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Abstract: Milk fat globule-EGF factor 8 (MFG-E8) protein is known as an immunomodulator in
various diseases, and we previously demonstrated the anti-fibrotic role of MFG-E8 in liver disease.
Here, we present a truncated form of MFG-E8 that provides an advanced therapeutic benefit in
treating liver fibrosis. The enhanced therapeutic potential of the modified MFG-E8 was demonstrated
in various liver fibrosis animal models, and the efficacy was further confirmed in human hepatic
stellate cells and a liver spheroid model. In the subsequent analysis, we found that the modified MFG-
E8 more efficiently suppressed transforming growth factor β (TGF-β) signaling than the original
form of MFG-E8, and it deactivated the proliferation of hepatic stellate cells in the liver disease
environment through interfering with the interactions between integrins (αvβ3 & αvβ5) and TGF-
βRI. Furthermore, the protein preferentially delivered in the liver after administration, and the safety
profiles of the protein were demonstrated in male and female rat models. Therefore, in conclusion,
this modified MFG-E8 provides a promising new therapeutic strategy for treating fibrotic diseases.

Keywords: liver fibrosis; liver disease; protein therapy; integrin; TGF-β

1. Introduction

Milk fat globule-EGF factor 8 (MFG-E8), also known as lactadherin, is a 46 kDa soluble
glycoprotein that plays various roles in physiological and pathological processes, such as
facilitating angiogenesis [1], clearing apoptotic cells [2,3], and modulating inflammation [4].
We previously identified a protective role of MFG-E8 in a liver fibrosis model by demon-
strating the anti-fibrotic effect of MFG-E8 secreted from mesenchymal stem cells (MSCs) [5].
In addition, it has been reported that MFG-E8 resolves fibrosis by direct binding to collagen
and facilitates collagen uptake by macrophages in a bleomycin-induced animal model of
idiopathic pulmonary fibrosis [6,7].

Liver fibrosis is a common final pathological process of most chronic inflammatory
liver diseases, including nonalcoholic steatohepatitis (NASH) [8,9]. Liver fibrosis has the
potential to develop into liver cirrhosis and cancer [10] with mortality rates higher than
those of other major cancers (such as lung, colorectal, stomach, and breast cancer) [11].
Therefore, the development of effective and efficient cures for treating liver fibrosis is
crucial to reducing mortality. However, despite many trials being conducted over the
decades to identify therapeutic molecules, liver fibrosis remains a major cause of death
with few therapeutic strategies [12]. In the progression of liver fibrosis, damaged and
dead hepatocytes from liver injuries recruit Kupffer cells at their lesion sites; these Kupffer
cells secrete substantial quantities of cytokines, including transforming growth factor β1
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(TGF-β1), to control liver inflammation [13]. However, the elevated TGF-β1 causes the
activation of quiescent hepatic stellate cells (HSCs) that proliferate and become extracellular
matrix (ECM)-producing myofibroblast-like cells [14,15]. The activated HSCs further
accumulate excessive collagen-rich ECM in the liver, leading to contortions in the normal
liver architecture [11]. Therefore, the deactivation or elimination of active HSCs is one of
the key factors in resolving liver fibrosis [16].

Integrins are a type of receptor that mediate the interaction between cells and the sur-
rounding ECM, comprising a group of transmembrane cell protein receptors composed of
uncooperatively connected α-subunits and β-subunits. These can form at least 24 different
combinations that are expressed differently by different cell types and recognize multiple
ligands. The expression of integrin in various cell types associated with the development
of liver fibrosis and the ability to crosstalk with growth factors and other signal molecules
make the concept of targeting integrin an attractive approach to anti-fibrotic treatment [17].

In the present study, we propose a new protein, namely, NP-011, which is a human
recombinant protein produced by the structural truncation of MFG-E8. With enhanced
therapeutic efficacy and manufacturability, NP-011 could be a promising therapeutic
against liver fibrosis.

2. Materials and Methods
2.1. Production of NP-011 and Confirmation of the Synthesized Protein

The truncation of the Milk fat globule-EGF factor 8 (MFG-E8) structure was designed
by NEXEL (Seoul, Korea), and the production was performed by Lugen Sci (Lugen Sci,
Bucheon, Gyeonggi-do, Korea). The size of the synthesized NP-011 was confirmed by
Coomassie blue staining and Western blot analysis using anti-MFG-E8 antibody (R&D
systems, Minneapolis, MN, USA). The purity of NP-011 was analyzed by reversed-phase
HPLC using the UltiMate™ 3000 system (Dionex/Thermo Fisher Scientific, Sunnyvale,
CA, USA). Briefly, the procedure consisted of two separate steps, with NP-011 diluted in
0.1% (v/v) formic acid in HPLC-grade water (J.T. Baker®) in mobile phase ‘A’ and 0.1%
(v/v) formic acid in HPLC-grade acetonitrile in mobile phase ‘B’, consisting of 0.1% (v/v)
formic acid in HPLC-grade acetonitrile (Honeywell Burdick & Jackson). The flow rate was
set to 100 µL/min during analysis, and the wavelength of protein peaks was obtained at
280 nm. The entire procedure was performed at 60 ◦C ± 1 ◦C using a ZORBAX 300SB-
C8 (2.1 mm × 50 mm, 3.5 µm) column (Agilent, Santa Clara, CA, USA). The data were
analyzed using Chromeleon™ software (Ver. 6.8 SR 10, Thermo Fisher Scientific).

2.2. Rodent Fibrosis Model Induction and Efficacy Tests of NP-011

To compare the efficacy of Milk fat globule-EGF factor 8 (MFG-E8) and NP-011,
200 mg/kg of TAA (thioacetamide, Sigma-Aldrich, St. Louis, MO, USA) was administrated
into 5- to 6-week-old male C57BL/6 mice (n = 4 for each group, three times per week for
8 weeks) and 160 µg/kg of each protein was administrated intraperitoneally. The mice
were sacrificed at 3 days after the administration of proteins for analysis. Various doses
of NP-011 (20–160 µg/kg, n = 5 for each group) were further tested in the same TAA-
induced liver fibrosis model. To test the anti-fibrotic effects of multiple administrations
of NP-011, TAA was injected into the mice for 12 weeks, and then 40 µg/kg of NP-011
was intraperitoneally administered into the TAA-induced liver fibrosis model one to six
times at 5-day intervals (n = 4 for each group). For the progressive liver fibrosis model,
TAA was injected into the mice for 4 weeks, then 40 µg/kg of NP-011 and TAA were
intraperitoneally co-administered into the mice three times a week for another 4 weeks
(n = 5 for each group).

2.3. Histological Analysis and Immunofluorescence Assay

The liver tissues were fixed in 4% paraformaldehyde (PFA) and dehydrated in a
graded ethanol series. The tissues were then cleared in xylene and embedded in paraffin.
Paraffin-embedded tissue sections were stained with hematoxylin and eosin (H&E, Abcam,
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Cambridge, MA, UK) and Sirius red (American MasterTech Scientific, Lodi, CA, USA)
for the evaluation of liver fibrosis. For immunofluorescence staining, sectioned tissues
underwent antigen retrieval with citric acid, and tissues blocked with 10% donkey serum
containing PBS were probed with the primary antibody against alpha-smooth muscle actin
(α-SMA) or albumin (ALB) at 4 ◦C overnight. For visualization of the staining, the sections
were washed with 0.1% bovine serum albumin (BSA) containing phosphate-buffered saline
(PBS) and stained with fluorescently labeled secondary antibodies (Invitrogen/Thermo
Fisher Scientific, Carlsbad, CA, USA). Digital images were captured using a microscope
(Nikon corporation, Tokyo, Japan) and analyzed using ImageJ software.

2.4. Quantitative Reverse-Transcription PCR (RT-qPCR)

Total RNA was extracted using TRIzol (Invitrogen), and cDNA was synthesized from
1 µg of total RNA using a ReverAidTM H Minus First Strand cDNA Synthesis Kit (Invit-
rogen) according to the manufacturer’s protocol. Subsequent polymerase chain reaction
was carried out using AccuPower® PCR-Premix (Bioneer, Daejeon, Korea) and the DNA
Engine Peltier Thermal Cycler (Bio-rad). Quantitative polymerase chain reaction (qPCR)
was performed using the CFX96 real-time PCR detection system (Bio-Rad, Hercules, CA,
USA) with iQ™ SYBR® Green Supermix (Bio-Rad). The specific primers used are provided
in Table S1. The mRNA levels were normalized to the level of GAPDH (glyceraldehyde-3-
phosphate dehydrogenase).

2.5. Whole Transcriptome Analysis of Mouse Livers

Six-week-old male C57BL/6N mice were purchased from Koreabio (DBL, Seoul,
Korea). Experimental protocols concerning the use of laboratory animals were reviewed
by the Korea University Institutional Animal Care & Use Committee (KUIACUC) and
approved (KUIACUC-2018-78). Animals were fed a standard diet with free access to water.
In the sham group (n = 18), mice received 200 mg/kg body weight of thioacetamide (TAA,
Sigma, St. Louis, MO, USA) by intraperitoneal (I.P.) injection for 8 weeks. In the control
group (n = 3), mice received the same volume of normal saline. In the NP-011-administered
group, protein (NP-011, n = 3, 160 µg/kg body weight) was administered by I.P. injection
on the last day of TAA injection. Mice were sacrificed by CO2 inhalation after 24 h. The liver
was removed immediately for RNA-seq. The whole liver was homogenized in cold TRIzol
(Sigma, St. Louis, MO, USA) and stored below−80 ◦C. For RNA seq analysis, these samples
were sent to BGI Tech Solutions Company (BGI Tech, Shenzhen, Guangdong, China). GSEA
analysis was conducted using GSEAv17 (Broad Institute, Cambridge, MA, USA).

2.6. Cell Culture and In Vitro Fibrosis Modeling

The human hepatic stellate cell (HSC) line, hTERT-HSC, was cultured in Dulbecco’s
modified Eagle’s medium (DMEM; GE Healthcare Life Sciences, Marlborough, MA, USA)
supplemented with 10% fetal bovine serum (FBS; Gibco/Thermo Fisher Scientific, Waltham,
MA, USA), 100 U/mL penicillin, and 100 mg/mL streptomycin (Gibco). The human HEK-
293FT cells kindly provided by Prof. Hyunggee Kim (Korea University, Seoul, Korea) were
cultured in Dulbecco’s modified Eagle’s medium (DMEM; GE Healthcare Life Sciences,
Chicago, IL, USA) supplemented with 10% fetal bovine serum (FBS; Gibco, New York, NY,
USA), 100 U/mL of penicillin, and 100 mg/mL of streptomycin (Gibco). To investigate the
effects of NP-011 on TGF-β1-mediated HSC activation, human HSC lines (hTERT-HSCs)
were grown in the presence of serum, then starved in DMEM containing 0.2% FBS for 24 h
before TGF-β1 treatment. The serum-starved HSCs were pretreated with 10 ng/ml TGF-β1
for 1 h, and the HSCs were exposed to 100–1500 ng/mL NP-011 for 6 h. To block integrin
αvβ3 and αvβ5 in the HSCs, the HSCs were pretreated with 1 µM Cilengitide (Selleck
Chemicals, Houston, TX, USA) for 2 h before treatment with TGF-β1. The activation and
deactivation of HSCs was quantitatively determined by 5-ethynyl-2′-deoxyuridine (EdU)
assay. In order to establish a human liver fibrosis model, the liver spheroids were formed
by a mixture of hepatocytes (Hepatosight-S®, NEXEL, Seoul, Korea) and hTert-HSCs used
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in our previous research [5] in an ultra-low-attachment 96-well plate (Corning) with a
cell density ratio of 2 to 1, respectively. The liver spheroids were cultured for 21 days,
and 50 mM of acetaminophen (APAP) was applied to induce fibrosis. To test the efficacy
of NP-011 against the APAP-induced 3D liver fibrosis model, 500 ng/ml of NP-011 was
applied for 48 h.

2.7. TGF-β Luciferase Signaling Reporter Assay

The luciferase signaling reporter assay was performed according to the manufacturer’s
protocol (Qiagen, Hilden, Germany). We selected the cell line HEK-293FT, and Attractene
Transfection Reagent (Qiagen) was used for transfection. After 18–20 h of transfection,
we changed the medium to a complete growth medium (DMEM with 10% FBS, 0.1 mM
NEAA, 1 mM sodium pyruvate, 100 U/mL penicillin, and 100 µg/mL streptomycin) for
30 min of incubation. Then, the cell medium was changed to assay medium (Opti-MEM®

containing 0.5% fetal bovine serum, 1% NEAA, 100 U/mL penicillin, and 100 µg/mL
streptomycin) including 500 ng/mL of NP-011 and Milk fat globule-EGF factor 8 (MFG-
E8). After that, the luciferase assay was carried out using the Dual-Glo Luciferase Assay
System (Promega). To measure firefly luciferase activity, we added a volume of Dual-Glo®

Luciferase Reagent equal to the culture medium volume to each well and mixed. After at
least 60 min, the firefly luminescence was measured. After that, a volume of Dual-Glo®

Stop & Glo® Reagent equal to the original culture medium volume was added to each
well. After at least 10 min, the luminescence was measured. We calculated the ratio of
luminescence from the experimental reporter to luminescence from the control reporter.
We then normalized this ratio to the ratio of a control well or series of control wells that
were treated consistently on all plates.

2.8. Western Blot Analysis and Immunoprecipitation (IP) Analysis

Protein samples were prepared by solubilizing HSCs in RIPA lysis buffer (LPS so-
lution) containing proteinase inhibitors (Roche, Basel, Switzerland). A total of 40 µg of
protein from cells was separated by SDS-PAGE (Bio-Rad) and transferred to PVDF transfer
membranes (Pall Corporation, Port Washington, NY, USA). The membranes were incu-
bated for 60 min with 5% skim milk in TBS-T (10 mM Tris-HCl pH 7.9, 150 mM NaCl, and
0.05% Tween-20) to block nonspecific antibody binding sites. After blocking, the mem-
branes were immunoblotted with primary antibodies overnight at 4 ◦C. The antibodies
used in the present study are provided in Table S2. To detect each band in Western blot,
the membranes were incubated for 2 h with horseradish peroxidase (HRP)-conjugated
secondary antibodies (Thermo Fisher Scientific, Waltham, MA, USA) at room temperature.
After rinsing with TBS-T, the membranes were developed with the Pierce™ ECL Western
blotting substrate (Thermo Fisher Scientific, Waltham, MA, USA) and bands were detected
using a chemiluminescence imaging system (GE Healthcare Life Sciences, Chicago, IL,
USA). For immunoprecipitation (IP) analysis, a total of 400 µg of protein was incubated at
4 ◦C for 12 h with 1 µg of TGFβRI antibody, conjugated to protein A/G sepharose beads
(Santa Cruz Biotechnology, Inc., Dallas, TX, USA) washed in lysis buffer, then separated on
SDS-PAGE gels. To detect each band in Western blot and IP analysis, the membranes were
incubated for 2 h with HRP-conjugated secondary antibodies (Thermo Fisher Scientific,
Waltham, MA, USA) at room temperature. After rinsing with TBS-T, the membranes were
developed with the Pierce™ ECL Western blotting substrate (Thermo Fisher Scientific,
Waltham, MA, USA) and bands were detected using a chemiluminescence imaging system
(GE Healthcare Life Sciences, Chicago, IL, USA).

2.9. EdU Incorporation Assays

For the EdU incorporation assay, human HSCs were seeded at 2 × 104 cells per well
in 12-well plates and cultured for 24 h. After treatment with TGF-β1 and/or NP-011,
the serum-starved HSCs were incubated with EdU (10 µM) for an additional 6 h, and
EdU incorporation was accessed using the Click-iT EdU Imaging Kit (Thermo Fisher
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Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. Digital
images of EdU-positive cells were captured using a microscope (Nikon) and analyzed
using ImageJ software.

2.10. Proximity Ligation Assay (PLA)

For the PLA, human HSCs were seeded at 2 × 104 cells per well on 18 mm circular
cover glass in 12-well plates and cultured for 24 h. After serum starvation for 24 h,
the cells were treated with 10 ng/mL of TGF-β1 and/or 500 ng/mL of NP-011, then
further incubated for 30 min. The PLA incorporation was accessed using the Duolink
In Situ Red Starter Kit (Merck, Kenilworth, NJ, USA) according to the manufacturer’s
instructions. Digital images of PLA-positive cells were captured using a microscope
(Nikon) and analyzed using ImageJ software (https://imagej.nih.gov/ij/, accessed on
29 June 2020).

2.11. Radioligand Binding Assay

To analyze the binding affinity between NP-011 and integrins, we performed a radi-
oligand binding assay, and an assay was done by Gifford Bioscience (Birmingham, UK).
Briefly, the NP-011 was radio-labeled with iodine-125 (125I). Then, 125I-labeled NP-011 in
buffer (50 mM Tris, 5 mM MgCl2, 100 mM NaCl, 1% BSA (pH 7.4)) was incubated in a
HIS-tagged αvβ3 (ACRO Biosystems IT3-H52E3) or αvβ5 (ACRO Biosystems IT5-H52W5)
protein-coated plate with a concentration range of 0–100 µg/mL. The incubation was
stopped by washing the wells with wash buffer (50 mM Tris, 5 mM MgCl2, pH 7.4, ice cold).
Following washing, NaOH (0.1 M) was added to each well and the plates were incubated
at 40 ◦C for 1 h to digest the protein. Following digestion, the samples were transferred to
a counting plate and neutralized, then scintillation cocktail (Betaplate Scint; PerkinElmer,
Waltham, MA, USA) was added and the radioactivity counted in a Wallac® TriLux 1450
MicroBeta counter. All experiments were validated step by step by Gifford Bioscience. Data
analysis was performed using the nonlinear curve fitting routines in Prism® (GraphPad
Software Inc, GraphPad Prism 5.0, San Diego, CA, USA) to obtain Kd values.

2.12. Collagenase Activity Assay

The collagenase activity assay was performed according to the manufacturer’s instruc-
tion (Chondrex, Woodinville, WA, USA). Briefly, enzyme components were mixed with
the reaction solution, and the enzymatic reaction was initiated by mixing with 1.0 mg/mL
FITC-labeled bovine collagen I substrate, followed by incubation at 37 ◦C for 1 h. The
enzymatic reactions without the collagen substrate or the enzyme components were used
as a negative control. To stop the enzymatic reaction, 10 mM o-phenanthroline and 38.5 µM
elastase were added to samples, followed by incubation at 37 ◦C for 10 min. Finally, the
extraction buffer was mixed with the reaction solutions. The supernatant was used for the
measurement with the spectrofluorometer.

2.13. Statistical Analysis

To evaluate the anti-fibrotic effects of NP-011 in vivo, at least three animals per group
were used in each experiment, and data were obtained from two or three independent
experiments. The percentages of positive areas for the Sirius red staining or immunos-
taining of the total image area were measured using ImageJ software and expressed as
relative values compared to those in normal livers or control cell cultures. Student’s t-test
was used to analyze the statistical significance of differences between the paired groups.
One-way analysis of variance (ANOVA) was used to test the statistical significance of
differences among multiple groups (more than two groups). The data are expressed as
the means ± SEM of at least three independent experiments, and all statistical tests were
two-sided; data with p < 0.05 or p < 0.01 were assumed to be statistically significant.

https://imagej.nih.gov/ij/
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3. Results
3.1. Structural Truncation of MFG-E8 Enhances the Anti-Fibrotic Effect of MFG-E8

The structure of human Milk fat globule-EGF factor 8 (MFG-E8) includes three do-
mains: the signaling peptides of N-terminals, the epidermal growth factors (EGF) with
an arginine–glycine–aspartic acid (RGD) motif, and the C domains (C1 and C2) [2,3]. Al-
though it is well known that MFG-E8 regulates inflammatory responses by RGD motif
binding to immune cells and engulfing phosphatidylserine (PS)-expressing apoptotic cells,
it is unclear how MFG-E8 is responsible for the anti-fibrotic effect [18,19]. A recent re-
port showed that the glycosylation-bearing C2 domain of MFG-E8 plays a key role in
recognizing PS in apoptotic cells [20]. Therefore, we hypothesized that the removal of
the C2 domain in MFG-E8 might enhance the anti-fibrotic power of the MFG-E8 protein,
and we therefore synthesized NP-011 (EGF + C1 domain), a truncated form of MFG-E8
(Figure 1A). Coomassie brilliant blue (CBB) staining and Western blot analysis confirmed
the ~25 kDa size of the synthesized NP-011 from two separate productions, and the result
of reverse-phase HPLC showed 80.7% and 97.2% purity for the two batches (Figure 1B). In
the following experiments, Batch #2 with over 95% purity was used.
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forms of MFG-E8 (NP-011). The purity of the produced NP-011 protein (Batch #2) was analyzed by 
reverse-phase HPLC analysis. (C) Overall schematic schedule for testing the efficacy of the human 
recombinant proteins in a liver fibrosis model. The red arrow indicates the period for TAA admin-
istrations for inducing liver fibrosis. (D) Representative images of histological analysis (H&E and 
Sirius red staining) for the liver of normal mice, a TAA-induced liver fibrosis model (Sham), and a 
protein (MFG-E8, NP-011) administered liver fibrosis model. Scale bar, 200 μm. (E) Comparison of 
the quantitative fibrotic area in the livers of the mice. (F) Comparison of mRNA expression for fi-
brotic markers (Col1a1, Col1a2) in the liver of normal mice, a TAA-induced liver fibrosis model 
(Sham), and a protein (MFG-E8, NP-011) administered liver fibrosis model. Bars represent the 
means ± SD from three replicates in each group. * p < 0.05, ** p < 0.01, ANOVA followed by Tukey’s 
multiple comparison test. 
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Figure 1. Production of truncated MFG-E8 and the advantages of NP-011 for treating liver dis-
ease. (A) Structural comparison of MFG-E8 and NP-011. (B) Confirmation of synthesized NP-011.
Coomassie brilliant blue (CBB) staining and Western blot analysis showed ~25 kDa sized truncated
forms of MFG-E8 (NP-011). The purity of the produced NP-011 protein (Batch #2) was analyzed
by reverse-phase HPLC analysis. (C) Overall schematic schedule for testing the efficacy of the
human recombinant proteins in a liver fibrosis model. The red arrow indicates the period for TAA
administrations for inducing liver fibrosis. (D) Representative images of histological analysis (H&E
and Sirius red staining) for the liver of normal mice, a TAA-induced liver fibrosis model (Sham), and
a protein (MFG-E8, NP-011) administered liver fibrosis model. Scale bar, 200 µm. (E) Comparison of
the quantitative fibrotic area in the livers of the mice. (F) Comparison of mRNA expression for fibrotic
markers (Col1a1, Col1a2) in the liver of normal mice, a TAA-induced liver fibrosis model (Sham),
and a protein (MFG-E8, NP-011) administered liver fibrosis model. Bars represent the means ± SD
from three replicates in each group. * p < 0.05, ** p < 0.01, ANOVA followed by Tukey’s multiple
comparison test.

A subsequent efficacy test in a thioacetamide (TAA)-induced liver fibrosis mouse
model (Figure 1C) revealed that the administration of commercially available MFG-E8
effectively reduced the fibrotic area (Sirius red-stained area, Figure 1D,E) and downregu-
lated the expression level of liver-fibrosis-related genes (Col1a1, Col1a2) (Figure 1F), as we
previously demonstrated [5]. However, it is compelling that the administration of NP-011
eliminated the fibrotic area more substantially and downregulated the expression level of
fibrotic genes in the injured liver more significantly than did the administration of MFG-E8
(Figure 1D,E). These results indicate that MFG-E8 with deletion of the C2 domain gives
more beneficial effects in curing liver fibrosis than does the original protein.

3.2. NP-011 Significantly Reverses Liver Fibrosis at Minimal Dosage

To explore the effective dosage of NP-011, different doses of NP-011 (20 µg/kg, 40 µg/kg,
80 µg/kg, and 160 µg/kg) were administered in a TAA-induced liver fibrosis model, and the
fibrotic factors were analyzed 3 days after NP-011 administration (Figure 2A). The admin-
istration of TAA significantly increased the fibrosis area in the mouse liver (Figure 2B,C,
Sham). In contrast to sham-treated liver tissues, all the NP-011-administrated groups,
ranging from 20 to 160 µg/kg, showed remarkably diminished fibrosis area (Figure 2B,C).
Consistent with the decrease in fibrosis, a key fibrosis marker, Acta2 (α-SMA, a marker
for myofibroblast-like cells differentiated from HSCs), and other fibrosis-related genes
were markedly and significantly downregulated after NP-011 administration (Figure 2D,E).
It was noteworthy that the expression of integrin families (integrin αv, integrin β3, and
integrin β5) increased as the fibrosis progressed but decreased after NP-011 treatment
in the liver of the TAA-induced model (Figure 2D). Taken together, these results imply
that NP-011 shows great therapeutic efficacy at low dosage ranges; most effective was
the administration of 40 µg/kg of NP-011, resulting in a constant reduction of α-SMA
expression in the injured liver.
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Figure 2. Resolution of fibrosis by administration of various doses of NP-011. (A) Overall schematic
schedule for testing the efficacy of the NP-011 in a liver fibrosis model. The red arrow indicates the
period for TAA administrations for inducing liver fibrosis. (B) Representative images for comparing
the fibrotic areas (Sirius red stained areas) in the liver of normal mice, a TAA-induced liver fibrosis
model, and an NP-011-administered liver fibrosis model at various doses (20–160 µg/kg). Scale bar,
200 µm. (C) Quantitative analysis of the fibrotic areas in the livers of tested mice in B. Tx. indicates
treatment. Bars represent the means ± SD from four mice in each group. ** p < 0.01, Student’s t-test.
(D) Heatmap data show fibrosis-relevant genes observed in livers from normal mice, TAA-induced
mice, and NP-011-administered liver fibrosis mice. (E) Comparison of α-SMA (Acta2) expression
in the liver of normal mice, a TAA-induced liver fibrosis model, and an NP-011-administered liver
fibrosis model by quantitative PCR. Tx. indicates treatment. ** p < 0.01, Student’s t-test.

3.3. The Efficacious Dose of NP-011 Shows Therapeutic Efficacy in Different Models Associated
with Fibrosis

The minimum efficacious dose of NP-011 (40 µg/kg) was further tested in different
liver fibrosis models. Firstly, the efficacy of repeated administrations of NP-011 was tested
in a chronic model of liver fibrosis. For this, TAA injections were extended from 8 to
12 weeks (three times a week), and 40 µg/kg of NP-011 was then administered to the mice
one to six times at 5-day intervals (Figure 3A). The 12-week TAA injections resulted in the
development of sustained fibrosis areas in the liver despite the TAA injections being halted
30 days before the mice were sacrificed (Figure 3B, sham). In contrast, the administration of
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NP-011 significantly resolved the fibrotic areas in injured livers, and the fibrotic regression
was positively correlated with the number of times of administration (Figure 3B).
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Figure 3. Therapeutic efficacy of a minimal effective dosage of NP-011 in various model inductions.
(A) Overall schematic schedule for testing the efficacy of NP-011 in an advanced liver fibrosis model.
The blue arrow indicates the period for TAA administrations for inducing liver fibrosis. (B) Represen-
tative images for analyzing fibrotic areas in livers of normal mice, a TAA-induced liver fibrosis model,
and a 40 µg/kg NP-011-administered liver fibrosis model with different numbers of administrations
(1, 2, 4, and 6 times). Scale bar, 50 µm. Quantitative analysis of fibrotic areas in the livers of normal
mice, a TAA-induced liver fibrosis model, and a 40 µg/kg NP-011-administered liver fibrosis model
presented in the left panel. Bars represent the means ± SD from four mice in each group. ** p < 0.01,
Student’s t-test. (C) Overall schematic schedule for testing the efficacy of NP-011 in a progressing
liver fibrosis model. The blue arrow indicates the period for TAA administrations for inducing
liver fibrosis. The red arrow indicates the period for NP-011 administrations. (D) Representative
images for analyzing fibrotic areas in livers of normal mice, a TAA-induced liver fibrosis model, and
a TAA-injected liver fibrosis model with co-administration of NP-011. Scale bar, 100 µm. Quanti-
tative analysis of fibrotic areas of livers in normal mice, a TAA-induced liver fibrosis model, and a
TAA-injected liver fibrosis model with co-administration of NP-011 presented in(D). Bars represent
the means ± SD from five mice in each group. ** p < 0.01, Student’s t-test. (E) Left panel: Graphical
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description representing a human liver fibrosis model using human embryonic stem cell (hESC)-
derived hepatocytes and human primary HSCs treated with APAP. Middle panel: Representative
images for analyzing hepatocytes and activated myofibroblasts with ALB (red) and α-SMA (a
biomarker for fibrosis, green). Scale bar, 50 µm. Right panel: Quantitative analysis of the percentage
of α-SMA positive cells in the human liver fibrosis model. Bars represent the means ± SD from five
replicates in each group. ** p < 0.01, * p < 0.05 Student’s t-test.

Liver fibrosis is a progressive disease; thus, evaluation of the efficacy of NP-011 on
progressing liver fibrosis may provide a better translation of the animal study to the clinical
realm. To confirm the therapeutic efficacy of NP-011 in progressing liver fibrosis, NP-
011 (40 µg/kg, three times a week) was concurrently administrated with TAA for the last
4 weeks of model induction (Figure 3C). As expected, the concurrent administration of TAA
and NP-011 markedly diminished the fibrosis areas in the livers, compared with those in the
livers that received TAA only (Figure 3D). We also used an acetaminophen (APAP)-induced
in vitro human fibrosis model and found that NP-011 significantly reduced APAP-induced
HSC activation in 3D hepatic spheroids consisting of hepatocytes and hepatic stellate
cells (Figure 3E). Therefore, NP-011 shows therapeutic efficacy not only in various fibrotic
models in animals, but also in a human liver fibrotic model.

The effects of NP-011 on the expression of pro-fibrotic MMP2 and collagenase activity
in HSCs were further tested based on the previous finding that showed secretion of pro-
fibrotic MMP2 and expression of collagenase mRNA in rat HSCs [21,22]. As reported, the
expression of MMP2 mRNA in HSCs was increased after TGF-β1 treatment. However,
NP-011 treatment of TGF-β1-treated HSCs significantly down-regulated the increased
expression of MMP2 (Figure S1A). Interestingly, collagenase activity was increased in HSCs
after NP-011 treatment in the presence or even absence of TGF-β1, while there was no
effect with TGF-β1 treatment only (Figure S1B), indicating that NP-011 itself has a capacity
to increase collagenase activity in deactivated HSCs.

3.4. NP-011 Deactivates HSCs through the Suppression of TGF-β/Smad 2 Signaling and Prevents
Fibrogenesis in Human Hepatic Stellate Cells via the Inhibition of Integrin–TGFβ
Receptor Interaction

We next investigated the action mechanism of NP-011 underlying the resolution of
fibrosis in the liver. As is well known, TGF-β contributes to liver fibrosis by the induction
of epithelial-to-mesenchymal transition (EMT) in hepatocytes [23] and activation of HSCs
to myofibroblasts [24]. Thus, effective suppression of TGF-β in liver disease environments
is a key factor for treating liver fibrosis. Signaling reporter assay revealed that NP-011
rapidly suppressed TGF-β signaling within 30 min, whereas Milk fat globule-EGF factor
8 (MFG-E8) could suppress TGF-β signaling 2 h after treatment (Figure 4A), implying
the enhanced capacity of NP-011 for inhibiting TGF-β signaling in liver disease. Western
blot analysis further confirmed the attenuation of Smad 2 phosphorylation, a downstream
molecule of TGF-β signaling, in TGF-β1-treated HSCs (Figure 4B).

Previous reports demonstrated that integrin αvβ3 and αvβ5 on the surface of HSCs
are key factors in regulating fibrosis [5,25], and crosstalk between integrins and TGF-β
signaling in the regulation of pathological EMT and myofibroblast differentiation has also
been reported [26]. Furthermore, in this study, integrin αv, integrin β3, and integrin β5 in
the liver of TAA-induced liver fibrosis mice were increased, but they were decreased again
in the liver of the NP-011 administered liver fibrosis model (Figure 2D). Thus, targeting
TGF-β related integrins could be another contributing factor in treating liver fibrosis. As
shown in Figure 4C, NP-011 treatment in TGF-β1-treated HSCs suppressed the proliferation
of HSCs and returned the proliferative HSCs to quiescent status. However, treatment with
integrin αvβ3/αvβ5 inhibitor in the presence of NP-011 inhibited the suppressive role of
NP-011 in the proliferation of TGF-β1-treated HSCs (Figure 4C). These results suggest that
NP-011 directly binds to integrin αvβ3 and αvβ5 and interferes with integrin αvβ3 and
αvβ5 interactions with TGF-β signaling.
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Figure 4. Mechanistic study of NP-011 in the resolution of liver fibrosis. (A) Luciferase reporter assay confirming TGF-β
signaling pathway transcriptional activity from human HEK-293FT cells after 0.5 h, 1 h, or 2 h of treatment with NP-011
(500 ng/mL) or MFG-E8 (500 ng/mL). Bars represent the means ± SD from three replicates in each group. * p < 0.05,
** p < 0.01, Student’s t-test. (B) Western blot (WB) analysis of Smad2 phosphorylation in human HSCs in the presence of
TGF-β1 (10 ng/mL) and/or NP-011 (500 ng/mL), and immunoprecipitation (IP) analysis of physical associations between
TGF-βRI and integrin β3/β5 in the presence of TGF-β1 (10 ng/mL) and/or NP-011 (500 ng/mL). (C) EdU incorporation
assay for cell proliferation of human HSCs in the presence of TGF-β1, NP-011, and/or Cilengitide trifluoroacetate (CT,
inhibitor of integrin ανβ3 and ανβ5). Bars represent the means ± SD from five replicates in each group. ** p < 0.01,
Student’s t-test. (D,E) PLA assay for studying the physical interaction between TGFBRI and integrin αvβ3/αvβ5 after
TGF-β1 (10 ng/mL) treatment with/without NP-011 (500 ng/mL). Red signals indicate the interactions between TGFBRI
and integrin β3 (left) and β5 (right). Quantitative analysis of the number of red signals in each cell. Bars represent the
means ± SD from five replicates in each group. * p < 0.05, ** p < 0.01, Student’s t-test. Scale bar, 20 µm. (F) Radioligand
binding assay to determine the binding affinity of NP-011 to immobilized integrin αVβ3, αVβ5. Data were fitted using the
nonlinear curve fitting routines in Prism® (Graphpad Software Inc, GraphPad Prism 5.0, San Diego, CA, USA) to obtain
Kd values.

Proximity ligation assay (PLA) revealed the direct physical associations between TGF-
βRI and integrin β3 and β5, and the interactions became stronger upon TGF-β1 treatment
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in HSCs (Figure 4D,E). However, NP-011 treatment in TGF-β1-treated HSCs significantly
loosened the associations between TGF- βRI and integrin β3 and β5 (Figure 4D,E). These
physical associations were further confirmed by immunoprecipitation assay, and these
patterns were identical to the Smad2 phosphorylation pattern by TGF and/or NP-011
treatment (Figure 4B). Finally, we determined the direct binding of NP-011 to integrin αvβ3
and αvβ5 by radioligand binding assays and confirmed the NP-011 binding to integrin β3
and β5 with calculated Kd values of 50.4 nM and 2.0 nM, respectively. Notably, NP-011
showed about 12-fold stronger binding to integrin β5 than did MFG-E8 (Kd of 25.4 nM,
Supplementary Figure S2). NP-011 did not show binding affinity to other fibrosis-related
integrin families such as integrin β1 and β6 (data not shown). These results suggest that
NP-011 specifically binds to integrin β3 and β5 and interferes in the interaction between
integrins and TGF-βRI, resulting in suppression of the TGF-β cascade and a decrease in
HSC proliferation.

3.5. Bio-Distribution and Safety Profiles of NP-011

The bio-distribution and safety of NP-011 were further assessed in a rodent model.
When NP-011 was intravenously administrated into mice, the administrated NP-011 was
preferentially delivered into the liver; about 48% and 58% of the administrated NP-011
were detected in the liver within 30 min and 60 min, respectively (Figure S3A). Further-
more, no adverse effects were observed in hematology and biochemistry analysis of blood
serum in male and female rats when 0.2 mg/kg or 2 mg/kg of NP-011 was intravenously
administrated into rats daily for 4 weeks (Figure S3B). No measurable changes in hepatic or
renal functions have been observed after the use of Milk fat globule-EGF factor 8 (MFG-E8)
in many animal disease models [27–32], so the truncation of the C2 domain in MFG-E8 did
not alter the safety profiles in vivo. Thus, NP-011 preferentially targets the liver after its
administration and has excellent safety profiles.

4. Discussion

Our previous study demonstrated a reduction in mouse liver fibrosis with the adminis-
tration of recombinant MFGE8 [5]. Therefore, this study aimed to increase the improvement
effect on liver fibrosis by utilizing a structural change in Milk fat globule-EGF factor 8
(MFG-E8) and to identify a clear mechanism.

The C2 domain of MFG-E8 facilitates binding to phosphatidylserine (PS) on apoptotic
cells and integrin αvβ3/αvβ5 on phagocytic cells as a bridging molecule [4,33,34]. By
truncation of the C2 domain in MFG-E8, NP-011 might be considered to have weaker
binding to PS, but it might have strengthened binding affinity with integrins through the
RGD motif as a compensatory mechanism. In fact, the binding affinity of NP-011 to integrin
αvβ5 was significantly increased (>10-fold) compared to the binding of MFG-E8 (Figure 4F
and Supplementary Figure S2). It was reported that the inhibition of integrin αvβ5 reduced
the activation of TGF-β signaling by 66%, twice as much as that by blocking αvβ3 or
αvβ1 integrin [35]. Therefore, the removal of the C2 domain in MFG-E8 protein might
compensate for stronger binding to integrin αvβ5, thereby inhibiting TGF-beta signaling
more effectively.

MFG-E8 protein has therapeutic effects in many diseases but has also some limita-
tions in development. For example, MFG-E8 contains a medin site [36], known to cause
Alzheimer’s [37], type 2 diabetes [38], and aging [39], and glycosylation sites that make
it difficult to synthesize with potential immunogenicity after administration in the body;
both of these are present in the C2 region. Thus, through the truncation of the C2 domain
in MFG-E8, NP-011 might be free from the above concerns in clinical applications. With
these advantages, the anti-fibrotic power of NP-011 was previously demonstrated in an
idiopathic pulmonary fibrosis (IPF) model, and it showed efficacy comparable to that of
existing drugs (nintedanib and pirfenidone) for treating IPF patients [7].

In the present study, our results demonstrated therapeutic effectiveness in liver fibrosis
mouse models induced by various methods. This shows that NP-011 improves fibrosis,
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no matter the source of liver fibrosis. It was also impressive that TGF-β/Smad2 signaling
was reduced, but no toxicity was found, and the association with integrin was confirmed.
This is a very important result in the absence of drugs that restore fibrosis to its original
state. Recently, research on integrins in fibrotic diseases has been actively conducted. In
particular, the association of fibrosis with RGD-binding integrin has been reported [40,41],
and the importance of targeting integrin αv in tissue fibrosis was also reported [42]. As
shown in the results of this study, NP-011 was preferentially delivered in the liver and
specifically bound to integrin αvβ3 and αvβ5 with enhanced binding affinity compared to
that of MFG-E8 (data not shown). Furthermore, NP-011 interfered with the interactions
between integrins and TGF-βRI on HSCs in the presence of TGF-β1, and it suppressed TGF-
β/Smad2 signaling in HSC culture and deactivated the proliferation of HSCs activated by
TGF-β1 treatment in the culture. Since NP-011 bound to the integrins more strongly than
MFG-E8, it is also demonstrated that NP-011 more efficiently suppressed TGF-β signaling
than did MFG-E8 in this study. Because HSCs have pivotal roles in fibrogenesis and further
progression of fibrosis in the liver [14,15], targeting HSCs could be a key factor in resolving
liver fibrosis. Therefore, NP-011 has promising potential to target HSCs effectively and to
resolve liver fibrosis with beneficial effects over the original form of MFG-E8.

Finally, high manufacturability is another advantage of NP-011 in clinical applications.
NP-011 has a smaller protein structure than MFG-E8 and can be mass-produced without
difficulty in synthesis. Furthermore, NP-011 is produced as a secretory form (authentic
NP-011) without methionine at the N-terminus of the protein with any tag (e.g., FLAG-tag
or his-tag) and random glycosylation (data not shown), which could induce significant
problems upon administration of medications [43]. Thus, in conclusion, NP-011 could
provide a highly effective and reliable new protein therapy for treating liver fibrosis.

5. Conclusions

Collectively, the structural truncation of Milk fat globule-EGF factor 8 (MFG-E8)
enhanced its therapeutic efficacy against liver fibrosis with benefits of rapid/effective
suppression of TGF-β signaling associated with integrin binding for deactivating HSCs
and high productivity without concerns in clinical applications. Therefore, the modified
MFG-E8 (NP-011) could be an advanced and promising new drug candidate, even in the
presence of natural MFG-E8 protein.

6. Patents

NP-011 and the use of NP-011 for treating liver fibrosis is protected by published or
unpublished patents (KOR/10-1947902, PCT/KR2017/005150, EU/17870624.8, JP/6585296,
US/15/994.323, CN/201780004259.5, JP/2019-160324, and PCT/IB2019/001136), and these
intellectual property rights belong to NEXEL. Co., Ltd.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines9111529/s1, Figure S1: Regulating pro-fibrotic MMP2 and collagenase activity
in HSCs. Figure S2: Binding affinity assay of MFG-E8 to integrin αVβ5. Figure S3: Biodistribution
and safety profile of NP-011. Table S1: Primer list used in this study. Table S2: Antibody list used in
this study.
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