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Abstract: A cognitive task, the n-back task, was used to interrogate the cognitive dimension of pain in
patients with implanted dorsal root ganglion stimulators (DRGS). Magnetoencephalography (MEG)
signals from thirteen patients with implanted DRGS were recorded at rest and while performing the
n-back task at three increasing working memory loads with DRGS-OFF and the task repeated with
DRGS-ON. MEG recordings were pre-processed, then power spectral analysis and source localization
were conducted. DRGS resulted in a significant reduction in reported pain scores (mean 23%, p = 0.001)
and gamma oscillatory activity (p = 0.036) during task performance. DRGS-induced pain relief also
resulted in a significantly reduced reaction time during high working memory load (p = 0.011). A
significant increase in average gamma power was observed during task performance compared to
the resting state. However, patients who reported exacerbations of pain demonstrated a significantly
elevated gamma power (F(3,80) = 65.011612, p < 0.001, adjusted p-value = 0.01), compared to those
who reported pain relief during the task. Our findings demonstrate that gamma oscillatory activity is
differentially modulated by cognitive load in the presence of pain, and this activity is predominantly
localized to the prefrontal and anterior cingulate cortices in a chronic pain cohort.
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1. Introduction

Pain is a multi-dimensional experience, traditionally described as consisting of sensory,
affective and cognitive domains [1]. Each domain can contribute to the modulation, and at times the
propagation, of chronic pain. The cognitive dimension of pain has been demonstrated by investigating
the roles that attention, distraction and memory play in altering pain perception [2,3]. Studies have
shown that engaging attentional networks with cognitive loads can attenuate perceived pain for a given
stimulus — a distraction mechanism of pain relief [4,5]. Conversely, it has also been demonstrated that
pain can have a detrimental effect on attentional task performance — a disruptive effect of pain on
cognition [6,7]; suggestive of an integrated network involving prefrontal, somatosensory and limbic
cortices, and a complex interplay between pain and cognition among these regions.

The role of neurophysiology in these processes has revealed a similarly overlapping feature of pain
and cognition—cortical gamma oscillations. High-frequency gamma activity has long been associated
with cognition and attention [8,9] but has also been shown to encode ongoing pain [10,11]. Moreover,
surgically implanted devices such as spinal cord stimulation have shown the potential to modulate
cortical gamma (30–45 Hz) activity [12], supporting the hypothesis of supraspinal mechanisms of
action for spinal, and potentially peripheral, neuromodulation.
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A key structure of the peripheral nervous system, the dorsal root ganglion (DRG), contains a
collection of primary afferent cell bodies in the lateral epidural space which synapse within the spinal
cord laminae to convey nociceptive inputs which form the ascending spinothalamic tract. Dorsal root
ganglion stimulation (DRGS) is a technique that has gained popularity over the past decade as an
effective target of neuromodulation in chronic neuropathic pain and has demonstrated the potential
to improve the cognitive-affective dimensions of pain [13]. Neuroimaging has been an invaluable
tool to corroborate the effects of cognitive modulation in pain research [14–17]. As such, we have
employed the technique of magnetoencephalography (MEG), coupled with a well-validated working
memory task, the n-back task [18,19], to investigate the effect of DRGS-mediated pain relief on cognitive
performance, the effect of increasing attentional load on the pain percept and the neurophysiologic
representation of gamma-band oscillations in a cohort of chronic pain patients.

2. Materials and Methods

2.1. Participants

The study was conducted with approval from the South-Central Oxford Research Ethics Committee
(REF. 13SC0298) in accordance with the Declaration of Helsinki. Sixteen patients were recruited for the
study who had undergone surgical implantation of DRG stimulators at the John Radcliffe Hospital
for medically refractory chronic pain syndromes (see Table 1). Informed consent was obtained,
and participants were randomized, by flipping a coin, to begin MEG recordings in the ON-stimulation
or OFF-stimulation condition, to counter order effects.

Table 1. Patient demographics and DRG stimulation parameters, CRPS—Complex regional
pain syndrome.

Patient Age Gender Diagnosis Electrode
Location

Stimulation Parameters
(Frequency

(Hz)/Amplitude
(mA)/Pulse Width (µs))

1 49 Female Postherpetic neuralgia Right L5 20/1.6/400
2 53 Female Meralgia paresthetica Right L2 20/0.6/300

3 29 Male Post-traumatic compressive
neuropathy Left L2 20/0.7/250

4 78 Male Diabetic neuropathy Bilateral L5 Right - 20/1.025/450
Left - 20/0.775/480

5 46 Male CRPS Right L3 20/0.7/410

6 52 Male Post-operative nerve
entrapment Left L1 28/1.3/250

7 58 Female CRPS Right L2/L3 20/2.1/250

8 61 Male Post-operative
mononeuropathy Left L3 20/2.1/140

9 47 Male CRPS Left L4 20/6/350
10 55 Male Nerve entrapment Right C7/C8 20/0.425/300

11 29 Male Post-operative
radiculopathy Bilateral L5 Right - 20/2.25/700,

Left - 20/650/800
12 52 Female CRPS Right L5 30/0.7/500
13 77 Female Postherpetic neuralgia Right T1 30/0.4/300
14 22 Female Dystonic pain Right L2/L3 20/2.4/300

15 52 Male Post-operative
mononeuropathy Right L1 30/0.525/400

16 54 Male Post-operative
radiculopathy Right L3/L4 20/0.475/360

2.2. Surgical Procedure

The DRG stimulators were implanted under local anaesthetic with light sedation (propofol) in the
prone position. Under fluoroscopic control, a delivery sheath was used to enter the epidural space,
and a DRG Axium® lead (Abbott Laboratories, Sunnyvale, CA, USA) was introduced under X-ray
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guidance into the appropriate nerve root exit foramen, so that the electrode contacts were positioned
over the dorsum of the DRG in the dorsal part of the foramen. Sedation was weaned and the leads
were tested for efficacy prior to re-sedation. Subsequently, when anteroposterior and lateral X-rays had
confirmed satisfactory position (See Figure 1), a strain-relief loop was fashioned in the spinal canal,
and the wires were tunnelled to an implantable pulse generator (IPG) that was placed subcutaneously
remote from the spine.
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Figure 1. Fluoroscopic image of intra-operative dorsal root ganglion (DRG) lead placement at T12 and
L2 on the right side.

2.3. Attentional Task

A numerical n-back task was used, which consisted of integers ranging from one to four, flashing
on a display for 500 msec. Participants were instructed that three working memory loads of increasing
difficulty would be cycled for the duration of the task: 0-back, 1-back and 2-back conditions. During
the 0-back (low working memory) condition, participants were to immediately respond with a button
press corresponding to the number flashed on screen. During the 1-back condition (low-to-intermediate
working memory), participants were only to button press if the number flashing on screen corresponded
to the number that flashed previously (one back). In the 2-back condition (high working memory),
participants were only to button press if the number that flashed on-screen corresponded to the number
that appeared two sequences before (two back).

Six trials of each condition would cycle sequentially for a total duration of twelve minutes while
MEG signals were recorded. Participants were trained until they were comfortable with the paradigm
and randomized to start the task in the ON or OFF stimulation condition. The possible outcomes of
the task would be a “hit” (correctly identifying a target for the relevant task condition), an error of
omission (failure to identify a target for the relevant task condition), an error of commission (incorrectly
identifying a non-target as a target in the relevant condition) or no button press (correctly omitting a
non-target) (See Figure 2).
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Average reaction time (RT) and accuracy (number of hits/total number of targets) for each condition
were calculated and evaluated for statistical differences.

2.4. Magnetoencephalography

Recordings were performed at the Oxford Centre for Human Brain Activity (OHBA) using
a 306-channel Elekta Neuromag MEG system comprised of 102 magnetometers and 204 planar
gradiometers at a sampling rate of 1000 Hz. The patient was relaxed and seated under the device,
and the relative head position was determined and tracked using Standard Elekta-Neuromag head
position indicator (HPI) during the scan. Prior to data acquisition, the HPI coil locations, the position
of three anatomical landmarks (the nasion, and left and right pre-auricular points), and the head shape
were measured using a three-dimensional digitizer (Polhemus Isotrack). Patients were scanned during
the n-back task for 12 min in both DRGS-ON and DRGS-OFF conditions, separated by a pre-defined
washout period [20] to prevent carryover effects. Patients were also scanned with the DRGS-OFF
at rest with eyes open for comparison with task conditions. Electrocardiographic (ECG) recordings
were monitored by applying bilateral electrodes to the volar aspect of the wrists and, simultaneously,
electrooculographic (EOG) traces were recorded by two electrodes, placed above and below the left eye.

2.5. Spectral and Source Analysis

Data were visually inspected and artefacts such as flats and jumps were detected in each channel
and marked. The strong magnetic artefacts in the raw data, such as the artefacts of stimulation,
were suppressed by the spatiotemporal signal space separation (tSSS) method [21] with a subspace
correlation limit of 0.9 [22,23] using MaxFilter software (Elekta Neuromag, version 2.2). Additionally,
the automatic detection of saturated and bad MEG channels was also applied in the software. The
bad channels detected were excluded from tSSS analysis to prevent artefacts spreading. The resultant
MEG data were analysed with MATLAB R2019a using the Fieldtrip [24] and Brainstorm [25] toolboxes.
The raw MEG data was filtered between 1–100 Hz and a bandstop filter of 48–52 Hz was also applied
before recordings were resampled to 300 Hz. Independent Component Analysis (ICA) was used to
decompose the MEG data, identify and subsequently remove eye-blink and cardiac artefacts. The
components related to eye-blink and cardiac activity were identified by comparing the ICA component
with the EOG and ECG recordings.

The power spectra were estimated using Welch’s method with a Hanning window of 3 s with a
50% overlap. The relevant epochs were then extracted for each working memory load condition and
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power spectral density (PSD) estimates averaged across all MEG channels. PSDs were then normalized
by dividing by the integral power between 1 Hz and 50 Hz to control for inherent differences within
each participant and the average power spectra binned to the frequency of interest-gamma band
activity (30–45Hz).

The implanted DRG stimulators used were not MRI compatible and, as such, individual structural
MRIs (pre- or post-operative) were not available. Therefore, the ICB152 MRI template in Brainstorm
was warped to fit the head model of each participant by co-registering the nasion, left and right
pre-auricular fixed points acquired during head shape digitization [26]. Each subject-specific template
was then used to calculate a lead field matrix based on a single shell model. The subsequent head model
was co-registered with MEG data, and source localization performed using the dynamical imaging of
coherent sources (DICS) beamformer technique based on the frequency of interest (30–45 Hz) of the
processed MEG signals.

2.6. Statistical Analysis

Statistical analyses of MEG data to determine normalized PSD differences between ON and
OFF stimulation was based on the non-parametric cluster-based permutation tests in the Fieldtrip
toolbox [27]. A cluster was defined as two or more adjacent sensors reaching the pre-determined
level of significance (t-statistic < 0.05). Statistical significance determined using the Monte Carlo
method (p-value < 0.05, two-tailed) in order to correct for multiple comparisons. Comparisons of
relative power between resting state and task performance conditions were calculated by finding the
difference in the relative power between the two conditions and normalizing to the baseline power of
the resting state condition to correct for inter-subject variability. The GraphPad Prism software version
8.1 (La Jolla California, CA, USA, www.graphpad.com) was used for other figures and statistical
analyses presented. D’Agostino normality testing was conducted on each data set to confirm Gaussian
distribution and the corresponding parametric test — Student’s t-test or mixed-effects ANOVA (for
comparisons of three or more groups) were utilized for analyses, respectively. P-values < 0.05 were
regarded as statistically significant.

2.7. Mediation Analysis

A two-tailed Pearson correlation was performed to identify the relationship between gamma-band
activity and patients’ reported pain scores and task reaction times. Mediation analysis was conducted
using SPSS (version 26) to assess whether there was a mediating effect between pain-related and
cognition-related gamma activity in the frontal cortex, somatosensory cortex and dorsolateral prefrontal
cortex. Mediation was tested by means of the joint significance test [28].

3. Results

Sixteen participants were recruited (10 males, 6 females) with an average age of 51 years (SD
16.5). However, only thirteen patients were included in MEG analysis after excluding data with
unacceptable artefact/missing MEG channels. Contrary to expectation, only three of the sixteen
participants reported alleviation of pain during task performance during the DRGS-OFF condition.
The majority reported either worsening of pain scores (n = 8), or no change in pain (n = 3) during task
performance compared to rest (see Figure 3). Interestingly, our cohort also included patients with
posture-dependent/mobility-associated chronic pain syndromes (n = 2), which meant they did not
report any pain at rest or during the task performance.

However, there was a significant reduction in reported pain scores (mean reduction 23% (SD 0.27),
(F(2,30) = 10.33, p = 0.001) when DRGS was switched ON during the task, compared to DRGS-OFF
during rest (p = 0.01) and task conditions (p = 0.005) (See Figure 3).

www.graphpad.com
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Figure 3. Grouped column graph depicting change from baseline pain scores at rest (black) and during
n-back task performance (grey) with dorsal root ganglion stimulators (DRGS) turned off, as well as
during task performance with DRGS turned on (white) among the sixteen participants. Of note, patients
5 and 12 had mobility-associated/posture-dependent pain and served as a unique “no-pain control” for
the study.

3.1. Task Performance

There was a significant reduction in task accuracy (F(2,24) = 36.25, p < 0.0001) (See Figure 4A) and
prolongation of RT (F(2,24) = 14.59, p < 0.0001) (See Figure 4B) in response to increasing attentional
loads. There was no significant difference in RTs between 0-back and 1-back conditions, regardless
of stimulation condition (OFF stimulation, p = 0.98, ON stimulation p = 0.73). However, the effect of
working memory load on RT was driven by differences between the two lower working memory loads
(0-back/1-back) and high working memory load (2-back) for both OFF (p < 0.001) and ON (p = 0.004)
stimulation conditions (See Figure 4B).
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Figure 4. Bar graphs illustrating (A) task accuracy (proportion of correctly identified hits of all targets
presented) and (B) reaction time with DRGS OFF (red) and ON (green) over increasing working memory
loads. p < 0.0001 - ****; p < 0.001 - ***; p < 0.05 - *.

DRG stimulation was associated with a significant reduction in reaction time (F(1,12) = 6.516,
p = 0.025), with posthoc tests confirming the statistical difference within the highest working memory
load (2-back) condition (p = 0.011) (See Figure 4B). In contrast, there was no significant difference
in task accuracy in response to DRGS across any working memory load condition (F(1,12) = 0.722,
p = 0.41) (See Figure 4A).
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3.2. Gamma Band Activity

Of the patients included in the MEG analysis experiencing pain during the study (n = 11),
five reported 50% or greater reduction in reported pain scores with DRGS, while one reported
worsening of pain. DRGS-mediated pain relief was associated with a significant reduction in gamma
activity (30–45 Hz) across all MEG sensors during task performance (t = 2.27, p = 0.036) (See Figure 5A).
The observed reduction in gamma band activity during pain relief was predominantly localized to the
prefrontal cortex based on source-space analyses, but also revealed reductions in gamma activity in
both somatosensory and anterior cingulate cortices after 3D source reconstruction (See Figure 5B).
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Figure 5. (A) Graph illustrating change in normalized power spectral density (PSD) between OFF
(red) and ON (green) DRGS during high cognitive load (2-back condition). (B) 3-D source localization
demonstrating t-statistic maps of significant reductions in gamma cortical activity across the prefrontal,
anterior cingulate and somatosensory cortices during DRGS-mediated pain relief. (C) Column graph
illustrating change in normalized power spectral density (PSD) with DRGS OFF, during high working
memory load (2-back condition) compared to resting-state, grouped according to pain response during
working memory load: no pain (n = 2), pain relief (n = 2), no change (n = 3) and worsening pain
(n = 6) groups (A total of 13 patients were included in the MEG analysis). (D) 3-D source localization
demonstrating t-maps, as before, of significant increases in cortical activity across the prefrontal and
anterior cingulate cortices during task performance.
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There were significant differences in gamma band fluctuations, dependent on the interaction
of distraction and pain scores (F(3,80) = 65.01, p < 0.001). All groups exhibited increased gamma
oscillatory activity during task performance compared to resting state. There was significantly greater
gamma activity during task performance among those patients experiencing pain compared to pain-free
controls (p < 0.001) (see Figure 6). Furthermore, among those in the pain-state, there was a significantly
greater change in gamma oscillatory activity in patients that reported worsening pain during the task
compared to those that exhibited pain relief during the attentional task (p = 0.01) (See Figure 5C).
This increased gamma activity was also localized to the prefrontal and anterior cingulate cortices (See
Figure 5D).Brain Sci. 2020, 10, 95 9 of 14 
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A significant correlation was found between gamma-band activity and subjectively reported pain
scores in the frontal cortex([r = 0.4, p = 0.04). Additionally, significant correlations were observed
between gamma-band activity and reaction times in both frontal and somatosensory cortices (See
Figure 6). However, further analysis did not reveal a mediating effect of pain on cognition, or vice-versa
(See Table 2).

Table 2. Mediation effects between pain-related gamma activity and cognition-related gamma activity
in frontal, somatosensory and dorsolateral prefrontal cortices.

Standardized β Standard Error p-value

Frontal

Pain→ Gamma 0.398 0.008 0.044

Cognition→ Gamma −0.332 0.00 0.082

Somatosensoy cortex

Pain→ Gamma 0.93 0.014 0.63

Cognition→ Gamma −0.447 0.00 0.028

Dorsolateral Prefrontal cortex

Pain→ Gamma 0.179 0.019 0.4

Cognition→ Gamma −0.134 0.00 0.53
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4. Discussion

Our findings demonstrate the efficacy of DRGS in alleviating the interruptive effect of pain on
cognition and supports the use of neurophysiologic signals, in particular, gamma-band activity, to
interrogate the cognitive dimension of pain. We further demonstrate that while increased cognitive
load is reflected by enhanced gamma oscillatory activity, the effect of pain, and pain relief, can modulate
gamma activity in the human prefrontal and anterior cingulate cortices. Furthermore, our findings
demonstrate that while frontal gamma activity was correlated with pain and cognitive measures,
there was no mediating effect of pain on cognition, or vice-versa, which suggests that the potential for
pain and cognition to modulate cortical gamma activity occur independently.

An inverse relationship is to be expected between task accuracy and reaction time with increasing
cognitive load [29]. Accordingly, the n-back task results in our chronic pain cohort showed a significant
reduction in task accuracy and a concomitant increase in reaction times with increasing working
memory loads. However, cognitive loading (working memory) failed to alleviate pain in the majority of
our participants. The phenomenon of distraction-induced analgesia is equivocal, having demonstrated
mixed results across the pain literature. While there are studies which suggest that selective attention
can mitigate the sensation of pain [14,30], there are also studies which have found that distraction can
also exacerbate the perception of pain [31], as was seen in seven of the sixteen participants recruited
in this study. Interestingly, the studies which demonstrate the phenomenon of distraction-mediated
analgesia have been performed in healthy adults with the application of experimentally-induced pain.
However, the initial report of worsened post-distraction pain [31], was performed in a cohort of chronic
back pain patients which, taken together with our findings, suggests that this mechanism of pain
alleviation may not be as applicable in chronic pain as previously thought.

It is classically believed that attention processing has a limited capacity, and by re-directing a
portion of attentional reserves towards a cognitively demanding exercise, such as the n-back task,
the accessibility of pain processing to this attentional network is decreased [32–34]. However, this
mechanism of attentional switching seems to be sensitive to the degree of pain and the demands
of the task on central attention [35,36]. A pleasant, moderately-engaging task might produce
the intended alleviation of the pain percept by gating the accessibility of salient noxious stimuli
to conscious processing. However, it seems similarly plausible that the challenge of a difficult,
cognitively-demanding task can become frustrating and potentially exacerbate pain perception.

The disruptive effect of pain on task performance (accuracy) was not found to be significant in our
cohort, despite marginal increases in accuracy during therapeutic DRGS. However, participants’ reaction
times were significantly reduced for a given level of accuracy, particularly in the high working memory
load (2-back) condition. This suggests that with the alleviation of chronic pain, reduced response
latency can be achieved without sacrificing task performance. Pain is a well-known interruptive factor
in cognitive performance [37–39], and, persons suffering from chronic pain have been shown to exhibit
deficits in various aspects of cognitive function including attention and memory [40,41]. The impact of
pain on cognition seems to be dependent on the attentional load required of the task [42,43], which has
similarly been demonstrated by our findings. The majority of these studies have been conducted with
experimentally-induced pain in healthy adult participants. However, our study benefited from the
ability to investigate the effect of acute pain relief, through neuromodulation, within the chronic pain
phenotype and demonstrated its ability to improve performance on a cognitive task.

Our findings are bolstered by incorporating a well-established neurophysiologic signature, gamma
oscillatory activity, as an objective metric of pain and attention. The neurophysiologic importance
of gamma-band activity in the attentional modulation of pain has been previously demonstrated in
healthy controls [44]. While our findings support the academic consensus which describes increased
gamma activity in response to increased attentional demands [45,46], we further delineate the potential
for pain to modulate this gamma activity.

DRGS-induced pain relief was associated with significantly reduced gamma activity during
task performance (See Figure 5A). While a previous MEG study of SCS has hypothesized about the
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potential for increased cortical gamma activity in chronic pain [47], our findings have provided further
support for this proposed mechanism of thalamocortical dysrhythmia. Our study also benefitted
from a “no-pain control” group in this chronic pain cohort. Interestingly, in the DRGS-OFF condition,
the “no-change” and “no-pain” groups also showed a significant disparity in gamma activity despite
neither group having reported benefit from distraction-mediated analgesia (See Figure 5C). This
observation suggests that this increased gamma activity is representative of ongoing pain in the chronic
pain cortical network of the “no-change” group. Furthermore, we observed significantly lower gamma
activity among participants reporting pain relief during task performance, compared to those reporting
worsening pain (See Figure 5C). Taken altogether, our results suggest that the blunted increase in
gamma activity we observed during task performance is likely a consequence of pain alleviation
from distraction. However, it is also possible that pain relief in this group occurred in response to
distraction-mediated analgesia, and this dampened gamma activity may represent the diversion of
limited attentional resources. Further studies are required to conclusively disambiguate the causal
relationship between these two possibilities.

The results of MEG source localization revealed gamma activation in brain regions which are
known to be involved in the overlapping network of pain and attention, including somatosensory
cortex [48,49] and cingulate cortices [50,51]. However, the observed changes in gamma activity were
predominantly localized to the prefrontal cortex, which has been implicated in the top-down attentional
modulation of painful stimuli [52] and has also been identified as a region that encodes ongoing pain
among chronic pain patients and healthy adults [53,54]. Similar findings of attenuated cortical activity
in cortico-limbic networks during DRG stimulation has been demonstrated in pre-clinical studies [55]
and EEG studies of SCS [56]. Coupled with our findings of increased gamma activity during cognitive
loads, and decreased gamma activity during pain relief in the prefrontal cortex, this represents further
supportive evidence of the supraspinal effects of DRG stimulation.

The authors acknowledge the study limitations of a small sample size, resulting from the novelty
of DRGS as an intervention for chronic pain. However, the utilization of a crossover study design was
employed to overcome this limitation and increase statistical power by minimizing between-subject
variability. We also recognize that such an overlap in cortical networks between pain-related and
attention-related activities may still be represented by more functionally distinct anatomical regions
than the areas described in our analysis. Further elucidation of these anatomical differences might
be achieved by combining techniques such as fMRI which can resolve deeper anatomical structures
involved in the pain network (insular cortex, thalamus) with greater sensitivity and spatial resolution.
These limitations notwithstanding, this study offers novel evidence for the supraspinal effects of DRGS
in chronic pain and demonstrates the importance of gamma oscillatory activity in the neurophysiologic
representation of pain and cognition.
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