particular, although there is a plethora of neuroimaging literature that has probed the
neural representation of faces, few studies have investigated what low-level structural and textural facial features
parametrically drive neural responses to faces and whether the representation of these features is modulated by the task. To
answer these questions, we employed 2 task instructions when participants viewed the same faces. We first identified brain
regions that parametrically encoded high-level social traits such as perceived facial trustworthiness and dominance, and we
showed that these brain regions were modulated by task instructions. We then employed a data-driven computational face
model with parametrically generated faces and identified brain regions that encoded low-level variation in the faces (shape
and skin texture) that drove neural responses. We further analyzed the evolution of the neural feature vectors along the
visual processing stream and visualized and explained these feature vectors. Together, our results showed a flexible neural
representation of faces for both low-level features and high-level social traits in the human brain.
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Introduction
The face is one of the most important visual stimuli in the
social world. In addition to gathering identity, gender, age, and
emotion information from faces, people judge them on multiple
trait dimensions (e.g., trustworthiness) effortlessly (Willis and
Todorov 2006; Todorov et al. 2009). These judgements predict
important social outcomes such as political elections (Todorov
et al. 2005; Little et al. 2007; Ballew and Todorov 2007), criminal

sentences (Blair et al. 2004; Eberhardt et al. 2006), and investment
decisions (see Todorov et al. 2015 for a review). The functionality
of face processing is supported by a dedicated neural system in
primates (Haxby et al. 2000; Tsao et al. 2006), including regions
of the occipital and posterior temporal visual cortices as well as
subcortical structures such as the amygdala (Kanwisher et al.
1997; Jiang et al. 2006; Kanwisher and Yovel 2006; Kriegeskorte
et al. 2007; Harris and Aguirre 2010; Natu et al. 2011; Axelrod and
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Yovel 2012; Mende-Siedlecki, Verosky et al. 2013; Avidan et al.
2014; Duchaine and Yovel 2015; Freiwald et al. 2016; Nestor et al.
2016; Grill-Spector et al. 2017; Rossion et al. 2018)

Although there is a plethora of literature on face perception,
most of the existing studies focus on recognition of faces and
emotional expressions. However, it remains largely unclear how
the brain evaluates faces in general and how this evaluation
is driven by low-level structural and textural features of the
human face. Importantly, it remains unclear how explicit task
demands or the evaluative context modulates such a general
neural representation of faces. It has been shown that different
types of face masks can modulate the amygdala’s response to
facial emotions (Kim et al. 2010). Our own prior reports have
not only found context-independent neural responses to facial
trustworthiness (Wang et al. 2018) but also context-dependent
(Sun, Zhen et al. 2017) and task-dependent (Sun, Yu et al. 2017)
neural responses to facial ambiguity (see Todorov et al. 2011
for both task-dependent and task-invariant neural responses to
facial trustworthiness). However, these prior studies only inves-
tigated a single face attribute and it remains to be investigated
whether a general neural representation of faces is dynamically
modulated by task instructions and evaluative goals.

To address this question, in the present study, in addition
to traditional analysis of neural correlation with social traits,
we employed a data-driven computational face model based
on the face space approach (Leopold et al. 2001; Chang and
Tsao 2017) that is able to identify and visualize the stimulus
variation in faces that drives specific neural responses. This
model is based purely on physical variation of the faces, without
specifying a priori the importance of specific facial features
(e.g., eye or mouth shape, skin texture, etc.), emotional con-
tent, or social meaning. In principle, any type of nonrandom
brain response can be modeled as a function of this physical
variation in the face stimuli. Importantly, our computational
framework allows us to analyze and visualize representations at
different levels of perception and cognition (e.g., functional mag-
netic resonance imaging [fMRI] versus behavioral data). Since
these representations can be analyzed using the same met-
rics, their similarities and differences are immediately appar-
ent. This allows us to simultaneously study the representations
of faces in various brain areas at different levels of percep-
tion. Meanwhile, this also enables us to connect the findings
from different blood-oxygen-level-dependent (BOLD) fMRI sig-
nals from this study to previously published literature. With
this model, we not only surveyed the whole brain response that
encoded significant facial feature vectors but also linked neural
feature vectors with perceptual determinants of social attributes.
In particular, we investigated how task instructions modulated
neural representation of faces and identified brain areas that
showed flexible neural representation given these different task
instructions.

Materials and Methods
Participants

Thirty healthy volunteers (18 males, 18–31 years old, 3 left-
handed) with normal or corrected-to-normal vision participated
in this study. Two participants were excluded for further analysis
due to excessive head motion (>6 mm) and another 3 partici-
pants were excluded because the localizer task failed to identify
the fusiform face area (FFA). Written informed consent was given
using procedures approved by the Internal Review Board of the
West Virginia University (WVU).

Stimuli

In total, 300 Caucasian faces were randomly generated using the
FaceGen Modeller program (http://facegen.com) version 3.1 (see
Oosterhof and Todorov 2008 for detailed procedures). FaceGen
constructs face space models using information extracted from
3D laser scans of real faces. To create the face space model,
the shape of a face was represented by the vertex positions
of a polygonal model of fixed mesh topology. With the vertex
positions, a principal component analysis (PCA) was used to
extract the components that accounted for most of the variance
in face shape. Each principal component (PC) thus represented
a different holistic nonlocalized set of changes in all vertex
positions. The first 50 shape PCs were used to construct faces that
had a symmetric shape (left panel of Fig. 1A). Similarly, because
face texture is also important for face perception, 50 texture PCs
(right panel of Fig. 1A) based on PCA of the red, green, and blue
(RGB) values of the faces were also used to represent faces. The
resulting 300 faces were randomly generated from the 50 shape
and 50 skin texture components with the constraint that all faces
were set to be Caucasian to avoid stereotypes in judgement. Note
that only low-level features (face shape and skin texture) were
manipulated to generate these face stimuli without referring to
any higher-level social trait information.

Each PC is referred to as a feature of the face model, and it is
also a dimension/axis of the face space. The feature axes of the
spaces represent the features (e.g., shape and skin texture) with
which faces are encoded. Each face has a value on each feature
axis, and the set of values specify a face’s coordinates (position)
in the face space. The reference of the face space is the prototype
average face.

Notably, we have already acquired trait judgments of these
faces from healthy control raters on 9 traits (Oosterhof and
Todorov 2008) including trustworthiness and dominance. There-
fore, these faces have benchmark ratings and we can readily
perform correlational analysis with fMRI BOLD responses and
psychometric behavioral data from the present study.

Experimental Procedure

Stimuli were presented using MATLAB with the Psychtoolbox
3 (Brainard 1997) (http://psychtoolbox.org) (screen resolution:
1920 × 1080). Stimuli were presented onto an magnetic reso-
nance imaging (MRI) compatible monitor and were viewed by
participants via a mirror mounted atop the MRI head coil.

Each participant performed 2 face judgment tasks. In each
task, there was a judgment instruction, that is, participants
judged how trustworthy or how dominant a face was. We used
a 1–4 scale: “1”: not trustworthy/dominant at all, “2”: somewhat
trustworthy/dominant, “3”: trustworthy/dominant, and “4”: very
trustworthy/dominant. We used a rapid event-related design
(Fig. 1B). Each image subtending a 13

◦
visual angle was presented

for 1 s at the center of the screen. Jittered interstimulus-interval
ranging from 2 to 5 s was inserted after each image. Follow-
ing each image, participants rated the level of dominance or
trustworthiness of the face within 2 s. In total, 100 faces were
presented in each run and there were 3 runs for each judgment
task for a total of 6 runs. The order of stimuli was randomized
and the order of tasks was counterbalanced across participants.
At the beginning of each run, there was a fixation screen of
28 s to estimate the participant’s baseline BOLD signal. Task
instructions were displayed at the beginning of each run.

Each participant performed a separate face localizer task after
each judgement task to identify functional regions of interests

http://facegen.com
http://psychtoolbox.org
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Figure 1. Stimuli, behavioral task, and consistency of judgments. (A) Computer generated face stimuli randomly varied on shape (e.g., round and oval) and skin texture

(e.g., color) parameters: 50 shape and 50 texture PCs. Each PC is referred to as a feature of the face model, and it is also a dimension of the face space. Faces are thus

represented as points in a 100-dimensional face space (50 shape and 50 texture dimensions). Moving a point along a single dimension changes the shape or texture

of a face in specific ways. The average face is at the origin (center) of the face space. (B) Task; each face was presented for 1 s, followed by participants’ judgment of

trustworthiness or dominance within 2 s. The overall inter-stimulus-interval was jittered between 2 to 5 s. (C) Correlation between the ratings from our fMRI participants

with consensus ratings from (Oosterhof and Todorov 2008). (Pearson’s r = 0.33 ± 0.03 for trustworthiness and r = 0.50 ± 0.04 for dominance). Tru: trustworthiness. Dom:

dominance.

(ROIs) that were selective to faces. We used a well-established
task that displays video clips of dynamic faces, objects, and
scrambled objects (see Pitcher et al. 2011 for details).

Imaging Data Acquisition

MRI data were acquired on a 3 Tesla Siemens MRI Scan-
ner (Prisma), with a 64-channel head coil, located at the
WVU Rockefeller Neuroscience Institute. High-resolution T1-
weighted anatomical images were collected using a 0.85 mm
isotropic MPRAGE sequence (176 slices, centric phase encoding,
acquisition matrix = 288 × 288, field of view = 250 × 250 mm,
iPAT = 2, TR = 2040 ms, TE = 2.37 ms, TI = 1030 ms, flip angle = 8◦).
Functional data of the first 4 participants were acquired with
the Siemens multiband echo planar imaging (EPI) sequence
(TR = 2000 ms, TE = 30 ms, 2 mm isotropic voxels, field of
view = 192 × 192 mm, image matrix = 96 × 96, iPAT = 2, flip
angle = 80◦, slice number = 52). Because this sequence had fewer
slices and hence a smaller field of view, part of the superior
frontal lobe could not be included in 3 of the first 4 participants.
We, therefore, adjusted the sequence slightly (iPAT = 4, slice
number = 64) for the rest of the participants to cover whole
brain volume. Qualitatively the same results were derived if we

excluded the first 4 participants for analysis. Padding cushions
were provided around the head of participants to minimize head
motion.

Data Analysis: Behavior

For behavioral data, we calculated rating consistency for each
individual by correlating his/her ratings with the average ratings
from the previous study (Oosterhof and Todorov 2008), which
served as the benchmark ratings (Fig. 1C). Since it has been
reported that consensus ratings predict neural responses better
than individual ratings (Engell et al. 2007), here we used the
average ratings from (Oosterhof and Todorov 2008) for further
analysis.

Data Analysis: Imaging Data

MRI data were preprocessed and analyzed using Analysis of
Functional NeuroImages (AFNI) (afni.nimh.nih.gov) and a cus-
tom MATLAB code. Anatomical T1 images were warped nonlin-
early to the MNI template. The first 2 volumes of each functional
run were discarded to allow the BOLD signal to reach a steady
state. Preprocessing procedure involved despiking, slice timing

afni.nimh.nih.gov
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correction, EPI distortion correction (PE blip-up), registration to
the MNI template, rigid body motion correction, spatial smooth-
ing (3 mm FWHM Gaussian Kernel), and scaling (as percent signal
change).

We focused on the following ROIs as suggested by previous
research (Todorov et al. 2011): the occipital face area (OFA), FFA,
posterior superior temporal sulcus (pSTS), middle superior tem-
poral sulcus, anterior superior temporal sulcus (aSTS), amygdala
(Amyg), and inferior frontal gyrus (IFG). Face-selective areas were
identified from the localizer task using the contrast of faces
versus objects at the group level (Supplementary Fig. S1; P < 0.01
for all ROIs except P < 0.05 for the OFA, FFA, and IFG).

Data Analysis: Modeling Social Traits

The neural representation of high-level social traits of trustwor-
thiness and dominance was modeled separately using linear
and quadratic regressors. The regressor for face onset (R1)
and the regressor for consensus rating of each face (R2) were
convolved with a hemodynamic response function to estimate
1) face evoked response, and 2) how the response to each face
was modulated by perceived (consensus) trustworthiness or
dominance (either linear or quadratic). Note that R2s were
all demeaned to assure that R1 and R2 were not correlated.
In addition, for all analyses, 6 head-motion regressors based
on AFNI’s realignment estimation routine were included in
the general linear model (GLM). The modulation of social
attributes (i.e., trustworthiness and dominance) was estimated
independently for each judgment task. For each task, we selected
significant voxels from the task congruent conditions (e.g.,
voxels that were modulated by trustworthiness when the task
instruction was to judge trustworthiness, and voxels that were
modulated by dominance when the task instruction was to judge
dominance) and predicted response for the task-incongruent
social attributes (e.g., modulation by trustworthiness when the
task instruction was to judge dominance).

Monte Carlo simulations using the function 3dClustSim in
AFNI were conducted in order to estimate the null distribution
of data and define the significant cluster size. Permutation with
10 000 runs was used to estimate the cluster size threshold for
each ROI. We used a pervoxel threshold of P < 0.05 and a false
positive rate (FPR) of null cluster lower than 0.05 as the cutoff for
significance.

Data Analysis: Constructing Neural Face Models

We used a simple linear model to identify the variation in faces
that drove neural responses. The feasibility of this approach has
been demonstrated in several prior studies (e.g., Oosterhof and
Todorov 2008; Todorov et al. 2013) for modeling social judgments.
Here, we used this same approach but changed the dependent
measure using the BOLD signal from each voxel. Specifically,
we fitted a GLM at face onset (regressor R1 above) and derived
a beta value for each face. We averaged the beta values across
participants to get a mean beta value for each face and each
voxel. We then fitted a linear model for the mean beta values
and calculated the vector of feature weights w as: w = F · r, where
r is a column vector (N × 1) of the beta values to the N faces, and
F is the feature matrix (each row is a feature and each column
is a face) that contains the feature values for each face. We
further normalized w by ||w||: w = w/||w||. The resulting feature
vector w thus showed the optimal direction that best captured
the variation in BOLD response.

Because a feature vector can always be derived given any
response, we used linear regression to fit the neural response

and determine whether a voxel had a significant feature
vector. In addition, we used a permutation test with 1000 runs
to further confirm significant voxels. For the data from each
task, we randomly shuffled face labels and used 70% of faces as
the training dataset. We used the training dataset to construct a
model following the above procedure, predicted responses using
this model for each face in the remaining 30% of faces (i.e.,
test dataset), and computed the Pearson correlation between
the predicted and original response in the test dataset. The
distribution of correlation coefficients computed with shuffling
(i.e., null distribution) was compared to the one without shuffling
(i.e., observed response). If the correlation coefficient of the
observed response was greater than 95% of the correlation
coefficients from the null distribution, this vector of feature
weights was considered significant. Notably, both regression
and permutation tests showed qualitatively the same selection
of voxels. If a voxel encoded a significant feature vector, we
subsequently derived feature weights as described above.

To control for multiple comparisons, we further employed
a binomial test. Only when the number of significant voxels
within an ROI was above the chance level (5% of the total number
of voxels within an ROI), the cluster was retained for further
analysis.

To present the feature tuning properties, we identified the
feature index that had the largest feature weight in absolute
value (i.e., the most preferred feature) in each significant voxel
and ranked these voxels according to their preferred feature
index. We also calculated a similarity representation map of
feature weights across all significant voxels. Specifically, we
correlated the feature weights of 1 voxel with all other voxels
and organized voxels according to ROIs.

Data Analysis: Validating And Explaining Neural Face
Models

With the learned feature weights (w), we synthesized and visual-
ized new test faces by reversing the feature extraction procedure.
By construction, the specific changes in the synthesized faces
could best capture the change in neural response. For example,
the change in the face was reflected in linear changes (in stan-
dard deviation [SD] units) in both vertex positions that defined
the face shape and colors (RGB) that defined the face texture.

One advantage of studying neural face models in humans
is that we can further explain feature vectors using behavioral
ratings. To explain the meaning of BOLD responses to physical
variation in faces (e.g., whether the neural response encodes
perceived trustworthiness of faces), we correlated the feature
weights from the neural response with those from consensus
judgments (Oosterhof and Todorov 2008). For example, if the
neural feature weights were correlated with the feature weights
derived from consensus trustworthiness ratings, it indicated that
the neural response encoded trustworthiness. Furthermore, by
separately correlating shape and texture weights, we could iden-
tify which physical change in faces drove the neural response.
In addition, we correlated the feature weights from the neural
response with those from our participants’ own ratings and
derived qualitatively the same results (Supplementary Fig. S2).

Data Analysis: Depth of Selectivity Index and Feature
Selectivity

We quantified the depth of selectivity (DOS) for each voxel:

DOS =
n−

(
∑n

j=1rj

)
/rmax

n−1 , where n is the number of features (n = 100), rj

is the absolute feature weight to feature j, and rmax is the maximal

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa055#supplementary-data
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Figure 2. Task modulation of neural encoding of social traits. (A, C) Clusters within face-selective areas that significantly encoded the trustworthiness attribute linearly

(A) and quadratically (C) when participants performed the trustworthiness judgment task. Overlaid is the mean coefficient of regression (cluster FPR < 0.05). (B, D) Mean

parameter estimate (beta values) for the trustworthiness attribute across significant clusters. (B) Linear response. (D) Quadratic response. Blue asterisks indicate a

significant difference from zero and black asterisks indicate a significant difference between congruent versus incongruent tasks. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001,

and ∗∗∗∗P < 0.0001. (E, G) Clusters within face-selective areas that significantly encoded the dominance attribute linearly (E) and quadratically (G) when participants

performed the dominance judgment task. (F, H) Mean parameter estimate (beta values) for the dominance attribute across all significant voxels. (F) Linear response.

(H) Quadratic response. Orange asterisks indicate a significant difference from zero and black asterisks indicate a significant difference between congruent versus

incongruent tasks. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, and ∗∗∗∗P < 0.0001. Bars filled with dark colors refer to mean parameter estimates from the congruent task, and

bars filled with light colors refer to mean parameter estimates from the incongruent task.

absolute feature weight. DOS varies from 0 to 1, with 0 indicating
an equal tuning to all features and 1 exclusive tuning to 1 feature,
but not to any of the other features. Thus, a DOS value of 1 is
equal to maximal sparseness of a feature weight.

Results
Task Modulation of Neural Encoding of Social Traits

We employed a social judgment task where participants rated the
level of trustworthiness or dominance of each face during fMRI.
The same 300 faces were rated in separate tasks for trustworthi-
ness and dominance in counterbalanced order. Behaviorally, the
ratings from our fMRI participants were consistent with the prior
report (Oosterhof and Todorov 2008) for both trustworthiness
and dominance (Fig. 1C). Therefore, we next used the consensus
ratings as regressors to identify which face-selective brain areas
encoded social traits of trustworthiness and dominance. We used
both linear and quadratic regressors in the modeling according
to previous studies (Todorov et al. 2008; Wang et al. 2018).

On the 1 hand, in the trustworthiness judgment task, we iden-
tified brain regions that encoded a linear change in facial trust-
worthiness (Fig. 2A and B; voxel-wise P < 0.05 corrected by cluster
FPR < 0.05), including the bilateral FFA, left pSTS, and right OFA
and amygdala (Table 1). Consistent with previous findings (Engell
et al. 2007; Todorov et al. 2008), we found that the mean response
of the right amygdala increased as a function of decreasing facial
trustworthiness (Fig. 2B; t(24) = 5.17, P < 0.0001). Furthermore, we
identified additional brain regions in the face-selective areas that
encoded a linear change of facial trustworthiness compared to
previous studies (Engell et al. 2007; Todorov et al. 2008). Moreover,
we also detected a quadratic response in the right OFA and
FFA (Fig. 2C and D ; Table 1): the response was stronger to both
trustworthy and untrustworthy faces than to faces in the middle
of the trustworthiness dimension in these brain regions.

On the other hand, none of the face-selective areas except
a group of voxels in the right IFG encoded a linear change in
facial dominance (Fig. 2E and F; voxel-wise P < 0.05 corrected by
cluster FPR < 0.05; Table 1). However, the right OFA, left FFA, and
left amygdala showed a quadratic response to dominance (Fig. 2G
and H; Table 1), consistent with a previous study (Todorov et al.
2011).

Importantly, we next investigated whether neural encoding of
social traits was modulated by context (e.g., the task at hand). In
other words, we investigated whether neural response to facial
trustworthiness or dominance was similar under different task
instructions. To answer this question, we used the clusters iden-
tified from the congruent tasks (i.e., judgment instruction of the
task was the same as the social trait; Fig. 2A, C, E, G) and tested
whether these voxels still encoded the social trait in the incon-
gruent task (i.e., judgment instruction of the task was different
from the social trait). Note that the response predicted in the
incongruent task was completely independent of the selection
of voxels.

First, we found that none of the brain regions showing
a significant linear response to facial trustworthiness in the
trustworthiness judgment task responded similarly in the
dominance judgment task (Fig. 2B; Table 1; 2-tailed paired t-
test between congruent versus incongruent tasks; right OFA:
t(24) = −3.57, P = 0.0016; left FFA: t(24) = −4.39, P = 0.0002; right
FFA: t(24) = −4.85, P < 0.0001; left pSTS: t(24) = 3.48, P = 0.002; right
amygdala: t(24) = 3.00, P = 0.007), suggesting that these brain
regions encoded facial trustworthiness in a flexible manner and
their response was modulated by task instructions. Note that
the bilateral FFA even responded in the opposite direction in
the incongruent task. Interestingly, both right OFA and FFA still
showed a significant quadratic response in the incongruent task
as in the congruent task (Fig. 2D; Table 1; right OFA: t(24) = 0.70,
P = 0.50; rFFA: t(24) = 0.63, P = 0.54).

Second, the only brain region that showed a significant linear
response to facial dominance in the dominance judgment task
(i.e., the right IFG) responded in the opposite direction (t(24) = 2.68,
P = 0.013) in the trustworthiness judgment task (Fig. 2F; t(24) = 5.71,
P < 0.0001). Furthermore, we found that none of the brain regions
showing a significant quadratic response to facial dominance
in the dominance judgment task still encoded such quadratic
response any more in the incongruent task (Fig. 2H; right OFA:
t(24) = 3.31, P = 0.003; left FFA: t(24) = 2.78, P = 0.01; left amygdala:
t(24) = 1.83, P = 0.08), again suggesting a flexible encoding of social
traits.

Taken together, these data suggest the identification of
brain regions in the face-selective areas that encoded facial
trustworthiness and dominance while primarily encoding social
traits in a flexible manner.
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Table 1. Brain regions modulated by social traits

Social attribute Response ROI Congruent task Incongruent task

t(24) P-value t(24) P-value

Trustworthiness Linear rOFA −4.38 0.00020 1.00 0.32
lFFA −4.17 0.00034 −2.63 0.015
rFFA −5.12 <0.0001 −2.29 0.031
lpSTS −4.94 <0.0001 −0.96 0.34
rAmyg −5.17 <0.0001 −1.46 0.16

Quadratic rOFA 3.98 0.00055 2.16 0.041
rFFA 5.56 <0.0001 2.79 0.010

Dominance Linear rIFG −4.85 <0.0001 2.68 0.013
Quadratic rOFA 4.21 0.00031 0.31 0.76

lFFA 3.96 0.00058 2.00 0.057
lAmyg 3.24 0.0035 1.40 0.17

Note: All values from the congruent task (e.g., voxels modulated by trustworthiness during trustworthiness judgment) are P < 0.05 corrected by cluster FPR < 0.05.

Task Modulation of Neural Representation of Low-Level Face
Features

In addition to task modulation of neural encoding of social traits,
do different tasks also lead to different neural representation of
low-level face features? To answer this question, we employed
a face modeling approach (see Methods), which enabled us to
readily study what variations in stimulus drive neural responses
to faces. This approach is completely data-driven and is able to
reveal the physical changes in the face (i.e., low-level features
of face shape and skin texture) that can best explain the neu-
ral response. Because the construction of neural face models
does not require any a priori assumptions about regressors or
behavioral responses from the participants, it can derive a more
general neural representation of faces compared to the above
regression analysis with social traits. Therefore, the face mod-
eling approach can extend our knowledge of face representation
in the brain by revealing a generic neural code of face processing.

For each judgment task, we observed clusters of voxels within
face-selective areas that encoded significant feature vectors (see
Methods for cluster selection). These clusters were distributed
along the visual stream, including the right FFA, bilateral pSTS,
right aSTS, and bilateral IFG (Fig. 3A and B). Clusters identified
from different judgment tasks were largely separate, with less
than 10% overlapping voxels for each cluster, again suggesting a
flexible neural face representation that varied as a function of
task instruction. We next investigated the pattern of features in
these clusters.

First, we found a general consistency of feature patterns
across voxels within each cluster (see “stripes” in Fig. 3C and D;
color-coding indicates feature weight values), although the most
preferred feature (i.e., the feature with the largest weight; shown
by red dots in Fig. 3C and D) varied across voxels. Specifically,
the right FFA encoded various shape and texture features (note
the difference between task instructions; see below), consistent
with the previous literature showing that the FFA (especially the
right FFA) is sensitive to shape and texture features (Jiang et al.
2009; Harris et al. 2014) (note that in line with our results, the
right FFA shows a stronger response to shape features, Jiang et al.
2009). In contrast to our findings that the pSTS is sensitive to
both shape and texture features, a previous report has shown
that the pSTS is only sensitive to shape but not texture features
(Harris et al. 2014). However, using emotional faces, it has been
shown that both shape and texture properties predict response
to facial expressions in the pSTS (Sormaz et al. 2016), consistent

with our present findings. Furthermore, we found that the IFG
encoded various shape and texture features (note the difference
between task instructions; see below), in line with the previous
literature showing that the IFG is sensitive to both shape and
texture features (Jiang et al. 2009).

Second, for both judgment tasks, voxels from the same cluster
showed a more similar feature pattern (shown by a higher cor-
relation of feature weights; Fig. 3E and F) whereas voxels from
different clusters showed less similar feature patterns (Fig. 3E
and F).

Third, feature selectivity (i.e., distribution of feature weights)
was similar across clusters, as shown by the similar DOS index
(Rainer et al. 1998) (see Methods; Fig. 3G, J; 1-way ANOVA across
clusters: F(3,208) = 1.36, P = 0.26 for trustworthiness and F(3,161) = 1.18,
P = 0.32 for dominance; note that DOS values range between 0
and 1, with 1 indicating tuning to only a single feature and 0
indicating an equal tuning to all features), as well as similar
ordered feature weights from the most preferred to the least
preferred features for these voxels (Fig. 3H, K; note that the steep-
ness of change in these ranked curves indicates the level of
selectivity).

Lastly, we investigated whether shape features (features 1–50)
and texture features (features 51–100) were preferably encoded in
different brain regions as shown in previous studies (Chang and
Tsao 2017). We calculated the percentage of significant voxels
that had a shape feature as the most preferred feature (shown by
red dots in Fig. 3C and D). We found that in the trustworthiness
judgment task, shape features were more preferred in the right
IFG (Fig. 3I), whereas in the dominance judgment task, there was
a decreasing trend of preference for shape features along the
visual processing stream (Fig. 3L; see also Fig. 3C and D for exam-
ples). Our results again suggested that there was a difference in
the representation of face information for different tasks.

Together, we identified brain regions that encoded significant
feature vectors, that is, voxels whose response followed purely
the physical change in stimulus rather than its psychological
meaning, and we also revealed the evolution and properties
of neural face representation along the visual stream. We next
explored the meaning of such face representation.

Visualizing and Explaining Visual Face Models

Our face model allows us to readily visualize what physical
changes in the stimulus best drive the neural response and easily



Flexible Neural Representation of Faces in the Human Brain Cao et al. 7

Figure 3. Face modeling. (A, B) Brain regions within face-selective areas that encoded significant feature vectors. We performed a linear regression between neural

response (i.e., beta values) and face features to determine whether a voxel encoded a significant feature vector and further controlled for multiple comparisons using

a binomial test. We then calculated the feature weights using our face model (see Methods). Overlaid is the log transformation of P-values. (C, D) Feature weights for

all significant voxels in the clusters that survived the binomial test. Color coding shows the feature weight values. Red dots indicate the most preferred feature of that

voxel (i.e., the feature with the largest weight in absolute value). Voxels are ordered according to the most preferred feature. Features 1–50 are shape features. Features

51–100 are texture features. (E, F) Representation similarity matrix for each pair of significant voxels. Significant voxels were arranged by face-selective areas (shown by

red dashed lines). (G, J) Summary of DOS. Error bars denote 1 SEM across voxels. (H, K) Ordered average feature weights for each cluster. Feature weights were normalized

by the largest absolute feature weight. (I, L) Percentage of voxels that most preferred a shape feature. (A, C, E, G, H, I) Trustworthiness judgment task. (B, D, F, J, K, L)

Dominance judgment task.

compare feature vectors derived from different response modal-
ities (e.g., comparing neural feature vector with behavioral judg-
ment feature vector). Here, we capitalized on these advantages
by synthesizing new faces that illustrated what changes in faces
best drove the neural response (Fig. 4). We used the mean feature
vector (i.e., averaging feature weights across voxels) from all
significant voxels from a cluster because the significant voxels
from a cluster showed a general consistency (Fig. 3C–F).

Although different brain regions are widely considered to be
involved in face processing, we found that these regions encoded
different changes in faces (Fig. 4), suggesting that different brain

regions process different properties of faces. The synthesized
faces showed changes in shape (i.e., configuration of different
facial parts) as well as in texture (the color of the face). In partic-
ular, we found the following trends: 1) the dominance judgment
task (Fig. 4 right) tended to elicit a greater change in faces in
general compared to the trustworthiness judgment task (Fig. 4
left). 2) Some brain regions were modulated by both shape and
texture features (e.g., the rFFA in the trustworthiness judgment
task) whereas other brain regions were primarily modulated by
only shape or texture feature (e.g., the rIFG in the trustworthiness
judgment task was primarily modulated by the shape feature).
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Figure 4. Visualization and explanation of feature vectors. Shown are synthesized faces (ranging from −9 SD to +9 SD) using average feature weights from all voxels

that encoded significant feature vectors. Left: trustworthiness judgment task. Right: dominance judgment task. Color bars below faces indicate correlation strength (i.e.,

correlation coefficient) between feature weights derived from neural responses (the ones that are used to synthesize faces) and feature weights derived from consensus

social trait ratings. Only significant correlations are shown with colors. All: correlation using all features; S: correlation using shape features only; T: correlation using

texture features only; Tru: trustworthiness ratings; Dom: dominance ratings.

Notably, consistent with our findings, the FFA has been shown to
be sensitive to both shape (Jiang et al. 2009) and texture (Jiang
et al. 2009; Harris et al. 2014) features and the pSTS has been
shown to encode both shape and texture features (Sormaz et al.
2016) (see our results from pSTS in both tasks; Fig. 4). 3) Changes
in faces tended to be more subtle (i.e., smaller variation in faces)
along the visual processing stream in the trustworthiness judg-
ment task. More importantly, by comparing the synthesized faces
from the same brain region under different task instructions (e.g.,
the rFFA as well as the rIFG), we found that the brain region
represented vastly different faces, suggesting a flexible encoding
of faces under different task instructions.

We next correlated neural feature vectors with social trait
behavioral judgment feature vectors (derived using consensus
ratings from Oosterhof and Todorov 2008) to explore whether
the physical changes in faces could be explained by any
social perceptions. We found several correlations (Fig. 4). In the
trustworthiness judgment task, the neural feature vector from
the right FFA was correlated with behavioral judgment feature
vectors of trustworthiness and dominance, suggesting that this
neural feature vector contained information about trustworthi-
ness and dominance judgments. In the dominance judgment
task, the neural feature vector from the left pSTS was correlated
with behavioral judgment feature vectors of dominance while
the neural feature vector from the right IFG was correlated
with behavioral judgment feature vectors of trustworthiness
and dominance. Note that the behavioral judgment feature
vectors of trustworthiness and dominance have previously been
shown to be negatively correlated with each other (Oosterhof
and Todorov 2008), therefore it is not surprising to observe a
neural feature vector correlating with both behavioral judgment
feature vectors simultaneously. Furthermore, we derived similar
results using judgments of faces from participants in the present
study (Supplementary Fig. S2). We found additional correlations
in the left pSTS and right IFG with trustworthiness. Lastly,

it is worth noting that our face modeling revealed physical
changes in faces that significantly modulated neural responses,
though such physical changes might not be directly associated
with a specific social percept (e.g., explained by a social trait).
We therefore did not expect to find significant correlations
with behavioral judgment feature vectors for all neural feature
vectors.

Together, we observed the physical changes in faces that
drove the neural response. Compared to previous neuroimaging
literature (Jiang et al. 2009; Harris et al. 2014; Sormaz et al.
2016), we directly modeled the physical changes in faces without
resorting to the fMRI adaptation procedure and thus our present
results provided a more comprehensive analysis of face features
and revealed more subtle changes in faces that could drive neural
responses in specific ROIs. We also found that a subset of neural
feature vectors also contained information about social traits
such as trustworthiness and dominance.

Summary of Results

In summary, we found that neural representation of faces for
both social traits and low-level facial features showed a vastly
different pattern based on different task instructions, suggesting
a flexible and dynamic encoding of faces. Specifically, our results
can be summarized as follows:

1. Different face-responsive brain regions encoded social traits
and low-level features of face differently: 1) the FFA (especially
the rFFA) encoded both social traits (trustworthiness and
dominance) and low-level features (shape and skin texture)
and in both cases the FFA showed a different response in
different tasks. 2) The STS (especially the pSTS) primarily
encoded low-level features, but the right pSTS was involved in
the trustworthiness judgment task whereas the left pSTS was
involved in the dominance judgment task. 3) The amygdala

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa055#supplementary-data
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was primarily involved in encoding social traits but not low-
level features. 4) The IFG (especially the right IFG) primarily
encoded low-level features (although it was the only region
that encoded the quadratic response of the dominance trait;
Fig. 2E, F) where it showed a different response in different
tasks and the left IFG only encoded low-level features in the
dominance judgment task.

2. The brain regions encoding low-level features showed
a different pattern of feature selectivity (Fig. 3G, J) and
feature preference (Fig. 3I, L) for different tasks. Only in the
dominance judgment task, there was a decreasing trend of
shape preference along the visual processing stream (but
the trustworthiness judgment indicated an opposite trend).
Interestingly, we found that primarily the right hemisphere
encoded low-level features in the trustworthiness judgment
task (Fig. 3C, E) whereas both hemispheres were involved in
the dominance judgment task (Fig. 3D, F). Note that the right
FFA and right IFG encoded low-level features in both tasks,
although different voxels were involved.

3. The encoded changes in the synthesized faces were diverse
across different brain regions, and the changes seemed to
become more subtle along the visual processing stream. Only
the low-level features encoded by the right FFA in the trust-
worthiness judgment task and the left pSTS and right IFG in
the dominance judgment task could be explained by behav-
ioral judgment of social traits.

Discussion
In this study, we used fMRI to identify brain regions that encoded
high-level social traits such as facial trustworthiness and facial
dominance and that these brain regions were modulated by
task instructions. We then employed a face modeling approach
and identified brain regions that encoded low-level variation
in structural and textural features of the faces that drove neu-
ral responses. We further analyzed the evolution of the neural
feature vectors along the visual processing stream and visual-
ized and explained these feature vectors. Together, our results
showed a flexible neural representation of faces for both low-
level facial features and high-level social traits in the human
brain.

Possible Caveats

Consistent with previous functional neuroimaging findings
(Todorov et al. 2011) (see Mende-Siedlecki, Said et al. 2013 for
a meta-analysis), in the trustworthiness judgment task, we
observed a linear effect of trustworthiness in the right OFA,
bilateral FFA, right amygdala, and left pSTS, and a quadratic
effect in the right OFA and FFA. However, in the dominance
judgment task, we observed a linear effect of dominance in
the right IFG, which has only been shown to change activity
according to trustworthiness but not dominance in previous
studies (Mende-Siedlecki, Said et al. 2013, Todorov et al. 2011).
Furthermore, consistent with our present results, previous
studies have shown a quadratic effect of dominance in the left
FFA (Mende-Siedlecki, Said et al. 2013, Todorov et al. 2011); but
we also observed a quadratic effect of dominance in the right
OFA and left amygdala in the present study. The difference with
the previous literature was likely due to the different tasks used
(also see below), the major conclusion of our present study. It
is also worth noting that the encoding of social traits and low-
level features could be differently sensitive to task instructions
(see summary of results) and the beta coefficients could be even

reversed in incongruent tasks (Fig. 2). Again, both of these may
have resulted from the highly flexible encoding of faces under
different task demands and contexts.

When we synthesized faces for visualization and explanation,
we averaged the model parameters (i.e., feature weights) across
all voxels that encoded a significant feature vector, given the
consistency in model parameters across voxels (Fig. 3). Therefore,
these feature vectors represented the mean response or the most
dominant response within a cluster. However, each significant
voxel may encode different information of faces, and even single
cells within a brain region can encode different information
(Chang and Tsao 2017). Therefore, a future study with multivari-
ate analysis will be needed to investigate how these feature vec-
tors that are encoded by different units collectively lead to face
perception.

In this study, we used a computer-generated model faces in
order to parametrically vary the faces in the face space (Fig. 1A).
Rapid advances in computer vision and the development of
deep neural networks (DNNs) have provided an unprecedented
opportunity to extract features from real human faces and sub-
sequently manipulate these features to generate new photoreal-
istic faces while providing well-controlled stimuli to investigate
differences in neural responses to feature changes (see O’Toole
et al. 2018 for a review). Therefore, a clear future direction is to
apply our face modeling approach with real human faces with
face features extracted by DNNs.

Advantages of Our Approach

Our face modeling approach allows the study of facial features
for face identity, emotional expressions, and social traits. Impor-
tantly, it allows us to study task modulation of such neural
representations. Notably, our computational face models have
the following advantages: 1) they are free of any prior assumption
about what feature or content is important to trigger neural
responses and they can model any nonrandom response to faces.
This is also a general approach, which is able to not only analyze
low-level features but also high-level features such as social
traits by correlating with the feature vectors derived using the
corresponding social judgment. Therefore, responses to social
traits can also be analyzed under this framework. 2) They are
independent of explicit judgments, mimicking the real-world
scenario where people form instantaneous impressions of oth-
ers. 3) They are able to integrate responses from different mea-
surements, such as behavioral judgments, eye movements, and
fMRI BOLD responses. Because all measures can be transformed
to the same metric (feature weights), we can directly analyze the
similarity and link the computations between measurements. 4)
They can analyze the temporal dynamics of face representation.
5) They can synthesize new faces for testing on a variety of
dimensions. 6) Rather than elementalizing features/changes in
faces (e.g., Freiwald et al. 2009), they analyze holistic changes
in faces (e.g., Chang and Tsao 2017; VanRullen and Reddy 2019).
Together, our computational face model is capable of not only
revealing the physical variation in the face that determines com-
plex face evaluations but is also capable of identifying the neural
basis of these face evaluations. Such computational modeling
approach has been shown to be very useful for reconstructing
faces from neural signals (Lee and Kuhl 2016; Nestor et al. 2016;
VanRullen and Reddy 2019). Furthermore, our computational
framework and data-driven methods can be easily extended to
characterize any set of complex 3D objects that can be gen-
erated by a low-dimensional manifold parameterized in high-
dimensional space (e.g., Kurosu and Todorov 2017).
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Flexible Versus Invariant Coding of Faces

In this study, we found primarily flexible neural representation
of faces for both low-level and high-level face features. Our
present findings are consistent with our previous reports that
the neural signature indexing facial ambiguity is modulated by
context (Sun et al. 2017b) and task instructions (Sun et al. 2017a).
Our results are also in line with the finding that the amygdala
processes stimulus relevance and evaluative goals and that it
can be dynamically modulated by motivations of the perceiver
(Cunningham et al. 2008; Cunningham and Brosch 2012). Further-
more, the IFG shows flexible neural coding during categorical
decision making by shaping its selectivity to reflect the behav-
iorally relevant features (Li et al. 2007). On the other hand, in the
present study, we found that the right amygdala showed flexible
response to facial trustworthiness given different task instruc-
tions, in contrast to our prior report that the right amygdala’s
response to trustworthiness is not modulated by stimulus range
or social context (Wang et al. 2018). This is likely because here we
used judgment of trustworthiness versus dominance, 2 largely
orthogonal social traits (Oosterhof and Todorov 2008), whereas
we previously used “approach” versus “avoidance” task instruc-
tions (Wang et al. 2018), which were both based on facial trust-
worthiness. In addition, consistent with the present results, a
prior report using approach-avoidance versus 1-back recognition
tasks has identified brain regions that are invariant or flexible
to evaluation of social traits (Todorov et al. 2011). More broadly,
top-down factors such as task instructions, task demands, and
evaluative context have been shown to impact face processing
even in an implicit manner (Ratner et al. 2012; Collins et al.
2016; Stolier and Freeman 2016). A future study using multi-voxel
pattern analysis (MVPA) may reveal more subtle information
about how faces are neurally represented in different contexts
(Ratner et al. 2012; Collins et al. 2016; Stolier and Freeman 2016).

Face Space and Feature-Based Coding

There have been efforts to identify responses to axes of biologi-
cally or computationally derived “face space” models, in which
each face is represented as a vector in a multi-dimensional
space. Along these lines, we have shown that the human brain
can represent certain dimensions of facial expressions such
as intensity (Todorov et al. 2008; Wang et al. 2017). Notably,
there has been a long history of using a face space approach
to test feature-based models and study face representations in
the brain in general. This approach has been demonstrated as
a useful tool in many studies investigating face perception. For
example, using the face space approach, it has been shown that
adaptation specifically shifts the perception along a trajectory
passing through the adapting and averaging faces, selectively
facilitating recognition of a test face lying on this trajectory and
impairing recognition of other faces (Leopold et al. 2001). Such
norm-based face encoding is supported by neuronal evidence
from the monkey inferotemporal cortex (Leopold et al. 2006) and
human fMRI (Loffler et al. 2005): individual faces are encoded
by their direction (facial identity) and distance (distinctiveness)
from a prototypical (average) face, and when facial geometry
(head shape, hairline, internal feature size, and placement) is
varied, the fMRI signal gets larger with increasing distance from
the average face (Loffler et al. 2005). In addition, there is a face
feature space in the macaque temporal lobe (Freiwald et al. 2009),
and a recent study has shown that each face cell’s firing rate is
proportional to the projection of an incoming face stimulus onto
a single axis in the face space, allowing a face cell ensemble to

encode the location of any face in the space (Chang and Tsao
2017).

In conclusion, our present results of face modeling (Figs. 3
and 4) support feature-based coding, where physical changes in
faces parametrically modulated neural responses. Furthermore,
we found that various brain regions within the face-selective
areas were parametrically modulated by social traits (Fig. 2),
again supporting feature-based coding. Together, we identified
brain regions that parametrically encoded both low-level struc-
tural and textural features of faces as well as high-level seman-
tic meaning of social traits, and we further found that such
feature-based coding was flexible given different task instruc-
tions. Future studies will be needed to compare these competing
face coding schemes at the single-neuron or neural population
level.
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nications online.
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