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Genome-wide association studies (GWAS) have identified multiple, shared allelic associations with many autoimmune dis-

eases. However, the pathogenic contributions of variants residing in risk loci remain unresolved. The location of the major-

ity of shared disease-associated variants in noncoding regions suggests they contribute to risk of autoimmunity through

effects on gene expression in the immune system. In the current study, we test this hypothesis by applying RNA sequencing

to CD4+, CD8+, and CD19+ lymphocyte populations isolated from 81 subjects with type 1 diabetes (T1D). We characterize and

compare the expression patterns across these cell types for three gene sets: all genes, the set of genes implicated in autoim-

mune disease risk by GWAS, and the subset of these genes specifically implicated in T1D. We performed RNA sequencing

and aligned the reads to both the human reference genome and a catalog of all possible splicing events developed from the

genome, thereby providing a comprehensive evaluation of the roles of gene expression and alternative splicing (AS) in au-

toimmunity. Autoimmune candidate genes displayed greater expression specificity in the three lymphocyte populations

relative to other genes, with significantly increased levels of splicing events, particularly those predicted to have substantial

effects on protein isoform structure and function (e.g., intron retention, exon skipping). The majority of single-nucleotide

polymorphisms within T1D-associated loci were also associated with one or more cis-expression quantitative trait loci (cis-
eQTLs) and/or splicing eQTLs. Our findings highlight a substantial, and previously underrecognized, role for AS in the

pathogenesis of autoimmune disorders and particularly for T1D.

[Supplemental material is available for this article.]

Type 1 diabetes (T1D) is a disorder of glucose homeostasis that re-
sults from T-cell–mediated destruction of the insulin-producing
pancreatic beta-cells (Tisch and McDevitt 1996; Delovitch and
Singh 1997; Shirangi et al. 2009). Twin concordance rates (∼40%
in monozygotic and ∼8% in dizygotic twins) and the aggregation
of T1D within families (risk in siblings ∼8%; population preva-
lence 0.4%) are consistent with a substantial genetic contribution
to T1D risk (Barnett et al. 1981; Rich 1990; Redondo et al. 2001;
Hyttinen et al. 2003). The human leukocyte antigen (HLA) gene
cluster in the major histocompatibility complex (MHC) on
Chromosome 6p21 was the first locus to be associated with T1D
(Nerup et al. 1974), and as much as half of all the genetic risk for
T1D has been attributed to this locus (Todd et al. 1987), with three
amino acid positions (HLA-DQβ1 position 57,HLA-DRβ1 positions
13, and 71) accounting for∼90%of the risk in this region (Hu et al.
2015).

Genome-wide linkage and association studies have identified
more than 50 non-MHC loci containing single-nucleotide poly-
morphisms (SNPs) exhibiting genome-wide significant evidence
of association with T1D (Burton et al. 2007; Hakonarson et al.
2007; Barrett et al. 2009; Concannon et al. 2009). The majority
of these loci also display associations with additional autoimmune
diseases (Onengut-Gumuscu et al. 2015). This suggests that the
risk alleles at these SNPs modify genes acting on the immune sys-
tem rather than on disease-specific target tissues. Fine mapping
has revealed that themajority of the potentially causal SNPs are lo-
cated in noncoding regions (Cortes and Brown 2011). These SNPs
are enriched in enhancers, but not promoters, active in immune-
relevant cell types: thymus, T cells (CD4+ and CD8+), B cells
(CD19+), and stem cells (CD34+), consistent with the increased
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sharing of susceptibility regions across multiple autoimmune dis-
eases and the expected effects of risk variants on the immune sys-
tem (Onengut-Gumuscu et al. 2015). In the current study,we build
upon these findings, applying RNA sequencing to three of these
cell types (CD4+ T cells, CD8+ T cells, and CD19+ B cells) to explore
relationships between T1D/autoimmune risk, gene expression,
and alternative splicing (AS).

Results

Differential exon usage

A gene was considered expressed if at least one of its exons was
detected. There were 47,063 AceView genes expressed (which in-
cludes 28,502 AceView “cloud genes,” often-monoexon cDNA
clones of unknown biological significance that have not yet been
assigned to a known gene) (Thierry-Mieg and Thierry-Mieg 2006),
of which 87% were expressed in all three cell types, 6% in at least
two cell types, and 7% in only one cell type. Overall, 13% of genes
provided evidence for cell-type specificity in expression (Fig. 1A).

For genes expressed in two cell types, any individual exon
that is detected in one cell type but not the other is evidence for

alternative exonusage that ismost likely to arise fromAS. In a com-
parison of CD4+ and CD8+ T cells, 11% of the 43,314 genes ex-
pressed in both cell types had at least one exon detected in only
one cell type. In a comparison of T and B cells, the rates of alterna-
tive exon usage are higher—17% of approximately 42,000 genes).
Altogether, 8077 genes (17% of all genes examined) demonstrated
evidence of alternative exon usage.

Applying the same analyses to genes located in chromosomal
regions associated with any autoimmune disease or specifically
with T1D revealed a much higher rate of alternative exon usage
than that observed when all genes were considered.While thema-
jority of these genes (96% of 1854) were expressed in all three cell
types (Fig. 1C), 21% of the 1660 genes expressed in CD4+ and
CD8+ T cells had at least one exon detected in only one cell type.
Alternative exon usage between T cells and B cells was even higher,
with∼33%of 1637 genes detected in bothCD4+ T cells andCD19+

B cells, and 32% of 1642 genes detected in both CD8+ T cells and
CD19+ B cells. In total, 37% of the 1690 expressed autoimmune
genes demonstrated evidence of alternative exon usage, signifi-
cantly higher than the 17% observed for all genes. T1D candidate
genes were similar to the set of all autoimmune candidate genes
(Fig. 1E).

Figure 1. Summary of gene expression and splicing analysis. (A) Genes expressed in CD4+ T cells (red), CD8+ T cells (blue), and CD19+ B cells (green). (B)
Proportion of detected exons and splicing events of all genes expressed in at least two cell types in one cell type (red), two cell types (yellow), and all three
cell types (blue). The proportion of exons and AS events detected in all three cell types and quantitatively different in at least one cell type is indicated by red
hatching. (C) Autoimmune candidate genes expressed in CD4+ T cells, CD8+ T cells, and CD19+ B cells. (D) Proportion of detected exons and splicing
events of autoimmune candidate genes expressed in one cell type (red), two cell types (yellow), and all three cell types (blue). (E) T1D candidate genes
expressed in CD4+ T cells, CD8+ T cells, and CD19+ B cells. (F) Proportion of detected exons and splicing events of T1D candidate genes expressed in
one cell type (red), two cell types (yellow), and all three cell types (blue). (G) cis-eQTL and sQTL in autoimmune disease candidate genes for exons and
splicing events detected in all three cell types. The proportion of s/eQTL significant (FDR P < 0.05) in one cell type (red), two cell types (yellow), and all
three cell types (blue).
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Differential exon expression

Of the 163,713 exons from 33,318 genes detected in all three cell
types, 76.5% were differentially expressed (DE; FDR P < 0.05) be-
tween at least two of the three cell types (Fig. 1B; Supplemental
Fig. S1).

A summary of the differences in exon expression for a subset
of T1D candidate genes (Onengut-Gumuscu et al, 2015) is provid-
ed in Table 1, and the complete results of the differential exon ex-
pression analysis is provided in Supplemental Table S1 with the
autoimmune candidate genes indicated in column 9 and the
T1D candidate genes indicated in column 10.

Differential detection of splicing events

Comparing T cells and B cells revealed that ∼25% of genes demon-
strated alternative junction event detection (24% and 25% of
genes detected in both cell types for comparisons of CD4+ T cells
and CD8+ T cells, respectively, to CD19+ B cells). Consistent with
the comparisons of alternative exon usage, the rate of alternative
junction detection was higher between T and B cells than between
T cell types (17% of genes detected in both CD4+ T cells and CD8+

T cell types) (Supplemental Fig. S2).

In total, 15,024 genes expressed in the three cell types studied
had evidence of AS (32% of 47,063 genes), where a gene is counted
if it had at least one differentially detected exon or at least one dif-
ferentially detected splicing event. Restricting consideration to
only autoimmune or T1D candidate genes resulted in a dramatic
enrichment in AS; 76% of expressed autoimmune candidate genes
(1690 genes) and 72% of T1D candidate genes (405 genes) had ev-
idence of alternative isoform production (P < 0.0001) (Fig. 1B,D,F;
Supplemental Fig. S3). The complete results of the splicing event
analysis are provided in Supplemental Table S2, with the autoim-
mune genes indicated in column 3 and the T1D genes indicated
in column 4.

Combining AS and differential expression

While the majority of the expressed genes are DE between the
three cell types assayed (33,755 of 47,063 expressed genes, 72%)
(Table 2), almost all of the genes with evidence of AS are also con-
sidered DE (14,056 of 15,024 alternatively spliced genes, 94%)
(Table 2). Among both the autoimmune and T1D candidate genes,
98% of the genes considered alternatively spliced are also DE be-
tween the three cell types (1259 of 1280 alternatively spliced

Table 1. Summary of differential exon expression among selected T1D candidate genes

Exons detected DE exons (FDR P < 0.05) Magnitude

Genea
Total
exons CD19+ CD8+ CD4+

All cell
types

CD4 vs.
CD8

CD4 vs.
CD19

CD8 vs.
CD19 CD4 vs. CD8b CD4 vs. CD19c CD8 vs. CD19d

AFF3 33 30 11 13 10 0 10 10 n.d. 0.967–3.973 1.044–4.080
BACH2 20 17 15 16 15 2 14 14 −0.014 0.469–0.979 0.306–0.934
BCAR1 14 3 1 3 1 1 0 1 0.085 n.d. 0.077
C1QTNF6/

IL2RB
22 17 20 18 17 17 16 17 −0.749 −2.233 −3.169

CCR5 3 1 1 1 1 1 1 1 −1.223 −0.308 −1.531
CCR7 4 4 4 4 4 2 0 3 0.294–0.429 n.d. 0.321–0.481
CD226 12 7 11 11 7 6 7 7 0.235–1.228 −1.425 −1.01
CD69 3 3 3 3 3 0 1 1 n.d. 0.268 0.328
CTLA4 4 4 4 4 4 4 4 4 1.957–2.153 −0.587 −0.447
CTSH 9 8 8 8 8 7 8 8 0.234–0.778 0.834–3.400 1.001–3.991
DEXI 3 3 3 3 3 1 3 3 −0.236 0.723–3.473 0.745–3.238
FUT2 3 2 3 2 2 0 2 2 n.d. −0.055 −0.09
GLIS3 25 6 6 6 6 4 3 2 −0.149 0.079–0.209 −0.115
GPR183 2 2 2 2 2 2 1 2 1.088–1.363 −0.784 0.579–1.246
GSDMB 9 9 9 9 9 7 9 9 −0.136 −0.841 −0.725
ICOSLG 8 8 7 7 7 6 7 7 0.421–0.620 2.302–2.855 2.723–3.192
IFIH1 16 16 16 16 16 0 0 1 n.d. n.d. 0.546
IKZF1 9 9 9 9 9 9 9 9 0.354–0.616 −1.061 −0.931
IKZF3 9 9 9 9 9 8 8 9 −0.329 −2.341 −2.16
IKZF4 14 10 12 11 9 1 7 7 0.301 −0.312 −0.506
IL10 5 5 5 5 5 2 5 5 0.347–0.450 0.532–1.502 0.723–1.930
IL2 3 2 2 3 2 2 2 1 0.377–0.378 −0.055 0.169
IL27 6 4 2 2 2 0 0 2 n.d. n.d. 0.427–0.427
IL2RA 10 10 8 10 8 8 7 8 0.921–2.070 0.267–0.517 1.188–2.519
IL7R 11 9 11 11 9 7 9 9 0.339–0.490 −2.368 −2.234
ORMDL3 7 6 7 7 6 6 6 6 −0.217 −0.457 −0.673
PTPN2 18 16 16 16 16 5 5 2 0.139–0.391 −0.642 −0.498
PTPN22 24 22 24 23 22 22 14 22 −0.877 −0.226 −1.13
RAC2 9 9 9 9 9 2 1 4 −0.159 0.246 −0.671
RASGRP1 21 18 19 19 18 0 18 18 n.d. −1.485 −1.605
SH2B3 10 10 10 10 10 4 10 9 0.088–0.175 0.360–1.048 0.593–1.198
TYK2 22 22 22 22 22 0 1 3 n.d. −0.373 −0.338
UBASH3A 19 13 18 18 13 0 13 13 n.d. −2.499 −2.288

aAceView gene identifier.
bIf positive, expression is higher in CD8+. If negative, expression is higher in CD4+.
cIf positive, expression is higher in CD19+. If negative, expression is higher in CD4+.
dIf positive, expression is higher in CD19+. If negative, expression is higher in CD8+.
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autoimmune genes) and 95% of all expressed autoimmune genes
were DE (1603 of 1690 genes) (Table 2).

Identification of lymphocyte cis-eQTLs and sQTLs

ImmunoChip SNPs were tested for associationwith the expression
of exons and splicing events from genes in these regions. SNPs
were included in the analysis if they could be assigned to one or
more of the 1452 genes annotated as a T1D or (other) autoimmune
disease candidate that had at least one expressed splicing event
type (exon, junction, or IR event) in at least one cell type. There
were 7871 significant cis-expression quantitative trait loci (cis-
eQTLs) detected at 637 genes (FDR P < 0.05) (Fig. 1G; Supplemental
Fig. S4; Supplemental Table S3). While most of the genes were ex-
pressed in all three cell types assayed, themajority of the cis-eQTLs
were specific to a single cell type (5358 of 7168 cis-eQTLs; 75%)
(Fig. 1G; Supplemental Table S4).

The significant cis-eQTLs included 4456 that were associated
with splicing events (sQTLs) affecting 427 genes. These sQTLswere
further categorized by splicing event type. Similar degrees of cell-
type specificity were observed, although putative IR events detect-
ed in all three cell types were muchmore likely to have significant
associated sQTLs than other splicing events (P < 0.001) (Supple-
mental Fig. S4; Supplemental Table S4). About half of the T1D

genes with SNP coverage had at least one significant cis-eQTL
(156 of 320 genes, 49%) (Supplemental Table S5).

Intersection of T1D-associated SNPs and lymphocyte cis-eQTLs

GWAS and subsequent fine mapping on ImmunoChip (Onengut-
Gumuscu et al. 2015) has identified significant associations with
T1D in 51 distinct chromosomal regions in the genome. To assess
the possible functional impact of these associations, the most
significant T1D-associated SNP in each region was intersected
with the set of significant cis-eQTLs. Three regions were excluded
due to missing data for the T1D risk defining SNPs (rs689 on
Chromosome 11, INS; rs2611215 on Chromosome 4, CPE/TLL1,
and rs35667974 onChromosome 2, IFIH1). At 41 of the remaining
48 regions, alleles of significant T1D-associated SNPswere correlat-
ed (r2 > 0.8)with alleles of one ormore cis-eQTLs.Of these 41 SNPs,
18 were correlated (r2 > 0.8) with one or more sQTLs affecting a to-
tal of 29 genes (Table 3; Supplemental Tables S6, S7).

An example of a novel T1D-associated cis-eQTL detected in
the current study is the association between alleles at rs1893592
and expression of the gene UBASH3A. The minor “C” allele at
rs1893592 is associated with a reduced risk of several different
autoimmune diseases (Trynka et al. 2011; Okada et al. 2014),
and other SNPs in the region have been associated with T1D

Table 2. Summary of differentially expressed and alternatively spliced genes

Gene set Comparison Genes neither DE or AS Genes DE Genes AS Genes DE and AS Total genes

All genes CD4+ vs. CD8+ 1679 5 308 2 1994
CD4+ vs. CD19+ 408 12 72 5 497
CD8+ vs. CD19+ 343 12 104 8 467
CD4+ vs. CD8+ vs. CD19+ 6832 19,670 484 14,041 41,027

Autoimmune genes CD4+ vs. CD8+ 14 0 11 0 25
CD4+ vs. CD19+ 1 0 1 0 2
CD8+ vs. CD19+ 2 0 4 0 6
CD4+ vs. CD8+ vs. CD19+ 20 344 5 1,259 1,628

T1D genes CD4+ vs. CD8+ 5 0 3 0 8
CD4+ vs. CD19+ 0 0 0 0 0
CD8+ vs. CD19+ 0 0 1 0 1
CD4+ vs. CD8+ vs. CD19+ 6 94 1 288 389

Table 3. Significant cis-s/eQTL for top T1D-associated SNPs by chromosome

Chromosome Position (bp) Index SNPa
Number of significant
cis-eQTL at FDR < 0.05

Number of significant
cis-sQTL at FDR < 0.05 Genes

5p13.2 35883251 rs11954020 0 19 IL7R
6q15 90976768 rs72928038 2 0 BACH2
6q22.32 126752884 rs1538171 76 19 CENPW
7p12.2 50465830 rs62447205 3 5 FIGNL1
10p15.1 6129643 rs41295121 0 1 RBM17
12p13.31 9905851 rs917911 41 17 CLEC2D/NPM1P16/NPM1P7, CLECL1
12q13.2 56435504 rs705705 1 10 SUOX, ERBB3/PA2G4
16p11.2 28505660 rs151234 5 0 IL27
17q12 38053207 rs12453507 363 365 GSDMA, GSDMB, ORMDL3, wanima
17q21.2 38775150 rs757411 54 0 KRT222/SMARCE1, sloyror
17q21.31 44073889 rs1052553 5 2 C17orf69/CRHR1, NSF
18p11.21 12809340 rs1893217 3 6 PTPN2
18q22.2 67526644 rs1615504 36 0 CD226, DOK6
19p13.2 10469975 rs12720356 0 1 TYK2
20p13 1616206 rs6043409 19 20 SIRPG
21q22.3 43825357 rs11203202 4 0 TMPRSS3/TFF1UBASH3A
22q12.2 30531091 rs4820830 6 8 ASCC2, MTMR3
22q12.3 37587111 rs229533 3 10 SSTR3, C1QTNF6/IL2RB

aFrom Table 1 of Onengut-Gumuscu et al. (2015).
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(Concannon et al. 2008; Barrett et al. 2009). The “C” allele of
rs1893592 replaces themore common purine residue at the +3 po-
sition of the splice donor sequence following exon 10 ofUBASH3A
with a less commonly used pyrimidine (Exome Aggregation
Consortium et al. 2015). Increased retention of introns 10 and
11 of the major UBASH3A transcript (introns 11 and 12 of the
UBASH3A gene) was observed in carriers of the “C” allele of
rs1893592 in both CD4+ (Fig. 2) and CD8+ T cells. The “C” allele
at rs1893592 was also associated with elevated expression of eight
exons and three splice junctions in CD4+ T cells, suggesting that
rs1893592 may also alter overall expression of the UBASH3A
gene (Fig. 2). While the retention of introns 10 and 11 were appar-

ent in individuals homozygous for the minor allele of rs1893592
(and inheterozygotes to a lesser extent), additional subject-specific
splicing dysregulation was also evident, such as the retention of
additional introns (Supplemental Fig. S5). A similar example illus-
trating the effect of rs1217414 on PTPN22 expression and splicing
is presented in Supplemental Figure S6.

Discussion

Variation in the regulation of gene expression is an important
mechanism for determining cellular programming and pheno-
types. Dysregulation of this process has been implicated in themo-

lecular etiology of many human diseases
(Stanford et al. 2000; Cartegni et al. 2006;
Sellier et al. 2010; Arnold et al. 2013;
Sevcik et al. 2013; Qiu et al. 2014;
Danan-Gotthold et al. 2015; Liu et al.
2015; Wen et al. 2015). Dysregulation
can arise through effects on synthesis or
degradation of transcripts resulting in
over- or underexpression of protein prod-
ucts, or through effects on splicing. In
the case of autoimmune diseases in gene-
ral and T1D specifically, a few individual
examples of AS at risk loci have been de-
scribed (Ueda et al. 2003; Kralovicova et
al. 2006; Onengut-Gumuscu et al. 2006;
Kralovicova and Vorechovsky 2010;
Gerold et al. 2011; Ge et al. 2016), and a
broader role for AS in disease risk has
been hypothesized (Juan-Mateu et al.
2015). These considerations, as well as
our prior observation of an association
between T1D risk loci and enhancers ac-
tive in lymphocytes, prompted our ex-
amination of gene expression in CD4+ T
cells, CD8+ T cells, and CD19+ B cells.
As we were interested in determining
whether the alleles associated with risk
are also associated with changes in ex-
pression and splicing, we employed a
case-only study design to enrich for these
risk alleles and thereby potentially in-
crease our power to detect these
associations.

The RNA-seq studies described here
allow us to draw several broad conclu-
sions about lymphocyte differentiation
and the genes implicated in autoimmu-
nity: (1) The three cell types studied do
not differ substantially in the genes
they express but rather in the relative
levels of expression and alternative exon
usage of these genes, suggesting that,
among lymphocytes, cell types are de-
fined more by differential expression
and AS of a common set of genes than
by expression of distinct sets of genes;
(2) among autoimmune candidate genes,
there is enrichment for differential ex-
pression and AS; and (3) a number of
the T1D/autoimmune candidate SNPs

Figure 2. UBASH3A gene expression by rs1893592 genotypes in CD4+ T cells. (A) Distribution of se-
quencing coverage across UBASH3A for each genotype of rs1893592: A/A (teal), A/C (gold), C/C (pur-
ple). (B) Splicing events detected in UBASH3A and UBASH3A gene models from AceView annotations.
Detected junctions are indicated by red bars and putative IR events by blue blocks. AceView genemodels
for UBASH3A are indicated by black blocks and bars, and cyan blocks represent the collapsed gene model
for UBASH3A. Splicing events and exons associated with rs1893592 are denoted by an asterisk (∗), with
mean coverage for the A/A (teal), A/C (gold), and C/C (purple) genotypes. Exons (cyan blocks in col-
lapsed gene models) are numbered sequentially by start and stop positions 5′ to 3′ on the + strand.
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are associated with sQTLs for genes within those regions providing
a potential mechanistic link between these disease associations
and the function of the gene.

Annotating splicing events

Existing methods to estimate transcript isoform expression
(Martin andWang 2011; Steijger et al. 2013) are sensitive to struc-
tural properties like guanine-cytosine content and repeat regions
that can lead to false positives with regards to alternative isoform
usage (Love et al. 2015). Examining gene expression in terms of
splicing events allows for the direct measurement of individual
splicing events rather than relying on an estimate of isoform abun-
dance and avoids statistical problems associated with the assign-
ment of reads to multiple transcripts. Annotations for each
splicing event are directly accessible enabling the examination of
global shifts in gene expression and identification of novel splicing
events. Although the hg19 genome was used in this study due to
the availability of the more accurate AceView gene models
(SEQC/MAQCIII Consortium2014), our analysis of splicing events
would not likely be substantially different if the same annotations
were available for the more-recent hg38 genome build.

Distinct AS patterns in T1D and autoimmune candidate genes

Manyof the same exons and splicing events were detected, but dif-
ferentially expressed, in all three cell types: CD4+ T cells, CD8+ T
cells, and CD19+ B cells. This differential expression is consistent
with a previous multi-immune cell expression study, HaemAtlas
(Watkins et al. 2009). Exons in autoimmune disease and T1D can-
didate genes were more likely to be differentially expressed and al-
ternatively spliced than the expressed exons of other genes. These
findings suggest that autoimmune genes are enriched for cell-
type–specific functions and encourages both further exploration
of their expression and splicing in specific subtypes of the broad
lymphocyte classes studied here and functional studies focusing
on putative protein isoforms arising through AS.

Among different splicing event types, some, such as IR or the
inclusion of previously nonannotated junctions, aremore likely to
result in the production of novel protein isoforms. Putative IR and
unannotated junctions were observed in all three cell types exam-
ined, and each accounted for ∼18% of detected splicing events.
These splicing event types displayed the greatest lymphocyte sub-
set specificity, with a higher proportion of events expressed in a
single cell type compared with all other splicing event types. The
higher level of lymphocyte subset specificity for these events
may reflect a frequent mechanism whereby the products of these
genes contribute to autoimmunity. Some caution is warranted in
this interpretation since the findings may be inadvertently biased
by focusing on a selection of genes and/or the use of only T1D cas-
es in this study. In addition, putative IR events may represent a
mechanism other than actual retention of introns, such as unpro-
cessed mRNA or novel donor sites.

cis-sQTLs and the role of splicing in autoimmunity

Several functional studies of individual T1D candidate genes have
identified AS as an underlying mechanism. The soluble protein
isoformofCTLA4, resulting from the exclusion of exon 3, is report-
ed to reduce risk for T1D by potentiating regulatory T-cell function
(Clark et al. 2007). The disease-associated SNP rs3087243 (also re-
ferred to as CT60) is associatedwith decreasedmRNA expression of
soluble CTLA4 in CD4+/CD25+ regulatory T cells (Lewis et al.

2003). In the PTPN22 gene, rs56048322 increases the production
of alternative transcripts, resulting in either the retention of intron
18 or skipping of exon 18 (Onengut-Gumuscu et al. 2006; Ge et al.
2016). Based on these precedents, we hypothesized that SNPs
within or flanking autoimmune-associated genes might similarly
regulate gene expression via effects on splicing.

We found that 637 of the 1197 autoimmune candidate genes
with both detectable expression and SNP coverage in our study
had at least one cis-sQTL. To the best of our knowledge, this is
the first study examining the differences in AS between multiple
lymphocyte populations and the first to directly associate genomic
variation at autoimmune disease genes with these differences.
While we have used gene expression data from lymphocytes
from T1D patients, the shared genetic risk between autoimmune
diseases suggests that dysregulation in these lymphocyte subsets
likely has implications for other autoimmune diseases.

We observed a striking level of cell-type specificity for cis-s/
eQTLs in our analysis. Over 75% of the significant s/eQTLs for au-
toimmune genes in our study were confined to a single subset of
lymphocytes. This is in contrast to other genome-wide,multitissue
eQTL studies where the proportion of reported cis-eQTLs that are
specific to a single tissue is, in some cases, substantially lower
(Nica et al. 2011; Flutre et al. 2013). It has been previously reported
by theGenotype-Tissue Expression (GTEx) project that >50%of all
eQTLs, and∼45%of eQTL from the same set of geneswe tested, are
shared among tissues (The GTEx Consortium 2015). In our study,
we assayed three cell types that are transcriptionally similar and are
likely more phenotypically similar than in the prior cited studies.

In summary, our findings suggest that splicing is affected by
common genetic variants to an unexpectedly large degree in lym-
phocytes and that genes implicated in autoimmunity in general
and T1D specifically are enriched for such variants. Given the po-
tential for variation in the frequency of splicing events to alter the
functions of the affected genes, the phenotypic consequences of
genetic regulation of splicing and its relevance to autoimmune dis-
ease risk warrant further investigation.

Methods

Subject ascertainment

The Type 1 Diabetes Genetics Consortium (T1DGC) ascertained
families with parents having one affected child (trios) and two or
more affected children (affected sib pairs [ASPs]) with T1D as pre-
viously described (Concannon et al. 2009; Hilner et al. 2010).
Index cases (probands) from 83 families, consisting of 44 male
and 39 female subjects (mean age at ascertainment, 32 ± 8 yr),
were selected for these studies. Demographics are provided in
Table 4. All subjects self-reported European ancestry; this was con-
firmed with an analysis of population structure as previously re-
ported (Onengut-Gumuscu et al. 2015).

Table 4. Subject demographics

Factor Distribution

Gender 43 males/38 females
Age at ascertainment 32 ± 8 yr
Onset age 13 ± 8 yr
Disease duration 18 ± 10 yr
Total cell count (×106; CD19+) 0.266 ± 0.213
Total cell count (×106; CD4+) 0.915 ± 0.548
Total cell count (×106; CD8+) 0.561 ± 0.388
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ImmunoChip SNP genotyping and definition of candidate genes

All subjects were genotyped with the ImmunoChip, a custom
Illumina genotyping array containing SNPs from 186 chromo-
somal regions selected based on genome-wide significance for
association with at least one of 12 different autoimmune diseases,
including T1D (Cortes and Brown 2011; Onengut-Gumuscu et al.
2015). Sample and SNP quality control procedures were conduct-
ed as part of the T1DGC fine-mapping project (Onengut-
Gumuscu et al. 2015; NCBI dbGaP accession phs000911.v1.p1).

Three categories of geneswere defined for comparison of gene
expression: “T1D candidate genes” representing 432 genes from
51 T1D-associated genomic regions cataloged in Immunobase
(http://www.immunobase.org/), “autoimmune genes” represent-
ing the 1774 candidate genes for autoimmunity (including T1D)
cataloged in ImmunoBase, and “nonautoimmune genes” repre-
senting all other protein coding genes excluding those previously
defined as “T1D candidate genes” or “autoimmune genes.”

Sample preparation and RNA sequencing

Peripheral blood mononuclear cells (PBMCs) were fractionated
by positive selection on antibody-coated magnetic beads into
CD4+ T-cell, CD8+ T-cell, and CD19+ B-cell populations. Purities
of the resulting populations (>90%) were confirmed by flow cy-
tometry. Sample preparation metadata, including live cell counts,
cell purity, and time before freezing, were recorded. RNAwas puri-
fied, libraries prepared, and sequencing (50 million reads/sample)
performed using the Illumina HiSeq 2000 platform (HudsonAlpha
Genome Services Laboratory). Sufficient RNA could not be ob-
tained for one subject, who was excluded from subsequent analy-
ses. Samples were prepared and sequenced in three pools with
paired-end 50-bp reads (Supplemental File S1). After quality con-
trol assessments of the sequencing data, an additional five individ-
ual cell samples were excluded on the basis of low coverage
(Supplemental File S2). Thus, 81 subjectswere included in analysis,
with sequencing data from all three cell types from 79 study
subjects.

Annotation of splicing events

The catalog of all possible splicing events was created using the
genomic features file (GFF) from AceView (2010 release) (Thierry-
Mieg and Thierry-Mieg 2006) gene models for the hg19 human
genome build (https://www.ncbi.nlm.nih.gov/ieb/research/
acembly/). Possible exon–exon junctions were generated from
all logical combinations of exon pairs within a gene from 5′-to-
3′. Junctions were centered (based on the read length of 50 bp)
such that the junction site was no >12 bp from the center of a
read. (Supplemental Fig. S7). Overlapping exons were grouped
into an exonic region. The longest 5′ most exon in each region
was used as a baseline to classify alternative donor and acceptor
events. (Supplemental Fig. S7). There were 678,664 exons repre-
senting 349,564 exonic regions. The minimum start and maxi-
mum end positions were used to estimate expression (Graze
et al. 2012). Exon–exon junctions were classified as “exon skip-
ping” if at least one exon occurred between the exons of a junc-
tion. For each exon-skipping junction, a list of skipped exons
was created. Exons within each exonic region were classified as
having an alternative donor or acceptor site if their genomic start
(acceptor site) or stop (donor site) differed from that of the refer-
ence exon, and the corresponding junction were also annotated.
A list of exon–exon junctions from the transcripts in the GFF file
was used to determine if a junctionwas annotated to a known tran-
script. The classifications of exon-skipping, alternative donor, and
alternative acceptor are not mutually exclusive. In each exonic re-

gion, putative IR events from the 3′-most exon were generated by
extending the donor site sequence into the neighboring intron.
There were 6,390,703 possible exon–exon junctions and 232,249
IR events. A total of 292,753 junctions were annotated to at least
one known transcript. Junctions were classified as exon-skipping
(5,837,064), alternative donor (1,240,520), alternative acceptor
(1,257,096), and alternative donor and alternative acceptor
(903,513).

Gene expression analysis

RNA sequencing datawere aligned to the splicing catalog reference
sequences using the Bowtie algorithm (version 0.12.9) (Langmead
et al. 2009) to ensure that no gaps were introduced in junction
alignments. Reads that did not align to splicing events were
mapped to the complete human genome (GRCh37/hg19 version,
release 73) using the BWA-MEMalgorithm (version 0.7.9) (Li 2013;
https://github.com/McIntyre-Lab/papers/tree/master/newman_
t1d_cases_2017). Exon coverage was quantified within an exonic
region as average depth per nucleotide (APN), and detection
was defined as an APN > 0 for at least half of all samples per
cell type. Junctions were quantified as the number of reads
aligned to an event, and detection was defined as having at least
10 aligned reads in at least half of all samples per cell type; as
junctions are typically much shorter than exons, this was used
to ensure that only junctions that were definitely detected were
examined. Several transformations of the coverage data were con-
sidered to normalize the expression data, and upper-quartile nor-
malization and log2 transformation were selected due to better
performance of the residuals (Bullard et al. 2010; Dillies et al.
2013).

Several potential covariates were examined, including live
cell count, cell purity, time before freezing, and other sample prep-
aration parameters. None of these parameters accounted for signif-
icant variation. Ten latent (unmeasured) confounders were
estimated from the gene expression data (Stegle et al. 2012).
Models were fit adding all latent confounders; however, no im-
provement over the model with Factor 2 alone was observed
(Supplemental File S3). Factor 2 was included in all subsequent
analyses.

The mixed effects model, Yijkn = μ + ci + sj + cisj + pk + vin + εijkn,
was fit separately for each exon/junction where Yijkn is the normal-
ized expression, i is the cell type (i =CD4+, CD8+, CD19+), j is sub-
ject sex ( j =male, female), k is the pool samples were prepared and
sequenced in (k = 1, 2, 3), and n is the individual subject (n = 1, 2,
…, 81). Variables cell type (c), sex (s), pool (p), and latent factor es-
timate (v) were fixed effects, and pool was considered as a random
effect. The residual ε were assumed to be distributed N(0, σn), and
degrees of freedom were adjusted using Kenward–Roger approxi-
mations (Kenward and Roger 1997). Individual comparisons of
the different cell types were calculated in a pairwise fashion
(CD4+ vs. CD8+; CD4+ vs. CD19+; CD8+ vs. CD19+). A false-discov-
ery rate (FDR) of 0.05 was considered to be significant (Benjamini
andHochberg 1995; Verhoeven et al. 2005). Other FDR thresholds
(FDR < 0.1, FDR < 0.2) were considered, and the results were quali-
tatively similar to that of FDR < 0.05.

eQTL analysis

Of the 164,643 ImmunoChip SNPs passing quality control, 55,032
were excluded on the basis of minor allele frequency (MAF) < 5%.
Linkage disequilibrium (LD)–based filtering, as implemented in
PLINK (Purcell et al. 2007; Chang et al. 2015), was performed to ex-
clude strongly correlated SNPs (r2 > 0.9) within a 50-SNP window.
After LD filtering, a total of 48,650 SNPs remained. eQTL analyses
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were restricted to cis effects. To determine the window size around
each gene for selecting SNPs to test as cis-eQTL, LD was calculated
between the index SNP for each T1D-associated chromosomal re-
gion (Onengut-Gumuscu et al. 2015) and all SNPs within a 2-Mb
window. Regions of LD with the index SNP, representing the re-
gion with the most likely causal variant, ranged from 0–186 kb,
with a median range of 5.2 kb. To have a consistent window size
for each gene likely to capture the SNPs contributing to cis-effects,
LD-pruned SNPs were assigned to a gene if they were located with-
in a 5-kb window at either end of the gene. For each cell type,
tests for association between SNPs in a gene region and the set of
detected exons/junctions were conducted using a mixed effects
model, Yjkmn = μ + gm + sj + gmsj + pk + vin + εjkmn, fit separately for
each SNP–exon/junction pair where Yjkmn is the normalized ex-
pression,m is the SNP genotype coded as the number of alternative
alleles (m = 0, 1, 2), j is subject sex ( j =male, female), k is the pool
samples were prepared and sequenced in (k = 1, 2, 3), and n is the
individual subject (n = 1, 2, …, 81). Variables SNP genotype (g),
sex (s), pool (p), and latent factor estimate (v) were fixed effects,
and pool was also considered as a random effect. The residual ε
were assumed to be distributed N(0, σn), and degrees of freedom
were adjusted using Kenward–Roger approximations (Kenward
and Roger 1997). No test for interaction between cell type and ge-
notype was included in the model as there was insufficient statis-
tical power to make a meaningful interpretation of this test. A
FDR of 0.05 was considered to be significant (Benjamini and
Hochberg 1995; Verhoeven et al. 2005). To clearly distinguish be-
tween allelic associations with exon expression and splicing
events, “eQTL” is used to refer to all SNPs at which an allelic asso-
ciation with variation in the expression of an exon is observed,
while “sQTL” (splicing QTL) refers to the subset of eQTL for which
the expressed event is a splice junction or IR event. To put cis-s/
eQTLs into the context of T1D susceptibility, the LD between
the list of T1D-credible SNPs from Onengut-Gumuscu et al.
(2015) and SNPs used in the cis-s/eQTL analysis in the present
study was calculated. SNPs tested as cis–s/eQTL were considered
to be in LD with T1D-credible SNPs if the pairwise correlation
was high (r2 > 0.8).

Software, assembly, and alignment availability

All scripts pertaining in this study are available as in Supplemental
Scripts and at the GitHub code repository (https://github.com/
McIntyre-Lab/papers/tree/master/newman_t1d_cases_2017).

Data access

The sequencing data from this study have been submitted
to the NCBI database of Genotypes and Phenotypes (dbGaP;
https://www.ncbi.nlm.nih.gov/gap) under accession number
phs001426.v1.p1.
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