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Abstract: Since December 2019, the new SARS-CoV-2-related COVID-19 disease has caused a global
pandemic and shut down the public life worldwide. Several proteins have emerged as potential
therapeutic targets for drug development, and we sought out to review the commercially available
and marketed SARS-CoV-2-targeted libraries ready for high-throughput virtual screening (HTVS).
We evaluated the SARS-CoV-2-targeted, protease-inhibitor-focused and protein–protein-interaction-
inhibitor-focused libraries to gain a better understanding of how these libraries were designed. The
most common were ligand- and structure-based approaches, along with various filtering steps, using
molecular descriptors. Often, these methods were combined to obtain the final library. We recognized
the abundance of targeted libraries offered and complimented by the inclusion of analytical data;
however, serious concerns had to be raised. Namely, vendors lack the information on the library
design and the references to the primary literature. Few references to active compounds were also
provided when using the ligand-based design and usually only protein classes or a general panel
of targets were listed, along with a general reference to the methods, such as molecular docking for
the structure-based design. No receptor data, docking protocols or even references to the applied
molecular docking software (or other HTVS software), and no pharmacophore or filter design
details were given. No detailed functional group or chemical space analyses were reported, and no
specific orientation of the libraries toward the design of covalent or noncovalent inhibitors could
be observed. All libraries contained pan-assay interference compounds (PAINS), rapid elimination
of swill compounds (REOS) and aggregators, as well as focused on the drug-like model, with the
majority of compounds possessing their molecular mass around 500 g/mol. These facts do not bode
well for the use of the reviewed libraries in drug design and lend themselves to commercial drug
companies to focus on and improve.

Keywords: targeted libraries; focused libraries; computer-aided drug design; virtual screening;
in silico drug design; high-throughput virtual screening

1. Introduction

After the identification of a biological target (enzyme, receptor, protein, etc.), the focus
of the early phase of drug discovery rests on the identification of leads or compounds that
exhibit pharmacological activity against this specific target [1,2]. This represents the first
step in the lengthy process of drug discovery, which includes the phases of target to hit,
hit to lead, lead optimization, clinical trials and market launch, followed by the phase
four [3]. The process of discovering new drugs based on the knowledge of their biological
target is called drug design, where the final goal is a molecule complementary in shape
and charge to its target and with a desired pharmacological profile [4]. Computer-aided
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methods have become increasingly important over the years to the extent that they are in-
dispensable in modern drug development. Computer-aided drug design (CADD) generally
follows three main objectives: (1) filtering large compound libraries into smaller groups of
prospective compounds, (2) optimization of lead compounds and (3) development of novel
compounds [5,6]. The term “CADD” is also used for two general approaches, e.g., structure-
based and ligand-based drug design (Figure 1). As the name suggests, the structure-based
drug design relies on the knowledge of the target structure, while the ligand-based drug
design applies the known active and inactive compounds through similarity search, quan-
titative structure–activity relation (QSAR) studies or through the application of modern
machine-learning techniques that are becoming increasingly important in the field [7–9].
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Sliwoski et al. [5]).

The use of CADD reduces the costs and labor associated with the drug development,
but as can be seen in Figure 1, the success of this process depends on the richness of the
initial compound library. Due to the sheer size of the entire chemical space (estimates for
the number of synthesizable organic compounds vary from 1030 to 1060), it is impossible
to search it in its entirety. Consequently, extensive compound libraries representing the
appropriate chemical space are critical for the success of (virtual) high-throughput screening
(vHTS or HTS) [10].
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This is a computational methodology used to differentiate between the molecules
from a virtual library that bind to a potential target and those that do not, as well as to rank
these molecules according to their predicted binding strength. This allows us to enrich
the hit rate (the number of binding compounds at a given concentration divided by the
number of compounds tested experimentally) over classical screening methods, such as
the high-throughput screening (HTS) [11]. The popularity of the method is increasing with
the larger availability of structural information, such as 3D protein structures, and with
the commercially available libraries. The two factors work together in a tandem to provide
a broad platform for vHTS [12]. Compared to the classical HTS, which is still used today
as a staple for confirming activity against a target, vHTS offers the ability to pre-process
enormous lists of molecules, reducing the number of compounds that need to be purchased,
synthesized, and tested [13,14]. For example, the researchers at Pfizer used a vHTS docking
protocol to screen for inhibitors of the enzyme tyrosine phosphatase 1B. The vHTS protocol
yielded 365 compounds, of which 127 exhibited effective inhibition. Compared to a classical
HTS protocol performed in parallel with the vHTS, the hit count for the 400,000 compounds
tested was 81, representing a hit rate of only 0.021%, compared to 34.7% in the vHTS
protocol [11]. Moreover, the method yields structurally diverse lead compounds and can be
extended to compounds that do not yet physically exist but can be obtained by synthesis or
that serve as fragments in the later stages of the development [2,15–17]. Virtual screening
or high-throughput virtual screening can be performed by using one or a combination of
QSAR, pharmacophore-based virtual screening (PBVS), molecular docking (docking-based
virtual screening, DVBS) and modern machine learning techniques [18–25]. What is crucial
and common to all approaches is that extra care should be taken in regard to the input data,
e.g., the virtual compound libraries.

Pharmaceutical companies have realized the importance of possessing chemical li-
braries that cover a vast and diverse chemical space. Consequently, They have created large
libraries of several million compounds (Pfizer, 4 million [26]; Novartis, 1.7 million [27];
and Astra Zeneca, 4 million, accessible through collaborations [28]). To date, the main
method for searching for lead molecules in large compound libraries remains HTS [29].
HTS, the experimental counterpart of vHTS, identifies lead molecules by examining indi-
vidual biochemical assays for each of the more than one million molecules in the respective
library [13]. The main challenge of HTS is to find a balance between the size of the library,
its structural diversity and the cost of screening the compounds [30]. From this perspective,
the modern HTS has reached the “plateau of productivity” according to the Gartner Hype
Cycle, leading to the integration of fragment screening and computational methods into
the process [31]. Several computational methods can be synergistically integrated into the
screening process to mitigate the weaknesses of the remaining methods and to increase
the hit rate [26]. One finds several reports of drugs discovered by using computational
methods with imatinib, a tyrosine kinase inhibitor, as a prime example [32,33].

The main difference between computational methods and HTS represents the use of
virtual compound libraries in the process. While physical compound libraries reach the
number of millions of molecules, virtual compound libraries created by large pharmaceuti-
cal companies can range from 107 to 1018 molecules. Investigations of these libraries identify
specific molecules, synthetic pathways and focus the research toward a specific chemical
space [34–42]. As the CADD methodology is nowadays routinely used in drug discovery,
the need for virtual compound libraries increases. Consequently, numerous commercial
vendors have emerged, offering such libraries in both physical and virtual forms. To further
facilitate the drug discovery, commercial vendors are now offering scientists the so-called
targeted or focused compound libraries ready to jumpstart the drug design and discovery
in a specific field. These focused libraries often represent a subset of compounds from the
manufacturer’s full database that may possess specific properties for a selected target or
drug design field. This review explores this topic as the first of its kind for the benefit of the
medicinal chemistry community and refers the reader to the relevant resources and related
reports in the scientific literature.
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2. In Silico Library Design for Medicinal Chemistry

When designing or examining an existing molecular library, a researcher should be
aware of important steps and drawbacks associated with virtual molecules. The following
chapter addresses these issues and helps the reader to develop both a critical view on
the existing libraries, as well as provide a good foundation to create his/her own virtual
libraries similar to the one presented in Figure 2 [43–45].
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After obtaining the target structure and learning about the molecular and biological
context, a researcher can proceed toward designing the virtual compound library. Pharma-
cokinetics and pharmacodynamics represent important aspects to consider when preparing
any molecular library. This was discussed by Lipinski et al., who postulated that several
drug classes, such as antibiotics, antifungals and vitamins, among others, fell outside the
Ro5, due to transporter effects [46]. The term “metabolite-likeness” is also used to name
the approach where, instead of similarity to known drugs, the library is constructed by the
comparison to known metabolites, an approach that factors in pharmacokinetics [47]. All in
all, both are important in molecular library design, as compound structures are critical for
their behavior in a complex biological system, where absorption, distribution, metabolism
and elimination (pharmacokinetics) are at play [48]. When considering the mode of action
of the compound on a relevant target, one should consider all possible interactions formed
between the target and the ligand, as well as factor in these data in the library design,
if possible. Key interactions from covalent, ionic, metallic to the hydrogen bonds and
various dipole-dipole, as well as hydrophobic interactions, should all be considered, and
the potential for their formation should be assessed in the constructed compound library.
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The main goal of targeted libraries is to cover a diverse chemical space with as few
compounds as possible. Due to the fast-growing availability of the chemical and biological
structural data, the public bioactivity databases provide an excellent starting point [49].
The most comprehensive and curated information about molecules is freely available in
the prominent PubChem [50], ChEMBL [51] and ZINC [52] databases. After assembling
the initial database from various sources, the next step is to remove duplicates, so that only
unique structures are processed further [49]. The choice of the chemical file format is vital,
as it dictates how the obtained data can be used. The most recommended file formats for
representing molecules as strings include the SMILES and InChI formats. In most cases,
multiple SMILES strings can equally well represent a single molecule. The application of the
canonical SMILES, which uses only a single string per molecule, is recommended to avoid
duplication and filtering problems. For the spatial representation of molecules, either the
Structure Data Format (SDF) or the MDL Molfile (MOL) format are the most common [53].
Online libraries can usually be downloaded in these formats, making it easier to obtain a
coherent library. When performing filtering, clustering or similarity searches, the SMILES
format is preferred, as it leads to faster processing, due to its string representation; however,
the spatial information is required for downstream methods such as 3D pharmacophore
development, molecular docking and molecular dynamics. The molecular representation
always requires the extra care and exploration in terms of conformational viability, chiral
centers, tautomerism, compound ionization, presence of salts, structural faults, etc. By
default, the hydrogen atoms are often not present in various chemical file formats and
should be added during the library preparation. Tautomerism represents a property of
chemical compounds that affects the calculation of their physiochemical properties, such as
logP, logD and pKa, and subsequently bears consequences in both QSAR and molecular
docking [54]. Due to their different structural representations, tautomers are often handled
as separate molecules by CADD programs [49,55]. Moreover, since proteins are known
to be enantioselective toward the binding ligands, exploring chirality when designing
a virtual library is an important aspect to consider. In the majority of virtual libraries,
however, compounds are represented by a single stereoisomer, or the stereo information
is absent altogether. Exploring chirality thoroughly will expand the database size by
2n per molecule, where n is the number of chiral centers present. With larger databases,
this issue will be even more pronounced and should be considered before generating
all possible stereoisomers [56,57]. In general, it is recommended to explore unspecified
chirality, which should be performed on a case-by-case basis with regard to the biological
context [49]. Furthermore, for compounds that have ionizable groups, multiple different
structural representations should be used. Within a reasonable pH range, structures should
be represented as protonated and deprotonated forms of compounds [56]. The biological
context of the target protein should be used to provide an accurate representation of the
environment. After the final compound 3D structure generation, energy minimization
should be carried out in order to optimize the molecular geometry [19,58].

Library design should factor in the avoidance of toxic outcomes. Despite the fact
that toxicity of drugs is multifactorial and that predicting the exact property responsible
for toxicity is difficult, several correlations of toxicity to in vitro pharmacology profiles
exist and can be translated to in silico tools which examine molecular descriptors and
filter the libraries accordingly [59]. The filtering itself can also flag compounds with
reactive functional groups or moieties, optically interfering components, aggregators or
frequent hitters. The filtering of “unwanted” molecular species using computational filters
represents an essential element of library preparation which should always be considered
in a suitable context [60,61]. The essential filters in medicinal chemistry library design are
presented in Table 1 below. The size of the chemical space used in CADD means that further
entries can be calculated for compounds in molecular libraries, such as structural keys or
(hashed) molecular fingerprints. These additional compound representations alleviate steps
in the downstream calculations, e.g., clustering and the chemical space definition [62,63].
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Table 1. Essential filters for efficient library design in medicinal chemistry.

Name Features/Cutoffs Developer/
Reference

PAINS Removal of frequent hitters (promiscuous compounds) in
HTS assays

Cancer Therapeutics-CRC P/L
[64]

REOS

Set of rules and of functional group filters for the removal of
problematic structures dubbed REOS (Rapid elimination of
swill)
Maintaining compounds using the following cutoffs:
H-bond donor ≤ 5, H-bond acceptors ≤ 10, −2 ≤ formal
charge ≤ +2, number of rotatable bonds ≤ 8, 200 ≤
Molecular weight ≤ 500, 20 ≤ number of heavy atoms ≤ 50,
−2 ≤ logP ≤ 5

Vertex [65,66]

Aggregators Tanimoto coefficient similarity search to a database of
known aggregators Irwin et al. [52]

Ely Lilly rules Hybrid method of physiochemical and functional group
filters for identification of promiscuous compounds Bruns at Ely Lilly [67]

Lipinski (Rule of 5)
A set of rules for drug-likeness:
Molecular Weight ≤ 500, logP ≤ 5, H-bond donors ≤ 5,
H-bond acceptors ≤ 10

Lipinski at Pfizer [46]

Rule of 3
A set of cutoff rules for lead-like discovery:
Molecular Weight ≤ 300, logP ≤ 3, H-bond donor ≤ 3,
H-bond acceptors ≤ 3

Congreve et al. [68]

Rule of 4

A set of rules derived from protein–protein interaction
inhibitors:
Molecular Weight ≥ 400, logP ≥ 4, number of rings ≥ 4,
H-bond acceptors ≥ 4

Morelli [69]

Oprea Lead-like and drug-like

A set of rules based on the lead-like vs. drug-like
comparison:
Molecular Weight < 450, −3.5 ≤ logP < 4.5, −4 ≤ logD ≤ 4,
number of rings ≤ 4, nonterminal single bonds ≤ 10,
H-bond donor ≤ 5, H-bond acceptor ≤ 8

Oprea group [70]

Ghose
A set of rules for drug-likeness with cutoffs:
180 ≤ Molecular Weight ≤ 480, 40 ≤ molecular refractivity
≤ 130, −0.4 ≤ logP ≤ 5.6, 20 ≤ number of atoms ≤ 70

Ghose et al. [71]

Veber Two rules to meet the criteria for drug-likeness:
rotatable bonds ≤ 10, Polar Surface Area ≤ 140 Å2 Veber et al [72]

Lee
Physiochemical properties of highly-drug like molecules:
Mean Molecular Weight = 356
Mean logP = 2.1

Lee at Hoffman-La Roche [73]

van de Waterbeemd
Physiochemical properties for permeability and blood brain
barrier permeability:
Molecular Weight ≤ 450, Polar Surface Area ≤ 90 Å2

van de Waterbeemd [74]

Mozzicconacci
Set of rules to filter for drug-like molecules:
Rotatable bonds ≤ 15, rings ≤ 6, oxygen atoms ≥ 1,
nitrogen atoms ≥ 1, halogen atoms ≤ 7

Mozziconacci [75]

Fichert Rules for permeability based on a small drug set:
Molecular Weight ≤ 500, 0 ≤ logD ≤ 3 Fichert et al. [76]
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Table 1. Cont.

Name Features/Cutoffs Developer/
Reference

Muegge method

Bioavailability prediction rules dubbed Muegge method:
200 ≤ MW ≤ 600, −2 ≤ logP ≤ 5, PSA ≤ 150 Å2, number of
rings ≤ 7, number of carbons ≥ 4, number of heteroatoms > 1,
Number of rotatable bonds ≤ 15, H-bond acceptors ≤ 10,
H-bond donors ≤ 5

Muegge [77]

Egan Set of rules designed to predict bioavailability:
logP ≤ 5.88, PSA ≤ 131.6 Å2 Egan et al. [78]

Murcko filter

Set of rules derived from the rule of 5 coupled with 1D and
2D descriptor analysis to determine central nervous system
activity.
MW 200–400, 0 ≤ logP ≤ 5.2, H-bond acceptors ≤ 4,
H-bond donor ≤ 3, rotatable bonds ≤ 7

Ajay et al. [79]

3. Methods

Articles in this review were obtained by searching for keywords (https://pubmed.
ncbi.nlm.nih.gov/; accessed on 23 December 2021) related to the formation of chemical
libraries, filtering of libraries, methodology in in silico drug design and by following
citations provided in other review articles. To obtain the commercial libraries for the
assessment, we performed online searches. The keywords for the libraries were as follows:
“SARS-CoV-2 targeted molecular library” and “COVID-19 targeted molecular library”
for the SARS-CoV-2-targeted libraries; “protein inhibitor targeted molecular library” for
the protein-inhibitor-targeted libraries; and “protein–protein interaction targeted library”
and “PPI inhibitor targeted molecular library” for the protein–protein-interaction-inhibitor-
targeted library. We cross-checked the results with the ZINC database [52]. We proceeded to
collect all available structural data, either by directly contacting the vendor or downloading
them from the vendor web sources. The data on the assembly of the commercial library
were used for the critical analysis and comparison with the general practice. The structural
files obtained were subjected to filtering and statistical analysis of descriptors that bear the
most information on the chemical space of the library [80].

PAINS, REOS and Lipinski Ro5 were the most common filters that were used by
commercial vendors when preparing the libraries, and were as such chosen for testing the
quality of the investigated commercial libraries. We additionally applied the aggregator
filters often overlooked when preparing molecular libraries. In-house workflows for
filtering the obtained libraries filter were created by using Konstanz Information Miner
(KNIME, version 4.2.3; http://knime.org; accessed on 23 December 2021). All medicinal
chemistry filter KNIME implementations can be found at https://gitlab.com/Jukic/knime_
medchem_filters (accessed on 23 December 2021). The results obtained were statistically
analyzed and visualized by using KNIME.

4. Examples of Commercial Targeted Libraries

We set out to collect the commercially available targeted libraries and to evaluate
their potential for drug discovery in the area of SARS-CoV-2. Since targeted libraries use a
variety of different methods for data collection (ligand-based, structure-based and various
filters), we attempted to gain a better understanding of how libraries are designed and what
they offer to the virtual screening process. All links to the libraries collected are provided
in the Supplementary Materials of this article. In addition, a more comprehensive list of
other commercial libraries, with additional information on the types of compounds that are
not a part of this investigation, is provided to guide readers in their drug design efforts.

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
http://knime.org
https://gitlab.com/Jukic/knime_medchem_filters
https://gitlab.com/Jukic/knime_medchem_filters
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4.1. SARS-CoV-2- or COVID-19-Targeted Libraries

Since December 2019, COVID-19 has caused a global pandemic and shut down public
life worldwide. The pressure on the scientific community to develop a vaccine or drug
has never been greater [81]. Several SARS-CoV-2 proteins have emerged as potential
therapeutic targets for drug development, for example, S-protein and the viral proteases
3CLpro and PLpro [25,82–85]. With the new potential SARS-CoV-2 targets in mind, we
decided to evaluate the commercially available SARS-CoV-2-targeted libraries. Protease-
inhibitor-focused and protein–protein-interaction-inhibitor-focused libraries employed in
the SARS-CoV-2 drug design were examined, as well.

4.1.1. Enamine

The Enamine library is composed of several different libraries and consists of com-
pounds associated with targets of the SARS CoV-2 virus. The library construction began
with the collection of structural data for selected target proteins. Docking models were cre-
ated and validated by using short molecular dynamics simulations. Covalent docking was
performed on cysteine and serine proteases to identify potential covalent binders. Finally,
the obtained molecules were filtered by using various medicinal chemistry parameters not
disclosed by the commercial supplier (Figure 3).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 22 
 

 

4.1. SARS-CoV-2- or COVID-19-Targeted Libraries 

Since December 2019, COVID-19 has caused a global pandemic and shut down pub-

lic life worldwide. The pressure on the scientific community to develop a vaccine or drug 

has never been greater [81]. Several SARS-CoV-2 proteins have emerged as potential ther-

apeutic targets for drug development, for example, S-protein and the viral proteases 

3CLpro and PLpro [25,82–85]. With the new potential SARS-CoV-2 targets in mind, we de-

cided to evaluate the commercially available SARS-CoV-2-targeted libraries. Protease-in-

hibitor-focused and protein–protein-interaction-inhibitor-focused libraries employed in 

the SARS-CoV-2 drug design were examined, as well.  

4.1.1. Enamine 

The Enamine library is composed of several different libraries and consists of com-

pounds associated with targets of the SARS Cov-2 virus. The library construction began 

with the collection of structural data for selected target proteins. Docking models were 

created and validated by using short molecular dynamics simulations. Covalent docking 

was performed on cysteine and serine proteases to identify potential covalent binders. 

Finally, the obtained molecules were filtered by using various medicinal chemistry pa-

rameters not disclosed by the commercial supplier (Figure 3). 

 

Figure 3. Process algorithm for generating the Enamine SARS-CoV-2-targeted molecular library. 

4.1.2. Otava 

The SARS-CoV-2-targeted library supplied by Otava contains eight different sub-li-

braries. Apart from a single general library, the remaining libraries are targeted against 

SARS-CoV-2 proteins. The targeted libraries were designed by receptor-based virtual 

screening, using crystal structures of the target proteins. The entire procedure involved 

flexible docking of the Otava Drug-Like Green Collection (collection of compounds that 

satisfy Lipinski’s rule of five) to key binding sites. The relevant protein binding site with 

the docked molecule was examined in detail. The final decision was based on the struc-

tural determinants of ligand binding, docking scores and intermolecular hydrogen bond-

ing within the binding site. 

The next library was constructed by using machine learning techniques to obtain 

molecules with predicted activity against SARS-CoV-2. Initially, the molecules showing 

activity against coronavirus targets and the inactive compounds were divided into two 

equal groups. One was used as a training group and the other as a test group. The model 

based on Bayesian statistics and artificial neural networks was not further disclosed by 

the supplier nor was the relevant reference to the primary literature provided. The test 

sets used to validate models and based on a variety of molecular descriptors, such as Mo-

lecular Weight, number of hydrogen bond acceptors, number of rotatable bonds, LogP 

and the polar surface area of molecules. The Drug-Like Green collection was checked 

against the model, and the highest scoring compounds were visually inspected (Figure 4). 

Figure 3. Process algorithm for generating the Enamine SARS-CoV-2-targeted molecular library.

4.1.2. Otava

The SARS-CoV-2-targeted library supplied by Otava contains eight different sub-
libraries. Apart from a single general library, the remaining libraries are targeted against
SARS-CoV-2 proteins. The targeted libraries were designed by receptor-based virtual
screening, using crystal structures of the target proteins. The entire procedure involved
flexible docking of the Otava Drug-Like Green Collection (collection of compounds that
satisfy Lipinski’s rule of five) to key binding sites. The relevant protein binding site with
the docked molecule was examined in detail. The final decision was based on the structural
determinants of ligand binding, docking scores and intermolecular hydrogen bonding
within the binding site.

The next library was constructed by using machine learning techniques to obtain
molecules with predicted activity against SARS-CoV-2. Initially, the molecules showing
activity against coronavirus targets and the inactive compounds were divided into two
equal groups. One was used as a training group and the other as a test group. The model
based on Bayesian statistics and artificial neural networks was not further disclosed by the
supplier nor was the relevant reference to the primary literature provided. The test sets
used to validate models and based on a variety of molecular descriptors, such as Molecular
Weight, number of hydrogen bond acceptors, number of rotatable bonds, LogP and the
polar surface area of molecules. The Drug-Like Green collection was checked against the
model, and the highest scoring compounds were visually inspected (Figure 4).
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4.1.3. Chembridge

This database was constructed in collaboration with academia and contains molecules
with potential activity against 17 SARS-CoV-2 targets. The entire Chembridge library
was prepared by using VirtualFlow and docked at 40 different sites on 17 protein targets.
Over 1.3 million molecules were docked into the targets, which were prepared by using
AutoDock tools to transform PDB into PDBQT format. Molecular docking was performed
by using QuickVina, and the proteins were held rigid. The best hits were then further
filtered to assure lead-like properties (Figure 5) [86].
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4.1.4. Life Chemicals

Using docking-based virtual screening, the entire collection was screened against three
different coronavirus-associated proteins, using the Glide software. The compounds were
further filtered by using Lipinski’s rule of five, with the exception of the main protease, as it
would filter out many peptide-like compounds. All molecules in the final database contain
no PAINS, toxic or reactive groups. The second part of the library was assembled by using
a 2D fingerprint similarity approach. The Tanimoto cutoff was set at 75% for screening
molecules with known activity against the SARS coronavirus. Data on active molecules
were obtained from ChEMBL. Compounds were selected based on the minimum accepted
activity value (IC50, Ki; according to ChEMBL; Figure 6).
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4.1.5. TargetMol

The library contains compounds shown to be active against coronaviruses or pos-
sessing a broad-spectrum antiviral activity. The molecules were obtained by molecular
docking screening against seven SARS-CoV-2 target proteins and one human (ACE2) target
protein. The library was extended by virtual screening of the natural products obtained
from traditional Chinese medicinal plants (Figure 7).
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For each library described, we performed an analysis of the most common molecular
descriptors that were found to be relevant [80]: Molecular Weight (MW), Total Polar Surface
Area (TPSA), SlogP, number of hydrogen bond acceptors (HBA), number of hydrogen bond
donors (HBD), number of rings present and the number of rotatable bonds (Table 2).
Compound retention when passing through each individual filter was assessed, as well
(Table 3), with the results for joined filter provided in Figure 8.

Table 2. Analysis of the most important descriptors for the SARS-CoV-2-targeted library.

Database
Name

No. of
Compounds MW TPSA SlogP HBA HBD No. of

Rings

No. of
Rotatable

Bonds

Chembridge 16,777 391.5 ± 62 80 ± 26 3.2 ± 1.5 4.9 ± 1.7 1.4 ± 1.0 4.3 ± 0.8 3.9 ± 1.4
Enamine 16,800 362 ± 61 79.3 ± 21 2.7 ± 1.2 4.5 ± 1.4 1.58 ± 0.8 3.1 ± 0.8 5.1 ± 1.8

LifeChemical 7311 404 ± 75 84.8 ± 23 3.1 ± 1.4 5.8 ± 1.8 1.4 ± 0.9 3.6 ± 0.9 5.6 ± 1.9
Otava 9018 383 ± 56 77.3 ± 20 3.7 ± 1.0 5.2 ± 1.5 1 ± 0.8 3.9 ± 0.8 4.0 ± 1.5

TargetMol 2448 460 ± 211 110 ± 151 2.6 ± 4.6 6.6 ± 4.0 2.2 ± 3.2 3.6 ± 1.5 7.5 ± 4.8
Joined SARS-

CoV-2-Targeted
Library

52,354 385 ± 79 81 ± 40 3.1 ± 1.7 5.0 ± 1.9 1.4 ± 1.1 3.7 ± 1.0 4.7 ± 2.1

Table 3. Analysis of the attrition rate of various filters for the SARS-CoV-2-targeted library.

Chembridge Enamine LifeChemicals Otava TargetMol

Unfiltered 16,777 16,800 7311 9018 2448

Isolated filter: Number of filtered out compounds (%)

REOS 1160 (7%) 4565 (27%) 1414 (19%) 1486 (17%) 858 (35%)
PAINS 454 (3%) 267 (2%) 11 (~0%) 430 (5%) 248 (10%)

Aggregators 9053 (54%) 6702 (40%) 4002 (55%) 6784 (75%) 1445 (60%)
Lipinski Ro5 258 (2%) 193 (1%) 380 (5%) 5 (~0%) 522 (21%)

All filters 10,000 (60%) 9412 (56%) 4937 (68%) 7202 (80%) 1887 (77%)
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Figure 8. Compound (relative) retention after post-filtering for REOS, PAINS, Aggregators and the
Lipinski rule of 5 (one rule break allowed) on protein–protein-interaction-inhibitor-targeted libraries.

4.2. Protease-Inhibitor-Focused Libraries

Proteases are enzymes which break down proteins by the hydrolysis of peptide bonds
and are involved in various processes, making them potential targets for drug design [87].
Based on the mechanism of catalysis, several types exist, with the most common being
the serine and cysteine proteases [87]. When inspecting such libraries, it is important to
note that the design of covalent inhibitors requires different CADD approaches than for
the design of non-covalent inhibitors [88]. The TargetMol molecular library consists of
295 protease inhibitors and includes known actives against serine, cysteine, aspartic and
other proteases. All compounds have a confirmed IC50, although the exact tests used and
references to the primary literature are neither discussed nor disclosed. All compounds
are NMR and HPLC validated and have their biological activity described. The ApexBio
library of protease inhibitors was constructed by cherry picking of compounds that are
associated with different proteases. The total number of compounds (825), the quality
control certificates and a chart of composition are provided, but little or no information is
given about properties such as IC50 values or references to filtering protocols. Otava offers
no less than 19 different protease libraries, with little information on their design provided.
Where this information is available, virtual screening approaches were used to construct
the library. These include receptor-based approaches such as pharmacophore and docking
protocols to obtain molecules with the predicted activity. No evidence of activity or assays
against the selected target is given. The Enamine compound supplier provides a protease-
focused library with 117 known protease inhibitors. All of the available compounds were
NMR and HPLC validated to ensure quality. The Selleckchem protease-focused library
contains 319 small molecules with NMR and HPLC analytical data. It was constructed by
manually searching the available literature on protease inhibitors, but no exact literature
references are provided. The library has over 140 citations in scientific articles at the time
of the writing of this paper. The number of compounds per target molecule is depicted
with a graphical representation on the webpage. The compound supplier Asinex also
offers protease-focused libraries of compounds, but with no exact details on the design
provided to the customer. There are three libraries: the protease library, with 6640 com-
pounds selected from their Signature and BioDesign Libraries; the Protease inhibitors
library, with 80 compounds obtained by using screening against a panel of proteases; and
the inhibitor library, with 80 compounds obtained by using pharmacophore modeling.
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ChemDiv offers two libraries: the cysteine and serine protease inhibitors databases. The
databases were assembled by using in silico methods and created by following two key
approaches: by comparing structural similarity of molecules in the ChemDiv database to
molecules with known activity against proteases and by selecting molecules with structural
motifs commonly represented in peptidomimetics, with little additional design information
provided to the customer. The LifeChemicals protease inhibitor library comprises cystein,
serine, aspartic and metallo protease inhibitor libraries. Both ligand- and receptor-based
approaches were applied in the construction of this library. The molecules in the library are
based on 80,000 reference molecules with a proven activity that were retrieved from the
ChEMBL database. Some compounds from the LifeChemicals library were added based
on the 2D fingerprint similarity with a Tanimoto comparison cutoff of 85% for serine and
cystein proteases and of 75% for metalloproteases. The remaining compounds were selected
by using molecular docking into different protease targets and confirming the results by
molecular dynamics simulations. PAINS, toxic and reactive compounds were excluded
from the library. For each library described, we performed an analysis of the most common
molecular descriptors: Molecular Weight (MW), Total Polar Surface Area (TPSA), SlogP,
number of hydrogen bond acceptors (HBA), number of hydrogen bond donors (HBD),
number of rings present and the number of rotatable bonds (Table 4). Compound retention
when passing through each individual filter was assessed, as well (Table 5), with the results
for joined filter provided in Figure 9.

Table 4. Analysis of the most important descriptors for the protease-inhibitor-targeted library.

Database
Name

No. of
Compounds MW TPSA SlogP HBA HBD No. of

Rings

No. of
Rotatable

Bonds

ApexBio 824 348 ± 181 96 ± 59 1.9 ± 2.8 5.0 ± 3.2 2.5 ± 2.0 2.5 ± 1.7 5.2 ± 4.5
Asinex 6640 383 ± 34 79 ± 18 2.9 ± 1.0 5.3 ± 1.3 0.9 ± 0.7 3.7 ± 0.6 4.7 ± 1.5

Chemdiv 41,801 406 ± 63 74 ± 20 3.6 ± 1.2 5.0 ± 1.6 1.1 ± 0.7 3.7 ± 0.8 5.4 ± 1.8
Enamine 117 336 ± 167 90 ± 58 2.2 ± 2 4.4 ± 2.6 2.0 ± 1.8 2.5 ± 1.5 4.5 ± 4.4

LifeChemicals 25,535 390 ± 70 81 ± 22 3.0 ± 1.4 5.3 ± 1.7 1.0 ± 0.7 3.3 ± 0.9 4.9 ± 1.9
Otava 8034 352 ± 71 79 ± 23 3.0 ± 1.2 4.6 ± 1.6 1.4 ± 0.9 3.2 ± 1.1 4.5 ± 1.8

SelleckChem 227 409 ± 168 106 ± 52 2.4 ± 2 5.45 ± 2.6 2.4 ± 1.7 2.9 ± 1.7 6.2 ± 4.4
TargetMol 295 410 ± 183 107 ± 60 2.4 ± 2.2 5.6 ± 3.1 2.5 ± 2.0 3.0 ± 1.8 5.9 ± 4.5

Joined Protease
Inhibitor

Databases
83,473 394 ± 70 77 ± 23 3.3 ± 1.3 5.0 ± 1.7 1.1 ± 0.8 3.5 ± 0.9 5.1 ± 1.9

Table 5. Analysis of the attrition rate of various filters for the protease-inhibitor-targeted library.

ApexBio Asinex Chemdiv Enamine LifeChemicals Otava SelleckChem TargetMol

Unfiltered 824 6640 41,801 117 25,535 8034 227 295

Isolated
filter: Number of filtered out compounds (%)

REOS 397(48%) 273(4%) 2151(5%) 54(46%) 3583(14%) 1025(13%) 110(48%) 146(49%)
PAINS 58(7%) 129(2%) 1060(3%) 7(6%) 430(2%) 307(4%) 7(3%) 16(5%)

Aggregators 294(36%) 3254(49%) 29,313(70%) 36(31%) 14,059(55%) 4216(52%) 88(39%) 118(40%)
Lipinski

Ro5 113(14%) 0(0%) 1045(2%) 11(9%) 409(2%) 2(~0%) 37(16%) 55(19%)

All filters 743(90%) 5019(76%) 37,137(89%) 106(91%) 23,215(91%) 6987(87%) 208(92%) 272(92%)
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Figure 9. Compound (relative) retention after post-filtering for REOS, PAINS, Aggregators and the
Lipinski rule of 5 (one rule break allowed) on protease-inhibitor-targeted libraries.

4.3. Protein–Protein-Interaction-Inhibitor-Focused Libraries

Protein–protein interactions are associated with several crucial biological processes,
such as cell growth, proliferation and differentiation. The finding of protein–protein
inhibitors represents a complex process due to several factors, including a large interaction
surface devoid of clefts and binding pockets. Both large and small molecules have been
developed to facilitate this inhibition [89,90]. A filter dubbed the rule of four has been
specifically developed for discovering protein–protein inhibitors [69]. We described these
targeted libraries mainly with the SARS-CoV-2 Sprot–ACE2 interaction in mind.

The Selleckchem library consists of 188 protein–protein interaction (PPI) inhibitors,
which target a vast array of different proteins from epigenetic targets to serine proteases.
The library was constructed by filtering the literature on known PPI inhibitors. Certain
compounds in the library have been FDA approved, and all of them are NMR and HPLC
validated. At the time of writing the site reports 132 publications citing this library. Enamine
compound supplier offers a PPI inhibitor library designed by inspecting the available
structural data of 20 different protein–protein complexes involved in PPI. Ligand and
structure based in silico screening was performed to obtain the 40640 compounds available.
The final selection of compounds was based on specific recognition patterns (hot-spot
analysis, key amino acids, secondary/tertiary structures), lead-like properties and sp3-
rich motifs, passing different rule-based filters such as PAINS and synthetic availability.
Asinex provides two different libraries with PPI inhibitors, one with non-macrocyclic
compounds and another, which contains small molecules and macrocyclic compounds. The
non-macrocyclic library is based upon scaffolds obtained from several α-helix mimetics,
that were proven useful for targeting PPIs. Moreover, four pharmacophore models were
created based on the available PPI inhibitor structural data and used to determine 3 key-
recognition features. This was applied for molecular docking of the α-helix mimetic
scaffolds and for the final selection of the molecules in the library. The second library
contains molecules that mimic protein structural properties such as β-turn and α-helix,
and was assembled using similarity search. LifeChemicals provide four non-overlapping
libraries built with different approaches. The first library was devised using machine
learning decision trees. By comparing several known PPI inhibitors to non-PPI inhibitors,



Int. J. Mol. Sci. 2022, 23, 393 15 of 22

several descriptors facilitated the model to differentiate between the two. Molecules that
fit the descriptors of PPI inhibitors were collected from the entire LifeChemicals HTS
compound collection after which medicinal chemistry filters were applied to filter out
toxic, reactive and PAINS molecules. The final library consists of 6800 molecules. The
second library was constructed using similarity search on the LifeChemicals HTS-library
toward a reference set of molecules from three different protein–protein interaction libraries
(Timbal, 2P2I and iPPI databases). The similarity search was conducted using the Tanimoto
coefficient with the threshold at 85%, the obtained molecules were checked for reactive
and inactive compounds. The third library was based upon the rule of four proposed by
X.Morelli [69] which states that if the molecules abide several structural rules they belong
to the desired chemical space. The fourth and final library was built upon 2D similarity
search against molecules from reference databases (Pubmed, ChEMBL) where PPI were
confirmed with related assays. The entire LifeChemicals HTS library was filtered using a
Tanimoto similarity cutoff of 80% and general medicinal chemistry filters providing the final
14,400 molecules. Otava offers two different PPI inhibitor libraries. The first was designed
using a decision tree algorithm, which effectively separates PPI inhibitors from a group
non-PPI inhibitor. The second was obtained using Bayesian modeling based on known PPI
inhibitors from the TIMBAL database. The Otava database was filtered using a Bayesian
similarity score cutoff and general medicinal chemistry filters (Lipinski, MW cutoff). Otava
compound supplier also offers two peptidomimetic libraries, which are divided into α-helix
peptidomimetics and β-turn peptidomimetics. The α-helical one was assembled using
template compounds found in the scientific literature to create training sets for devising
models based on different fingerprints such as FCFP6 and ECFP6. The β-turn library was
constructed by using pharmacophore screening, where the pharmacophore is based on real
β-turns. The second portion of this library was established by using a similarity search
of known scaffolds of β-turn peptidomimetics. The ChemDiv library of potential PPI
inhibitors contains 210,000 molecules that were collected by using in silico HTS methods
that focused on PPI hot spots located on the protein surfaces, while TargetMol provides
a small focused library that contains 143 PPI-related compounds with NMR and HPLC
supporting analytical data. No further information is provided on how the library was
assembled. For each library described, we performed an analysis of the most common
molecular descriptors: Molecular Weight (MW), Total Polar Surface Area (TPSA), SlogP,
number of hydrogen bond acceptors (HBA), number of hydrogen bond donors (HBD),
number of rings present and the number of rotatable bonds (Table 6). Compound retention
when passing through each individual filter was assessed, as well (Table 7), with the results
for joined filter provided in Figure 10.

Table 6. Analysis of the most important descriptors for the protein–protein-interaction-inhibitor-
targeted library.

Database
Name

No. of
Compounds MW TPSA SlogP HBA HBD No. of

Rings

No. of
Rotatable

Bonds

Asinex 11,439 386 ± 53 70 ± 19 3.1 ± 1.2 4.9 ± 1.3 0.8 ± 0.6 3.7 ± 0.7 4.9 ± 1.5
Chemdiv 212,906 408 ± 61 72 ± 20 3.5 ± 1.3 5.0 ± 1.6 0.8 ± 0.7 3.9 ± 0.8 5.1 ± 1.9
Enamine 40,640 357 ± 49 70 ± 17 2.8 ± 0.9 4.7 ± 1.3 1 ± 0.7 3.5 ± 0.7 4.3 ± 1.6

LifeChemicals 36,426 393 ± 81 77 ± 22 3.3 ± 1.1 5.4 ± 1.8 1.0 ± 0.7 3.6 ± 1.0 5.3 ± 2.2
Otava 3849 437 ± 71 86 ± 25 3.8 ± 1.6 5.4 ± 1.6 1.4 ± 1.0 3.9 ± 1.1 6.4 ± 2.4

SelleckChem 188 472 ± 183 101 ± 66 3.6 ± 2.3 6.3 ± 3.7 2.1 ± 1.7 3.8 ± 1.5 6.2 ± 3.9
Joined PPI
databases 305,448 400 ± 65 73 ± 20 3.3 ± 1.2 5.0 ± 1.6 0.9 ± 0.7 3.8 ± 0.8 5.0 ± 1.9
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Table 7. Analysis of the attrition rate of various filters for the protein–protein interaction inhibitor library.

Asinex Chemdiv Enamine LifeChemicals Otava SelleckChem

Unfiltered 11,439 212,906 40,640 36,426 3849 188

Isolated filter: Number of filtered out compounds (%)

REOS 148(1%) 12,546(6%) 970(2%) 3191(9%) 686(18%) 87(47%)
PAINS 18(~0%) 3891(2%) 239(1%) 547(2%) 164(4%) 22(12%)

Aggregators 6579(58%) 132,015(62%) 17,499(43%) 22,721(38%) 2682(70%) 126(67%)
Lipinski Ro5 26(~0%) 5936(3%) 16(~0%) 814(89%) 424(11%) 47(25%)

All filters 8137(71%) 174,713(82%) 28,386(70%) 31,886(88%) 3581(93%) 177(94%)
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Figure 10. Compound (relative) retention after post-filtering for REOS, PAINS, Aggregators and the
Lipinski rule of 5 (one rule break allowed) on protein–protein-interaction-inhibitor-targeted libraries.

5. Discussion

Focusing on commercial availability, one immediately recognizes the abundance of
options offered, especially when considering a specific area, such as SARS-CoV-2-targeted
libraries and protease-inhibitor-focused or protein–protein-interaction-inhibitor-focused
libraries. These libraries provide ready-to-use compounds, and, surprisingly, most com-
mercial vendors also offer the necessary analytical support. Looking at the distribution of
molecular mass in these commercial libraries, we can observe a strict focus on drug-like
and not lead-like properties. All commercial libraries have the majority of compounds
with a Molecular Weight of around 500 g/mol, as shown in Figures 8 and 11. The libraries
also follow the misconception of “drug-likeness”, as described by the Lipinski’s rule of
five (the rule focuses on oral bioavailability), instead of adopting approaches that would
incorporate biological contexts in the form of pharmacodynamics on the focused targets
and possibly even pharmacokinetic potentials of designed libraries [47]. Figure 9 displays
that no library has compounds with average SlogP values above 3.71 and all libraries
follow the rule-of-five guidelines in terms of the number of hydrogen bond donors and
acceptors. Interestingly, however, the filters used were not exactly those described in the
scientific literature, as Figure 10 depicts compound attrition ranging from 56 to 80% for the
REOS, PAINS and Aggregator filters (one-break rule) and from 0.06 to 21% for the Lipinski
rule-of-five filter. The attrition rates of each filter are reported in Table 2, with the REOS and
Aggregator filters responsible for the highest attrition. Nevertheless, these observations
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are only focused on the chemical space, since excessive filtering in such small libraries
(2000–20,000 compounds) can cause potentially active chemicals to drop out. The main
problem with the libraries discussed, in our opinion, is that vendors lack the information
on library design, as well as the references to the primary literature. Commercial vendors
consistently provide only general information about the screening protocols used to design
the target libraries offered and are even less informative about the actual filters used. No ref-
erences to actual actives are provided when using ligand-based design, with the exception
of marketed libraries of known actives that can be referenced post-purchase by the client
through databases such as ChEMBL. For structure-based approaches, usually only target or
protein classes or a general panel of targets are provided, with reference to methods such
as molecular docking. No precise docked receptors or PDB IDs of the targets are available,
and no docking protocols or even references to the molecular docking software (or other
HTVS software) are provided. This fact is that worrying does not bode well for the use of
these libraries in drug design and lends itself to commercial drug companies to focus on
and improve. However, another cause for concern is the presence of REOS structures and
the lack of focus in the libraries on the design of covalent or non-covalent inhibitors. Often,
the functional group composition of the targeted library is not discussed. This should be
expected at least from the libraries focused on proteases.
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Last but not least, we would like to draw the reader’s attention to the quality of the
molecules in the commercial libraries. In our more than 10 years of experience, we have
found that the quality of the compounds purchased from commercial suppliers is usually
high, with most compounds being characterized by NMR and MS/HRMS analyses after
purchase, and their purity being determined to be about 95% or higher by HPLC. However,
analytical data are not part of the original catalogue selection, and purity data are not
usually available prior to the purchase. Therefore, we recommend that the reader be aware
of this fact and even take advantage of asking the commercial vendor for characterization
and purity data prior to the purchase (in some cases, NMR, MS and HPLC data can be
obtained). Nowadays, vendors can even point out certain availability and quality issues.
From the time of purchase, the quality of the supply chain (cold storage, if necessary,
and insurance for possible shipping problems) and the emphasis on quality storage after
delivery are essential.
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6. Conclusions

In this paper, we evaluated commercially available targeted libraries, which are often
marketed by vendors to the scientific community. Targeted libraries are smaller than general
libraries and aim at specific domains or targets, with the aim of reducing the time and
computational power required to prepare and process the compounds. We here reported a
collection of commercially available SARS-CoV-2-targeted and protease-inhibitor-targeted
or protein–protein-interaction-inhibitor-targeted compound libraries suitable for starting
the high-throughput virtual screening for COVID-19 research or for the drug design and
development of new SARS-CoV-2 antivirals. When we examined the processes behind the
design of these libraries and evaluated them by using filtering and descriptor analysis, we
could see that the library design is not transparent and that the exact steps on the way to
focused libraries are not provided by the commercial vendors, nor are the references to
the primary literature included. The authors also acknowledge that the state-of-the-art in
commercial focused or targeted libraries goes well beyond the limited scope of COVID-
19 reported in this paper. We, therefore, encourage commercial and other providers of
focused and targeted libraries to address this lack of data for the initial virtual screening
steps that these libraries are designed to support. Readers should be cautious when using
targeted libraries and ensure that they are familiar with the design processes used, as
compound selection is critical for the success of drug discovery efforts. If the respected
reader would like to develop his/her own focused libraries, the article provides step-by-
step guidelines and highlights critical aspects to consider for the in silico library design in
medicinal chemistry.
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