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Abstract: Object recognition represents the ability of a system to identify objects, humans or animals
in images. Within this domain, this work presents a comparative analysis among different classifica-
tion methods aiming at Tactode tile recognition. The covered methods include: (i) machine learning
with HOG and SVM; (ii) deep learning with CNNs such as VGG16, VGG19, ResNet152, MobileNetV2,
SSD and YOLOv4; (iii) matching of handcrafted features with SIFT, SURF, BRISK and ORB; and (iv)
template matching. A dataset was created to train learning-based methods (i and ii), and with respect
to the other methods (iii and iv), a template dataset was used. To evaluate the performance of the
recognition methods, two test datasets were built: tactode_small and tactode_big, which consisted of
288 and 12,000 images, holding 2784 and 96,000 regions of interest for classification, respectively.
SSD and YOLOv4 were the worst methods for their domain, whereas ResNet152 and MobileNetV2
showed that they were strong recognition methods. SURF, ORB and BRISK demonstrated great
recognition performance, while SIFT was the worst of this type of method. The methods based on
template matching attained reasonable recognition results, falling behind most other methods. The
top three methods of this study were: VGG16 with an accuracy of 99.96% and 99.95% for tactode_small
and tactode_big, respectively; VGG19 with an accuracy of 99.96% and 99.68% for the same datasets;
and HOG and SVM, which reached an accuracy of 99.93% for tactode_small and 99.86% for tactode_big,
while at the same time presenting average execution times of 0.323 s and 0.232 s on the respective
datasets, being the fastest method overall. This work demonstrated that VGG16 was the best choice
for this case study, since it minimised the misclassifications for both test datasets.

Keywords: computer vision; machine learning; 2D object recognition; HOG; SVM; VGG; ResNet;
MobileNet; YOLO; SSD

1. Introduction

Tactode [1–4] is a tangible programming system whose name comes from “tactile cod-
ing”. The main goal of Tactode is to bring robotics and programming closer to children in a
more interactive and understandable way, while developing their programming skills and
computational thinking [5]. This system is made up of a web application, tangible tiles,
a simulator and a real robot. This way, the children create a code using the tiles, take a
photograph of it and upload it to the web application, where they can test the tangible code
with the simulator, to be further executed on a real robot [5]. Figure 1 shows an example of
a Tactode code that draws a regular polygon and that can be interpreted as the following:
after receiving a flag signal, the robot asks the user about the number of sides the polygon
must have; when the user answers the question, the pen goes down to the correct position
for drawing, and after, the robot enters a cycle where it goes forward and then turns right,
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drawing the sides of the polygon—this is repeated an amount of times that corresponds to
the number of sides answered by the user; after completion of the drawing, the pen returns
to the original position.

Figure 1. Tactode code example with 14 tiles that draws a regular polygon with the number of sides
specified by the user.

In this work, an image processing pipeline was used within a case study conducted
on 32 Tactode tiles. The pipeline received an image and, after some segmentation steps,
was capable of separating every tile present in the image to be further identified. The
purpose of this work was to make a comparative analysis of the recognition performance
of several methods used by the pipeline. The recognition methods were evaluated on two
datasets that were created for testing. Furthermore, two training datasets were built to
train distinct classifiers. All the datasets were automatically annotated and made available
online. Although this work only focused on Tactode tiles, this study can most likely be
extended to other types of tiles or similar 2D objects.

The main contribution of this work was the comparative analysis of a large number
(12) of recognition methods in the specific task of recognising puzzle-like tiles. Additional
contributions also included the dissemination of the code, the trained models and the
datasets of this comparative study.

The remainder of this paper is organised as follows. Section 2 revises some methods
for recognition tasks, and Section 3 introduces the selected approach and the methods used
in this work. Section 4 presents the datasets that were built to test and train some of the
methods, as well as the metrics utilised to evaluate their performance. The results acquired
from this work are shown in Section 5 and are discussed later in Section 6. Lastly, Section 7
draws conclusions about this work.

2. Literature Review

In this section, the state-of-the-art for 2D object recognition is presented, focusing
on some methods inserted in the domains of machine learning, matching of handcrafted
features and template matching.

Template matching [6] is a method capable of classifying images by calculating a
similarity measure between some templates and the target image. Thus, the template that
presents the greatest similitude classifies the target image or locates itself in the image [7].

Regarding the algorithms for feature detection and description, one that must be paid
attention to is HOG, since it is a well-known method that, when paired with an SVM, can
form reliable classification models. HOG is a feature descriptor that regionally describes an
image through normalised histograms of oriented gradients. In 2005, an implementation
of the aforementioned combination (HOG and SVM) was designed to perform pedestrian
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detection [8], which turned out to be an innovative and successful approach. Moreover,
other algorithms like SIFT, SURF, BRISK and ORB can be used for classification-oriented
purposes when combined with a descriptor matcher. SIFT [9] is a feature detector and
descriptor algorithm that detects keypoints and checks whether the keypoints are stable
enough to be considered true interest points (otherwise, they are rejected). Then, orientation
invariance is assigned to the true keypoints, and the descriptor is constructed by computing
the gradient orientation and magnitude in the region around the keypoint location [10].
SURF has an implementation similar to SIFT, but it uses integral images that, along with
box filters, help improve its performance. The descriptor is computed by the use of
Haar wavelets and is invariant to scale and rotation; however it is less invariant to affine
changes [11]. Another algorithm known for keypoint detection and description is BRISK,
which uses the AGAST [12] method to perform keypoint detection, and the description
phase consists of the determination of each keypoint direction and the aggregation of the
results obtained from brightness comparison tests [13]. Another important algorithm to be
mentioned is ORB. This is also a feature detection and description algorithm that makes
use of FAST [14] and BRIEF [15] as a keypoint detector and descriptor, respectively. In this
algorithm, the keypoint detection step is based on a variant of FAST with an orientation
component, and the description stage utilises a rotation-aware BRIEF, resulting in a rotation
and not-scale invariant descriptor [16].

Currently, the cutting edge methods for recognition tasks are based on machine
learning. This domain is a subset of artificial intelligence whose objective is to teach a
machine to learn from input data [17]. There are several types of learning that differ from
each other regarding the purpose of the data and the way that they are handled: supervised
learning was the one used in this work, defined by training a model with labelled data, and
when tested, it was expected that the model would predict a labelled output. One of the
many supervised learning methods is SVM, which maps input vectors into a dimensional
space where a linear surface is built to improve the classes’ generalisation [18]. This method
was primarily designed to address binary classification problems, but currently, SVM can
also deal with multiclass challenges. For such tasks, there are some implementations: the
one called “one-against-one” is the most competitive [19].

In addition to SVM, there are other methods, targeting recognition purposes with
multiple classes, whose the models’ foundations are centred on a Convolutional Neural
Network (CNN). These methods are inserted in a machine learning field called deep
learning. In this work, we used methods of this type to attempt to identify objects in
images; nonetheless, they are distributed in two distinct groups: object detection—the
model detects and classifies the object(s) of the input image; and object classification—the
only focus of the model is to classify the object present in the image.

Single-Shot Multibox Detector (SSD) and You Only Look Once (YOLO) are two of
the main strategies concerning object detection. YOLO starts by resizing the input image
to 448 × 448 and then divides it into a grid of S × S, where each cell is responsible for
predicting one object [20]. For each cell, YOLO predicts B bounding boxes (each of them
with a confidence score) and C class probabilities for each bounding box. The resulting
prediction tensor is defined by an S × S × (B × 5 + C) shape [20]. The main benefits of this
system over other object detection systems are its capability for real-time processing (with
Graphical Processing Units (GPUs)) and for predicting the locations of objects and their
classes using a single network [20]. Officially, there are three new versions of YOLO: the
second version (YOLOv2) appeared in 2017 with improvements related to the accuracy
and speed of detection and is also called YOLO9000 because it can detect in real-time
more than 9000 distinct object categories [21]; the third version (YOLOv3) has even better
performance regarding detection speed [22]; and YOLOv4 (the last official version of YOLO)
is currently the fastest and most accurate detector [23] and follows a structure that has a
CSPDarknet53 [24] backbone, a neck composed by SPP [25] and PAN [26], and the head
corresponds to YOLOv3. SSD is another method to detect objects in images that relies on
convolutional neural networks and is composed by a base network, responsible for image
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classification, followed by an extra network that provides detections at multiple scales.
In [27], VGG16 was utilised as the base network of the model.

When the objective is to classify an object inside an image, methods like VGG16,
VGG19, ResNet and MobileNet tend to be chosen, as they were designed for this specific
goal. VGG16 and VGG19 [28] are two similar networks that only differ in the network
depth, i.e., the number of weighted layers—VGG16 has 16 (13 convolutional and three
fully connected), and VGG19 has 19 (16 convolutional and three fully connected). These
two versions were studied in [28] where they gained more relevance due to their better
performance against shallow architectures. ResNets [29] are other deep neural networks
that were formulated in 2016 along with the return of the residual functions concept. These
neural networks rely on residual learning, i.e., instead of having just a stack of layers
(known as plain networks), there are “shortcut” connections that can skip any number of
layers. Such connections do not bring extra parameters nor computational complexity to
the network [29]. In fact, ResNet proved to be easily optimised and improved, in terms
of accuracy, when the depth increases. Three major versions of ResNet were introduced,
which differ in the number of layers (depth level): ResNet50 (50 layer ResNet), ResNet101
(101 layer ResNet) and ResNet152 (152 layer ResNet). Among the three, ResNet152 ac-
complished the lowest error rate on the ImageNet validation set [29]. Additionally, albeit
that ResNet152 has a greater depth, being the deepest of the three, it still presents inferior
complexity than both other VGGs. Another well-known convolutional neural network is
MobileNet [30]. This network was developed for mobile applications and is characterised
by its efficiency in latency and size. It provides two hyperparameters that can be tweaked,
thus enabling it to fit the model size and speed to the problem requirements [30]. Compared
to the VGG topologies, MobileNet is much more lightweight and fast and has almost the
same accuracy. There are two new versions of this network: Version 2 (MobileNetV2)
added linear bottlenecks and inverted residuals to the depth-wise separable convolutions
of the original version, which resulted in even better accuracy, weight and speed [31];
and Version 3 (MobileNetV3) had even better performance in ImageNet classification:
MobileNetV3-Large and MobileNetV3-Small attained better accuracy than MobileNetV2,
but the large one presented worse latency, while the small showed a similar latency [32].

Over the years, several methods aiming at the recognition of objects in images were
proposed, and this work intended to test some of them in order to make a comparative
analysis of their performance in the recognition of Tactode tiles.

3. Proposed Approach
3.1. Image Processing Pipeline

The image processing pipeline used in this work is common to all classification
methods, and its steps are presented in Figure 2. This pipeline reads an image, like the ones
presented in Appendix A, and after segmenting it, the tiles are extracted and classified
individually. This pipeline is a contribution from a Master of Science thesis [3,4].

Input image Resizing Adjusting Binarising Segmenting 
and Rotating 

Filtering and
Agglomerating

Contours 
PositioningClassificationMatrix

Template Matching
SIFT, SURF, BRISK, ORB
HOG&SVM
SSD, YOLOv4
VGG16/19, MobileNetV2, ResNet152

Figure 2. Block diagram of the image processing pipeline.



J. Imaging 2021, 7, 65 5 of 20

The pipeline starts by resizing (Figure 3a) the input image in such a fashion that the biggest
side (height or width) is resized to 1920 px and the other is resized to a specific dimension,
keeping the aspect ratio of the original image. Since the input image can present minimal
rotation, it is adjusted by the Hough transform [33] for line detection. This way, the two most
important and perpendicular lines are found, and then, the image suffers a small rotation
adjustment (Figure 3b) so that both lines reach the vertical or horizontal positions. After, the
image is binarised (Figure 3c): an 11 × 11 Gaussian kernel is applied, smoothing the image; a
gradient morphological operation is used followed by a colour thresholding, which results in a
black and white (binary) image. Furthermore, two additional morphological operations, named
opening and closing, help reduce the noise and close possible holes. The three morphological
operations are performed with a 6 × 6 cross-structuring element. Next, the binary image is
segmented with the methods presented in [34], which extract the contours of the elements
present in the image. Moreover, the input image can arrive at this stage rotated 0◦, 90◦, 180◦ or
270◦ clockwise, since the target users are children, who usually do not care about the rotation
of the image. The approach chosen to solve this was based on the detection of “teeth” at the
bottom part of each tile bounding box. As can be observed in Figure 1, when the Tactode code
is well-oriented, the tiles only have “teeth” on the bottom part or on the right side of their
bounding boxes. The tiles that have teeth on the bottom part form a column. Furthermore, the
tiles composing the code can be in the column or to its right. Therefore, by checking these two
rules—the tiles with detected “teeth” at the bottom have to form a column, and the other tiles
have to be in the column or at the right—one can conclude whether the image is rotated or
not. Therefore, the image is rotated 90◦ until the 0◦ position is reached (when both rules met)
or at most four times. The detection of teeth was accomplished by utilising a classifier based
on HOG and SVM that was trained by using one of the training datasets, which is detailed
in Section 4.1. At this stage, the image is well-oriented, and the pipeline proceeds with the
contours’ filtering (Figure 3d,e) in order to get the most interesting ones—the contours that
best represent the tiles. Afterwards, each contour bounding box is obtained and positioned in a
matrix, which at the end, contains the bounding boxes of the tiles that are placed according
to their relative locations in the image. Finally, each bounding box is extracted, adjusted to a
square shape, forming ROIs that, in turn, are used to classify the tiles. Such classification is
accomplished using methods like the ones that are presented in Section 3.2. The final result is a
matrix holding in each position a string-typed variable that represents the name of the tile. As a
matter of visualisation, Figure 3f shows a representation of the result generated by the pipeline.

(a) Resized image. (b) Adjusted image. (c) Binary image.

Figure 3. Cont.
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(d) Rotated image with contours. (e) Filtered contours. (f) Classified tiles.

Figure 3. Use case of the processing pipeline: the input image is (a) resized, (b) adjusted, (c) binarised and rotated, and (d)
the most relevant contours are obtained and (e) filtered; then, each contour bounding box is extracted and (f) classified.

The pipeline was written in JavaScript and Python and was based on OpenCV (Intel
Corporation, Willow Garage, Palo Alto, CA, USA) [35]. The JavaScript part uses a Node.js
package called opencv4nodejs (GitHub, Inc., San Francisco, CA, USA) [36]. The use of this
package was preferred instead of the JavaScript version of OpenCV because the latter does
not have the necessary bindings to produce this work. The code is available online (the
code repository is available at: https://github.com/daniqsilva25/tactode_recognition,
accessed on 30 March 2021).

3.2. Classification Methods

The comparative analysis made in this work focused on methods that belong to
different areas: neural networks designed to perform object classification or detection; a
method that combines image regional descriptors with machine learning; methods based
on matching local image features and template matching.

3.2.1. Template Matching

The method based on Template Matching (TM) utilises the template dataset presented
in Section 4.1.1 and goes through the following steps: after obtaining the ROI and resizing
it to 350 × 350 px, a matching operation is performed between each template and the
ROI. Then, the classification of the respective tile is determined by the template that
resulted in the largest—in absolute value—maximum or minimum value (depending on
the matching mode).

3.2.2. Detection, Description and Matching of Image Features

The methods based on image features’ detection and description also uses the template
dataset. The procedure starts by detecting the keypoints and computing the descriptors
of a certain ROI, and the same is executed for every template. After, a feature matcher
matches the descriptors of the ROI with the descriptors of each template. Then, using
RANSAC [37] with a maximum reprojection error threshold of five, the outliers are filtered.
Finally, the template that results in more inliers is the one that classifies the respective tile.

The methods for feature detection and description were configured so that the numbers
of keypoints detected was similar among them. In addition, the feature matcher used

https://github.com/daniqsilva25/tactode_recognition
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was brute-force along with the L1 norm for SIFT and SURF, since these are float-based
descriptors, and the Hamming norm for ORB and BRISK due to the binary nature of
their descriptors.

3.2.3. Machine Learning

The method based on machine learning is a combination of HOG and SVM (HOG&
SVM), forming a multiclass classifier, since 32 different tiles must be distinguished. Thus,
using the training dataset presented in Section 4.1.2, a linear SVM (C = 0.1) was trained
using HOG descriptors computed from each data sample. The HOG descriptor was
calculated over a window size of 32 × 32 px, divided into cells of 8 × 8 px, with blocks
composed by 16 × 16 px (or 2 × 2 cells) and a block stride of 8 × 8 px (or one cell). The
gradients were signed, and each histogram had nine bins, leading to a descriptor vector
with a length of 324 per sample.

During the training, from each image sample, the ROI—part of the image containing
the tile—was extracted using the bounding box, which in turn was adjusted to a square
shape (1:1 ratio) and resized to 32 × 32 px, respecting the window size of HOG. The
descriptors vector was computed and then given to the SVM classifier. Additionally, a
10-fold cross-validation test was performed after the training, which resulted in zero errors.
Figure 4 presents two images of the same tile, both related to the ROI extraction operation
for training.

(a) Photograph of the tile. (b) Square-shaped ROI of the tile.

Figure 4. Two images of the tile “addition” for the training the classifier.

With the model already trained, the tiles could be classified after extracting the ROIs,
resizing them to 32 × 32 px and using them to compute the HOG descriptors. Then, they
were input to the SVM classifier that predicted the labels of the tiles.

In this work, two versions of the HOG&SVM method were developed: a version
made on top of OpenCV for Python (HOG&SVM (PY)) and another based on the Node.js
package of OpenCV for JavaScript [36] (HOG&SVM (JS)), which was already mentioned.
The proceeding sections present some results about both versions, but we focused on the
Python version because the other was not an official release.

3.2.4. Deep Learning

The methods based on CNNs for tile classification used in this work were VGG16,
VGG19, ResNet152 and MobileNetV2 (MNetV2). The four methods were trained in Google
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Colaboratory [38], due to its GPU resource availability, with a batch size of 32 and the same
training dataset as for the previous method (HOG&SVM). However, in these cases, the
ROIs of the training images were resized to 224 × 224 px, as this was the size for which
these models were designed. Two important aspects to be noted are the following: the
152 layer version of ResNet was selected due to it being the least error prone [29], and
the second version of MobileNet was the primary choice due to the fact that it was the
best stable version of MobileNet present in TensorFlow [39], since both versions (large and
small) of MobileNetV3 were not yet stable.

To perform the classification of 32 different tiles, the networks were loaded with
pre-defined weights (based on the ImageNet dataset classification), and the head of each
network was replaced by three new layers sized for the number of classes: a flatten layer, a
Rectified Linear Unit (ReLU) activated dense layer and a softmax activated dense layer,
which resulted in a final prediction batch with a shape of (32, 32).

After, each base model (with the pre-loaded weights) was frozen in order to keep the
original weights unchanged and with the new classification head, they were trained during
20 epochs with a learning rate of 0.0001. Then, some of the top layers of the base models
were unfrozen in order to train them, thus fine-tuning the whole model, and again, the
model was trained for 20 new epochs with a 10-times lower learning rate (0.00001). At the
end, three trained models were obtained, which were exported to be tested later.

In this work, YOLOv4 and SSD-MobileNetV1 (object detectors) were also used as
object classifiers, which were trained on the same dataset. Therefore, in this work, both
methods received ROIs as the input instead of the entire image.

4. Experimental Validation
4.1. Datasets

This work produced five datasets: one containing templates of the tiles, two for
training the machine learning models and the other two for testing and evaluating the
performance, under different metrics, of several classification techniques. All the datasets
are available online (the trained models, the datasets and a demonstration video are
available at: http://fe.up.pt/asousa/tactode_datasets, accessed on 30 March 2021).

4.1.1. Template Dataset

This dataset contained one image of 350 × 350 px per tile, totalling 32 templates
(1 sample/tile × 32 tiles), as the ones shown in Figure 5. This dataset was used by some
of the aforementioned classification methods, namely TM and feature matching-based methods.

(a) “turn left” template. (b) “end forever” template. (c) “pen down” template.

Figure 5. Three templates of the 32 template set.

http://fe.up.pt/asousa/tactode_datasets
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4.1.2. Training Datasets

The two training datasets were composed of extracted frames from 10 s videos of
each Tactode tile that were recorded at 30 fps. The dataset for training a classifier targeting
the detection of “teeth” was made up by 2100 positive and 2430 negative samples, and
its characteristics are presented in Table 1. The other dataset was made of 9600 images
(300 images/tile × 32 tiles) and was created to train the different machine learning classi-
fiers that were mentioned in Section 3.2. Table 2 shows the specifications of this dataset.

Table 1. Specifications of the training dataset for the detection of tiles “teeth”.

Resolution (Mpx); [Height × Width] (px) Type of Sample Number of Images

8.3; [3840 × 2160] positive (with “teeth”) 2100

negative (without “teeth”) 2430

Table 2. Specifications of the training dataset for the classification of tiles.

Resolution (Mpx); [Height × Width] (px) Number of Images

8.3; [3840 × 2160] 9600

4.1.3. Test Datasets

To evaluate the performance of the recognition methods two test datasets were created:
tactode_small and tactode_big. Both datasets had images of different Tactode codes that were
gathered using three distinct devices with multiple resolutions. Moreover, all the tests were
executed on a laptop running the Ubuntu 18.04 OS with an Intel i7 Quad-core CPU (Intel,
Santa Clara, CA, USA) at 2.4GHz and with 4GB of RAM.

The tactode_small dataset was formed by 288 images and 2784 tiles. The distribu-
tion of image resolutions and the number of images and tiles per device is shown in
Table 3, where each resolution row of the table has a number of images equivalent to
6 codes × 4 images/code and a number of tiles equal to (11 + 5 + 4 + 11 + 19 + 8) tiles
× 4 images. The six codes that this dataset was made of are presented in Figure A1 of
Appendix A. In addition, for each Tactode code (set of tiles), there were four images: three
were mostly frontal, where two of them presented important rotations (±20◦); and the
other one had a large tilt (the image size of the smallest tile was about 2/3 of the largest
one), as can be seen in Figure A3 of Appendix B.

Table 3. Specifications of the tactode_small test dataset.

Device Resolution (Mpx); [Height × Width] (px) Number of Images Number of Tiles

Samsung Galaxy S6

16; [5312 × 2988] 24 232

12; [3984 × 2988] 24 232

8.9; [2976 × 2976] 24 232

8.0; [3264 × 2448] 24 232

6.0; [3264 × 1836] 24 232

Huawei P Smart+ 10; [3648 × 2736] 24 232

Samsung Galaxy Tab S

8.0; [3264 × 2448] 24 232

6.0; [3264 × 1836] 24 232

4.9; [2560 × 1920] 24 232

3.7; [2560 × 1440] 24 232

3.1; [2048 × 1536] 24 232

2.4; [2048 × 1152] 24 232

Total 288 2784
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The tactode_big dataset was formed by 12,000 images and 96,000 tiles over two different
Tactode codes. These two codes are shown in Figure A2 of Appendix A. All the images
corresponded to extracted frames (compressed images) from 10 s videos that were taped
at 30 fps for each code. In addition, each code was recorded presenting four rotation
angles—0◦, 90◦, 180◦ and 270◦ clockwise—giving one video per angle, thus resulting in
rotated test images. The distribution of resolutions, rotation angles and the number of
images and tiles per device is shown in Table 4, where each resolution row of the table
has a number of images equivalent to 2 codes × 300 images/code and a number of tiles
equivalent to (11 + 5) tiles × 300 images.

Table 4. Specifications of the tactode_big test dataset.

Device Resolution (Mpx); [Height × Width] (px) Rotation Angle (Clockwise) Number of Images Number of Tiles

Samsung Galaxy S6

8.3; [3840 × 2160]

0◦ 600 4800

90◦ 600 4800

180◦ 600 4800

270◦ 600 4800

3.7; [2560 × 1440]

0◦ 600 4800

90◦ 600 4800

180◦ 600 4800

270◦ 600 4800

2.1; [1920 × 1080]

0◦ 600 4800

90◦ 600 4800

180◦ 600 4800

270◦ 600 4800

Huawei P Smart+ 2.1; [1920 × 1080]

0◦ 600 4800

90◦ 600 4800

180◦ 600 4800

270◦ 600 4800

Samsung Galaxy Tab S 2.1; [1920 × 1080]

0◦ 600 4800

90◦ 600 4800

180◦ 600 4800

270◦ 600 4800

Total 12,000 96,000

4.2. Evaluation Metrics

In this section, we focus on assessing the classification errors introduced by the tests.
Therefore, a metric called accuracy was used and is defined by (1), where T and MT
represent the number of tiles and misclassified tiles, respectively.

Accuracy =
T − MT

T
× 100% (1)

However, it was necessary to add a variation of the accuracy metric in the case that
any of the methods resulted in some unclassified tiles, mainly the object detectors (YOLO
and SSD) that sometimes could not localise any object (tile) inside an ROI. Therefore, this
version of the accuracy was accomplished by (2) and differed from (1) in the aspect that
the total number of tiles (T) was subtracted by the number of unclassified tiles (UT). This
way, the accuracy of the methods that originated tiles without classification was measured
more fairly.

Accuracy∗ =
(T − UT)− MT

T − UT
× 100% (2)

Additionally, the Execution Time Mean Value (ETMV), Execution Time Standard
Deviation (ETSD), minimum Execution Time (minET) and maximum Execution Time



J. Imaging 2021, 7, 65 11 of 20

(maxET) were also measured to evaluate the computational cost of the methods. Such time
metrics are defined in (3)–(6), where N is the number of executions, ti is the execution time
at instance i, µ is the mean value, σ is the standard deviation and min and max are the
minimum and maximum values of the execution times, respectively.

µ =

N

∑
t=1

ti

N
(3)

σ =

√√√√√ N

∑
t=1

(ti − µ)2

N
(4)

min = argmin(t1, t2, ..., tN) (5)

max = argmax(t1, t2, ..., tN) (6)

5. Results

In this section, the results of the tests performed on the two test datasets are presented,
and they are analysed and discussed later on in Section 6.

The results of the tests executed on the tactode_small dataset are exposed in Tables 5
and 6. For each method, Table 5 shows the accuracy results globally and across all available
resolutions, and Table 6 presents the results concerning their execution time. A detail
that must be mentioned is that the resolutions of 6 and 8 Mpx had twice the number of
images as the other resolutions, since two of the devices that were used had both of these
resolutions available.

Table 5. Accuracy results of the tests performed on the tactode_small test dataset and their distribution by the available
resolutions. The “*” in YOLOv4 and SSD indicates that their accuracy values were computed according to Equation (2). JS,
JavaScript; PY, Python.

Method

Accuracy (%)

Global
Resolution (Mpx)

2.4 3.1 3.7 4.9 6 8 8.9 10 12 16

VGG16 99.96 99.57 100 100 100 100 100 100 100 100 100

VGG19 99.96 100 100 100 100 100 100 100 99.57 100 100

ResNet152 99.43 99.14 98.71 98.71 99.14 99.57 100 100 98.71 99.57 100

MNetV2 98.53 95.69 98.71 96.55 98.28 98.28 99.78 100 97.84 99.57 99.57

YOLOv4 * 71.49 70.89 74.18 75.00 68.12 71.29 71.71 65.83 70.62 74.27 72.68

SSD * 54.12 78.85 77.19 58.30 60.26 46.36 48.98 39.82 61.79 38.71 42.48

HOG&SVM (JS) 100 100 100 100 100 100 100 100 100 100 100

HOG&SVM (PY) 99.93 100 100 100 100 100 100 100 99.14 100 100

SURF 98.28 98.28 99.14 96.98 98.71 96.77 98.92 99.14 99.14 99.14 97.41

ORB 95.11 94.83 96.55 95.69 95.26 95.04 94.40 94.83 95.69 95.69 93.97

BRISK 93.39 90.52 94.40 87.93 94.40 92.03 94.83 93.97 96.12 94.83 94.83

SIFT 86.42 85.78 84.91 84.48 84.91 85.34 88.15 88.79 89.22 87.50 84.48

TM (max) 81.25 66.81 74.14 83.19 88.79 83.19 85.56 87.07 67.67 84.05 85.78

TM (min) 69.47 64.22 67.67 82.33 87.07 69.18 70.91 63.79 62.93 62.50 62.93

An issue that can be observed in Table 5 is the decrease in accuracy with increasing
resolution in some column transitions, for instance from Column 3.1 to 3.7, where a general
decrease in performance can be easily noted. This problem is discussed later in Section 6.

The tests executed on the tactode_big dataset were only done for VGG16, VGG19,
ResNet152, MNetV2 and HOG&SVM because the previous results (obtained from the
tactode_small dataset) showed that these were the best classification methods. Therefore, fo-
cusing only on these methods, the results acquired from the tests executed on the tactode_big
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dataset are presented in Tables 7 and 8. For each of the five methods, Table 7 exhibits the
accuracy results globally and across all available resolutions, and Table 8 shows the results
concerning their execution time. It is important to mention that: the resolutions of 3.7 and
8.3 Mpx contained 19,200 tiles each, while the 2.1 Mpx resolution contained 57,600 tiles;
and VGG16, VGG19, ResNet152 and MNetV2 were tested with Google Colaboratory due
to the easy access to GPU power.

Table 6. Temporal results of the tests performed on the tactode_small test dataset.

Method ETMV (s) ETSD (s) minET (s) maxET (s)

VGG16 3.639 1.756 1.333 7.889

VGG19 4.479 2.174 1.710 9.913

ResNet152 3.740 1.760 1.554 7.812

MNetV2 0.920 0.327 0.422 1.816

YOLOv4 10.284 5.312 3.847 22.572

SSD 0.872 0.329 0.418 2.528

HOG&SVM (JS) 0.228 0.054 0.135 0.424

HOG&SVM (PY) 0.323 0.073 0.207 0.518

SURF 36.720 18.549 15.017 73.661

ORB 9.261 4.224 3.553 20.953

BRISK 12.637 6.082 5.194 31.057

SIFT 17.810 8.445 7.194 42.051

TM (max) 2.673 1.256 1.066 5.947

TM (min) 3.495 1.631 1.512 6.783

Table 7. Accuracy results of the tests performed on the tactode_big test dataset and their distribution
by the available resolutions.

Method

Accuracy (%)

Global
Resolution (Mpx)

2.1 3.7 8.3

VGG16 99.95 99.91 99.99 100

VGG19 99.68 99.50 99.90 100

ResNet152 98.61 98.08 98.88 99.95

MNetV2 80.20 72.05 91.31 93.56

HOG&SVM (JS) 99.99 99.98 100 100

HOG&SVM (PY) 99.86 99.81 99.96 99.92

Table 8. Temporal results of the tests performed on the tactode_big test dataset.

Method ETMV (s) ETSD (s) minET (s) maxET (s)

VGG16 0.583 0.104 0.409 1.173

VGG19 0.621 0.107 0.452 1.128

ResNet152 0.791 0.165 0.542 3.108

MNetV2 0.628 0.108 0.424 1.326

HOG&SVM (JS) 0.162 0.041 0.094 0.422

HOG&SVM (PY) 0.232 0.035 0.148 0.415
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6. Comparative Analysis

In Figure 6, a bar graph is shown that represents the performance of all methods
on the two test datasets and ordered by the year of the appearance of the methods. This
figure is mentioned throughout this section to make a comparative analysis among the
recognition methods.
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80.2
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Figure 6. Timeline-like representation of the results obtained over the two test datasets with the
global accuracy of all recognition methods.

The results obtained from tactode_small are exposed in Tables 5 and 6, where it can be
noticed that both versions of the TM-based method attained reasonable accuracy values
(81.25% and 69.47% for the maximum and minimum version, respectively), considering
that this method is the oldest one, according to Figure 6. Furthermore, they reached average
execution times of 2.673 s and 3.495 s.

Regarding the methods based on image features matching, SURF achieved the best
accuracy (98.28%), and ORB and BRISK were second and third with an accuracy of 95.11%
and 93.39%, respectively. On the other hand, SIFT was the one, among this type of methods,
that presented more classification errors and a resulting accuracy of 86.42%. The reason
behind this is that SIFT is more sensitive to noise than, for instance, SURF [11] because the
latter uses a sub-patch to compose the gradient information, whereas SIFT depends on
individual gradients’ orientations. This makes SURF, with the use of a global descriptor,
more robust to image perturbations than SIFT, which, in turn, relies on a local descriptor.
Those perturbations can be light condition variations, which, as a matter of fact, appeared
to be present in this work, as shown in Figure A1, where all the images share the same
background, yet some colour variations of the same in the images can be seen. This detail
compromised the performance of SIFT since the pair template-ROI can potentially exhibit
such variations. In terms of temporal execution, ORB was the fastest with an average
execution time of 9.261 s, followed by BRISK with 12.637 s. SIFT presented an average of
17.810 s of execution, and SURF, which typically has less computational cost than SIFT [11],
was overall the worst method on this parameter, taking on average 36.720 s to execute. This
was due to the fact that SURF detects more keypoints than SIFT [40], therefore resulting
in more outliers, and consequently, the outliers filtering phase slowed down SURF in the
classification stage.

With respect to the object detectors (SSD and YOLOv4), both presented poor results
(54.12% for SSD and 71.49% for YOLOv4) possibly because the training dataset was not
the most suitable for them to detect Tactode tiles, since the test images were composed by



J. Imaging 2021, 7, 65 14 of 20

Tactode codes (connected tiles), while the training images contained only individual tiles; it
was expected that with an adequate training dataset, their performance could be improved.

HOG&SVM presented an accuracy of 99.93% and 99.86% along with an average
execution time of 0.323 s and 0.232 s on tactode_small and tactode_big, respectively. Besides,
it is important to mention that the two versions of HOG&SVM (Python and JavaScript)
generated different results due to the fact that the implementation of this method was
different in the OpenCV library for Python from the OpenCV Node.js package.

As regards the CNN-based classifiers, VGG16 and VGG19 were the best performers
in terms of accuracy on the tactode_small test dataset with an accuracy tie of 99.96% and an
average execution time of 3.369 s and 4.479 s, respectively. On the same dataset, ResNet152
achieved an accuracy of 99.43% with an average execution time of 3.740 s, and MNetV2
obtained a 98.53% accuracy and a 0.920 s average execution time. On the tactode_big test
dataset, VGG16 proved to be the best method, reaching an accuracy of 99.95%, followed
by VGG19 with 99.68%, ResNet152 with 98.61% and MNetV2 with 80.20%. On this bigger
dataset, this type of method presented lower execution times by the use of the GPU; thus,
the temporal values of 0.583 s, 0.621 s, 0.791 s and 0.628 s for VGG16, VGG19, ResNet152
and MNetV2, respectively, were not comparable to those of HOG&SVM because this was
tested on a CPU for both test datasets.

In Figure 6, from tactode_small and tactode_big, it can be noticed that the accuracy
of HOG&SVM, ResNet152, MNetV2 and both VGGs decreased. We believed that this
phenomenon was related to the fact that the images of tactode_big dataset were obtained
by extracting the frames from videos at 30 fps that generally underwent compression
processes, hence originating quality losses in the extracted images. MNetV2 appeared to
be the method where this decrease in accuracy was more obvious: its accuracy dropped
from 98.53% to 80.20%. Additionally, the resolution that contributed the most to this drop
was the smallest one available for tactode_big, which was 1920 × 1080 px (2.1 Mpx) with
a 72.05% accuracy, as can be seen in Table 7. It was expected that MNetV2 would be
worse than both VGGs and ResNet152 since it was designed targeting mobile applications,
where memory efficiency and temporal performance are key characteristics [31], which
in fact can be verified in this case, whereas MNetV2 resulted in the third best average
execution time on tactode_small (tested on CPU). The accuracy results of VGG16 and VGG19
were similar, as was expected [28], and their execution times were in accord with the
expectations, because VGG16 had fewer layers than VGG19 (16 against 19 layers) and
presented a lower computational time than the latter on both test datasets. With respect
to HOG&SVM, it presented a minimal difference in accuracy compared to both VGG
CNNs on tactode_small and VGG16 in tactode_big, at the same time, being the fastest overall
method on both datasets. This worse accuracy in comparison to the VGGs could be derived
from HOG&SVM using an input image of 32 × 32 px, while both VGGs used a 224 × 224
px image. Such a resolution difference could have an impact on performance since, in the
case of HOG&SVM, there was less available information (pixels) to use for tile recognition.
In spite of that, the results of HOG&SVM were impressive considering that this method
was nine years older than VGG, as can be noticed in Figure 6. With respect to ResNet152,
we suspected that the abrupt difference of the maximum execution time that this method
presented during the tests on the tactode_big dataset compared to the other CNN-based
methods (3.108 s against ≈ 1 s) was derived from the fact that ResNet152 was memory-wise
the largest model, thus requiring more time to load before performing any classification.
In fact, this was an important aspect concerning the execution time of the methods, since
it was expected that methods that were more computationally complex or required more
memory space (for instance, VGG16, VGG19, ResNet152 or YOLO) took a longer time to
perform computations than lighter and simpler methods (such as HOG&SVM, MNetV2
or SSD).

Concerning the issue raised in Table 5 about the decrease in performance with the
increase in resolution, we believed that this problem may originate from the segmentation
step of the pipeline, specifically with the contours’ extraction precision, because sometimes,
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the bounding boxes of the contours did not cover the tiles entirely, and this could potentially
interfere with the recognition performance of the methods.

After analysing the results exposed in Section 5, it can be said that VGG16 was the best
recognition method in terms of accuracy. However, when the trade-off between accuracy
and computing time is at stake and a GPU is not available, HOG&SVM would be the
best choice.

7. Conclusions

The motivation for this work was Tactode tiles’ recognition within a 2D scene. In the
Tactode application, a large number of interconnected tiles is present. Each tile must be
detected and recognised by shape and content. The main focus of this work was related
to 2D object recognition, resulting in an in-depth comparative analysis of 12 well-known
methods (Figure 6). The study benchmarked the accuracy and execution time of these
methods by using two public datasets: tactode_small and tactode_big.

The studied methods can be grouped into four categories: (i) classic template matching,
(ii) methods based on handcrafted features, (iii) machine learning with HOG and SVM
and (iv) deep learning with CNN-based methods. The first category is template matching
featuring an accuracy of 81.25%. The best performer in the second category was SURF
with about 98% accuracy. In this category, the worst method was SIFT due to its high
sensitivity to luminosity and colour variations. Interestingly, HOG&SVM (third category)
was the best overall method in terms of execution time, reaching average times of 0.323 s
on tactode_small and 0.232 s on tactode_big, with accuracies above 99.8% on both datasets.
From the tested methods in the fourth category, VGG16 proved to be the best in terms of
accuracy (above 99.9% on both datasets).

If accuracy is the utmost concern, then VGG16 is the best choice for recognition
tasks, but for an application with low computational resources or under stringent real-
time constraints, HOG&SVM is very likely to be the best method because of its reduced
execution time with a slight loss in accuracy. Additionally, the integration of HOG&SVM
with a web application such as the Tactode web application would be easier due to the
availability of JavaScript source code.

The presented study is relevant for applications involving 2D object recognition, in
particular those applications that take advantage of the identification of a substantial
number of interconnected and repeated objects in the scene. Additionally, the presented
comparative analysis is relevant in applications where resource usage and time constraints
are at stake.

Future work includes extending the tile set with other Tactode tiles and re-evaluating
the performance of the recognition methods with the addition of new classes to the problem
at hand, as well as building an adequate dataset for training the object detectors (YOLO
and SSD) correctly, in order to improve their performance.
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BRIEF Binary Robust Independent Elementary Features
BRISK Binary Robust Invariant Scalable Keypoints
CNN Convolutional Neural Network
CPU Central Processing Unit
ETMV Execution Time Mean Value
ETSD Execution Time Standard Deviation
FAST Feature from Accelerated Segment Test
GPU Graphical Processing Unit
HOG Histograms of Oriented Gradients
HOG&SVM HOG and SVM
maxET maximum Execution Time
minET minimum Execution Time
MNetV2 MobileNetV2
ORB Oriented FAST and Rotated BRIEF
OS Operating System
RAM Random Access Memory
RANSAC Random Sample Consensus
ReLU Rectified Linear Unit
ROI Region Of Interest
SIFT Scale-Invariant Feature Transform
SSD Single-Shot Multibox Detector
SURF Speeded-Up Robust Features
SVM Support Vector Machine
TM Template Matching
YOLO You Only Look Once
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Appendix A. Test Datasets’ Codes

Appendix A.1. Codes of the tactode _small Dataset

(a) 11 tile code (b) 5 tile code (c) 4 tile code

(d) 11 tile code (e) 19 tile code (f) 8 tile code
Figure A1. The six Tactode codes that compose the tactode_small test dataset.
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Appendix A.2. Codes of the tactode _big Dataset

(a) 11 tile code (b) 5 tile code
Figure A2. The two Tactode codes that compose the tactode_big test dataset.

Appendix B. Rotated and Tilted Tactode Codes

(a) Rotated Tactode code (−20◦) (b) Rotated Tactode code (+20◦) (c) Tilted Tactode code
Figure A3. Three Tactode codes demonstrating the rotation (a,b) and tilt (c) present in the datasets.
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