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Simple Summary: Gene therapy for the treatment of malignancies is an emerging and promising
area of particular interest. Therefore, it is imperative to develop effective delivery systems for the
specific transfer of nucleic acids into tumors. In comparison to viral vectors, non-viral delivery
systems tend to be simple to manufacture, show lower immunogenicity, and are associated with
fewer regulatory issues when translated into clinical settings. The aim of our study was to develop
single-chain antibody conjugated cyclodextrin-modified poly(propylene imine) (PPI) nanocarriers,
comprising β-cyclodextrin-modified PPI, mono-biotinylated, maltose-modified PPI, neutravidin and
mono-biotinylated prostate stem cell antigen (PSCA)-specific single-chain antibodies for the targeted
transposition of minicircle DNA into PSCA-positive tumor cells. Remarkably, we achieved long-term
expression of a therapeutic p53 gene in PSCA-positive tumor cells by combining our tumor-specific
hybrid polyplexes with the Sleeping Beauty transposon system in minicircle format.

Abstract: Among non-viral vectors, cationic polymers, such as poly(propylene imine) (PPI), play
a prominent role in nucleic acid delivery. However, limitations of polycationic polymer-based
DNA delivery systems are (i) insufficient target specificity, (ii) unsatisfactory transgene expression,
and (iii) undesired transfer of therapeutic DNA into non-target cells. We developed single-chain
antibody fragment (scFv)-directed hybrid polyplexes for targeted gene therapy of prostate stem cell
antigen (PSCA)-positive tumors. Besides mono-biotinylated PSCA-specific single-chain antibodies
(scFv(AM1-P-BAP)) conjugated to neutravidin, the hybrid polyplexes comprise β-cyclodextrin-
modified PPI as well as biotin/maltose-modified PPI as carriers for minicircle DNAs encoding for
Sleeping Beauty transposase and a transposon encoding the gene of interest. The PSCA-specific hybrid
polyplexes efficiently delivered a GFP gene in PSCA-positive tumor cells, whereas control hybrid
polyplexes showed low gene transfer efficiency. In an experimental gene therapy approach, targeted
transposition of a codon-optimized p53 into p53-deficient HCT116p53−/−/PSCA cells demonstrated
decreased clonogenic survival when compared to mock controls. Noteworthily, p53 transposition
in PTEN-deficient H4PSCA glioma cells caused nearly complete loss of clonogenic survival. These
results demonstrate the feasibility of combining tumor-targeting hybrid polyplexes and Sleeping
Beauty gene transposition, which, due to the modular design, can be extended to other target genes
and tumor entities.

Cancers 2022, 14, 1925. https://doi.org/10.3390/cancers14081925 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14081925
https://doi.org/10.3390/cancers14081925
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-4611-8963
https://orcid.org/0000-0002-2778-6256
https://orcid.org/0000-0001-5084-1180
https://doi.org/10.3390/cancers14081925
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14081925?type=check_update&version=2


Cancers 2022, 14, 1925 2 of 22

Keywords: poly(propylene imine); β-cyclodextrin; DNA delivery; p53

1. Introduction

Gene therapy for the treatment of malignancies remains an area of particular interest.
Previous attempts to deliver gene-coding DNA using replication-deficient viral vectors
showed only limited success in preclinical and clinical studies, and have also raised serious
safety concerns [1,2]. In comparison, non-viral delivery systems tend to be simple to
manufacture, show lower immunogenicity, and are associated with fewer regulatory issues
when translated into clinical settings. However, the broad application of therapeutic
DNA using non-viral delivery systems is hampered by non-specific toxic side-effects, poor
pharmacokinetics, low DNA transfection efficiency, and in most cases only transient gene
expression (for review, see [3]).

Among non-viral gene transfer systems, poly(propylene imine) (PPI) and its surface-
modified derivatives have emerged as promising DNA carriers. The high rate of positively
charged amino groups on the surface of the PPI dendrimers enables electrostatic interaction
with the negatively charged DNA [4] and results in the formation of compact nano-sized
particles, designated “dendriplexes” [5]. Tuning PPI by surface modifications with for
instance poly(ethylene glycol) (PEG) reduces cytotoxicity and inhibits intermolecular aggre-
gation. In addition, surface modifications provide a hydrophilic shell that avoids interaction
with the reticuloendothelial system and prolongs circulation time in the bloodstream [6].
Recently, we showed that surface charge shielding by maltose modification of peripheral
amino groups greatly improves the biocompatibility of PPI glycodendrimers (mal19-PPI)
while simultaneously reducing transfection efficiency. However, upon bioconjugation
of mono-biotinylated single-chain antibodies (scFv-P-BAP) for targeting, PPI glycoden-
drimers, referred to as “polyplexes”, became competent for delivering siRNA to target cells
in vitro and in vivo expressing the cognate antigen/receptor [7,8].

We sought to exploit this polyplex system for targeted delivery of gene-encoding
therapeutic DNA. As a target on cancer cells, we chose the prostate stem cell antigen
(PSCA), a glycophosphatidylinositol (GPI)-anchored tumor-associated antigen which is
found in a variety of urogenital-related cancers [9–13], and various other malignancies
such as pancreatic adenocarcinoma [14] and glioblastoma [15]. Yet, preliminary studies
using targeted polyplexes containing mal19-PPI revealed selective but only moderate
transfection efficiency of DNA in target cells, which is likely related to the attenuated
endosomal escape of the DNA payload. To improve DNA transfection efficiency of poly-
plexes, we developed a modified polyplex system, designated hybrid polyplex, combining
transfection-incompetent antibody-conjugated mal19-PPIs with β-cyclodextrin-modified
PPIs (CD-PPI). β-cyclodextrins are natural cyclic oligosaccharides with seven glucose units
in their structure linked by α-(1,4) glucoside bonds [16]. The donut-shaped β-cyclodextrins
are characterized by a hydrophilic outer surface coated with hydroxyl groups and a hy-
drophobic inner cavity coated with ether groups of anomeric oxygen atoms [17]. Note-
worthily, β-cyclodextrins are approved by the FDA as excipients in pharmaceutical prod-
ucts [18] that, in addition to their role as solubilizers, stabilizers of colloids, or modifiers for
controlled release, can enhance the permeation of drugs through biological membranes (for
review, see [19]).

To achieve sustained transgene expression of the transgene, we flanked its expression
cassette with Sleeping Beauty (SB) inverted terminal repeats (ITRs); these SB transposons
are mobile genetic elements that efficiently integrate DNA into the genome. To enable
transposition, we employed simultaneous delivery of DNA encoding a hyperactive form
of SB transposase (SB100X). In targeted cells, the transposase recognizes the ITRs of the
transposon and enables genomic integration via a cut-and-paste mechanism [20,21].

A major concern when considering the clinical application of gene-coding DNA deliv-
ery is the non-specific cytotoxic effects on cells and enhanced degradation of introduced
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foreign DNA caused by unmethylated CG dinucleotides located in the bacterial backbone
of plasmid DNA [22]. To address this safety concern and to optimize packaging of DNA
encoding genes into polyplexes, we genetically engineered the content and size of plasmids.
More specifically, the transposon as well as the expression cassettes for SB100X were flanked
by attB and attP recognition sites for bacterial PhiC31 integrase to produce minicircle (MC)
DNA devoid of bacterial backbones [22].

To this end, PSCA-specific hybrid polyplexes efficiently delivered MC encoding a
GFP transposon in PSCA-positive 293T cells, whereas control hybrid polyplexes conju-
gated to non-specific control scFv-P-BAPs showed low gene transfer efficiency. In an
experimental gene therapy approach, delivery of MC encoding a TP53 transposon by
PSCA-specific hybrid polyplexes into p53-deficient HCT116p53−/−/PSCA colon cancer cells
and PTEN-deficient H4PSCA glioma cells led to decreased clonogenic survival. Remark-
ably, surviving glioma clones failed to proliferate further. Interestingly, a notable number
of colon cancer clones that escaped transgenic p53 showed loss of transgene expression.
Noteworthily, in such colon cancer cells, transgenic p53 expression could be induced by
treatment with the DNA-damaging antibiotic zeocin. In summary, our results demonstrate
the feasibility of combining tumor-targeting hybrid polyplexes and Sleeping Beauty gene
transposition for gene therapy, which due to the modular design can be extended to other
target genes and tumor entities.

2. Materials and Methods
2.1. Synthesis of PPIs

Synthesis of 4th generation maltose-modified PPI dendrimers (mal19-PPI (G4) 14,900 g/mol)
and biotinylated mal19-PPIs (mal19-PPI-biotin (G4), 15,490 g/mol) were described previously [7,8].
For synthesis of β-cyclodextrin-modified PPIs, the complete reactions were carried out under an
argon protection atmosphere. In a first reaction flask (heated, degassed, and filled with argon),
2nd and 4th generation PPI dendrimers were added and degassed for around 1 h under high
vacuum, followed by the addition of 2 mL of degassed anhydrous DMSO and triethylamine
(Et3N). In a second reaction flask (heated, degassed, and filled with argon) βCD-PEG-CO2H and
BOP were dissolved in 2 mL of degassed anhydrous DMSO. Subsequently, the resulting reaction
mixture was stirred for 2 h. PPI dendrimer solution was slowly added to the activated βCD-PEG-
CO2H solution, stirred for 2–2.5 days at room temperature, and dialyzed for 2 days in 5 L water
(membrane tube with MWCO 2000 g/mol) with exchanging aqueous solution. After the freeze-
drying, a viscous liquid was obtained. Used quantities for CD-PPI (G2) and CD-PPI (G4) synthesis
are presented in Appendix A (Table A1) and results of 1H NMR characterization are presented
in Appendix A as well (Figures A1–A5), including the synthesis and NMR characterization of
βCD-PEG-CO2H.

2.2. Cell Lines

The hypodiploid colorectal carcinoma-derived HCT116 cells with homozygous knock-
out of p53, designated HCT116p53−/− (kindly provided by B. Vogelstein, Johns Hopkins
University, Baltimore, U.S.), the near triploid (+/−3n) glioma cell line H4, and the human
embryonic kidney cell lines 293T, 293TPSCA, and 293ThuBirA have been described previ-
ously [7,23–25]. HCT116p53−/−/PSCA cells with ectopic expression of PSCA were generated
by lentiviral transduction of HCT116p53−/− cells using the lentiviral p6NST53-PSCA vec-
tor, described previously [26], followed by geneticin (Invitrogen, Waltham, MA, USA)
selection. Packaging of viral particles and transduction were performed using a three
vector system described previously [27]. HCT116p53−/− and HCT116p53−/−/PSCA cells
were maintained in RPMI-1640 completed with 10% v/v heat-inactivated FCS, 2 mM L-
glutamine, 100 µg/mL streptomycin, 100 U/mL penicillin, and 10 mM HEPES (all from
Life Technologies, Carlsbad, CA, USA). H4, H4PSCA, 293T, and 293TPSCA cell lines were cul-
tured in DMEM completed with 4.5 g/L glucose, 10% v/v heat-inactivated FCS, 100 U/mL
penicillin, 100 µg/mL streptomycin, and 10 mM HEPES (all from Life Technologies).
293ThuBirA cells were maintained in DMEM complete supplemented with 50 µM Biotin-C6
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(Sigma-Aldrich, St. Louis, MO, USA) for scFv production. Cells were cultured at 37 ◦C
with 5% CO2 in a humidified incubator. All cell lines were authenticated (Multiplexion,
Heidelberg, Germany).

2.3. Electrophoretic Mobility Gel Shift Assay

MC-DNA (1 µg) was incubated for 30 min at room temperature with increasing
amounts of PPI or CD-PPI corresponding to mass ratios of 1:5 to 1:0.2. The dendriplexes
were then separated by agarose gel electrophoresis [1% (w/v)] and analyzed under UV
light (G:Box Chemi XX9).

2.4. Measurement of Cell Viability

2 × 104 293TPSCA cells were plated in 96-well plates and grown in 200 µL DMEM
medium until 70% confluency, before adding different concentrations of PPI(G2), PPI(G4),
mal19-PPI, CD-PPI (G2), or CD-PPI (G4). After 24 h, all wells of the assay were incubated
with 20 µL AlamarBlue solution (Thermo Fisher Scientific, Waltham, MA, USA) for an
additional 4 h. For normalization, untreated cells were included as the negative control.
Cells lysed with 5% Triton X-100 (Sigma-Aldrich) served as the positive control. Finally, the
fluorescence intensities of the reduced AlamarBlue in the wells were detected by a fluores-
cence imaging system (Synergy 2, BioTek, Winooski, VT, USA) and 560EX nm/590EM nm
filter settings. The cytotoxicity of PPI glycodendrimers on cells was calculated in relation
to untreated controls, which was set to 100% viability.

2.5. Plasmids for Minicircle Production and Sleeping Beauty Transposition

To generate a minicircle transposon encoding GFP, the synthetic SB transposase re-
striction sites IR/DR(L) and IR/DR(R) were ligated to the corresponding restriction sites
SmaI—ClaI and StuI—EcoRV of the parental minicircle vector pMC.CMV-GFP (System
Biosciences, Palo Alto, CA, USA).

A synthetic codon-optimized cDNA encoding the full 393 amino acids of p53 (Eurofins
MWG Biotech, Ebersberg, Germany) fused to a T2A endoproteolytic cleavage site and
a puromycin resistance gene was ligated to the corresponding restriction sites ClaI and
HindIII of the parental minicircle vector pMC.CMV (System Biosciences), resulting in
pMC-p53-puroR. In pMC-p53-puroR, the p53/puroR transgene was flanked by transposase
restriction sites IR/DR(L) and IR/DR(R). pMC-puroR lacking the p53 coding sequence was
used as mock control. The pCMV(CAT)T7-SB100 (Addgene, Watertown, MA, USA, plasmid
# 34879) encoding hyperactive SB100X Sleeping Beauty transposase has been described
previously [28]. The SB100X gene sequence was amplified by PCR adding XbaI restriction
sites and ligated to the XbaI restriction sites in the MCS of the parental minicircle vector
pMC.CMV-MCS (System Biosciences). All vector inserts were confirmed by sequencing
(Microsynth Seqlab, Göttingen, Germany).

2.6. Production of scFv-P-BAP

The DNA sequence and features of the single-chain antibody-derivative scFv(AM1)-P-
BAP have been described previously [8,23]. The construct includes an N terminal Igκ leader
sequence, a biotin acceptor peptide (P-BAP), and a C-terminal c-myc epitope and a 6x histi-
dine (His)-tag. The biotinylated scFvs were expressed in transiently transfected 293ThuBirA

producer cells and purified from the harvested cell culture supernatant by Ni2+-NTA affin-
ity chromatography and Avidin-biotin affinity chromatography as described previously.

Briefly, the harvested medium was spun down and clarified supernatant was passed
through a Ni2+-NTA spin column (Qiagen, Hilden, Germany) and subsequently washed
with PBS containing 150 mM NaCl and 10 mM/20 mM imidazole. To elute bound scFv-P-
BAPs the column was loaded with 500 µL 1x PBS containing 150 mM NaCl and 350 mM
imidazole. Eluted scFv-P-BAPs were dialyzed in PBS twice for 2 h and for 12 h at 4 ◦C.
Biotinylated scFv-P-BAPs were further purified using monomeric avidin affinity chro-
matography (Thermo Fisher Scientific, Waltham, MA, USA) according to the protocol of
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the manufacturer. Eluted scFv-P-BAPs were subsequently dialyzed again, as described
previously. When needed, the recombinant scFv-P-BAPs were concentrated by employing
Ultra-15 Amicon tubes (Merck Millipore, Burlington, VT, USA) and stored in aliquots
at −20 ◦C.

2.7. Production of Minicircles

Minicircles were produced using the MC-Easy™ Minicircle DNA Production Kit (Sys-
tem Biosciences) according to the manufacturer’s protocol. Briefly, pMC-GFP, pMC-puroR,
pMC-p53-puroR, and pMC-SB100 were grown in E. coli bacterial strain ZYCY10P3S2T
harboring an arabinose-inducible system for simultaneous expression of PhiC31 integrase
and Sce-I endonuclease. After incubation with induction medium, intramolecular (cis-)
recombination generated MC from the parental plasmid mediated by PhiC31 integrase.
The remaining parental plasmid-DNA backbone was degraded by Sce-I endonuclease.
MC-GFP (3.7 kb), MC-puroR (2.6 kb), MC-p53-puroR (3.7 kb), and MC-SB100 (4.5 kb)
were purified from the medium using Plasmid Plus Maxi Kit (Qiagen) according to the
manufacturer’s protocol.

2.8. Assembly of Tumor-Specific Hybrid Polyplexes and Targeted Transfection of Cells

For the assembly of tumor-specific hybrid polyplexes, a two-step conjugation protocol
was used. First, CD-PPIs were mixed with MC at a mass ratio of 5:1, resulting in biocon-
jugation adduct 1. In parallel, neutravidin (Thermo Fisher Scientific), scFv-P-BAP, and
mal19-PPI-biotin were incubated for 30 min at room temperature at a molar ratio of 2:1:1,
resulting in bioconjugation adduct 2. After saturation of the remaining free biotin binding
sites of neutravidin with 0.3 mM D-biotin (Sigma-Aldrich), the intermediate conjugates
were mixed for 30 min at room temperature and subsequently used for further studies.
Hybrid polyplexes with 1 µg MC-DNA contained 100 pmol scFv-P-BAP, 50 pmol neutra-
vidin, and 50 pmol mal19-PPI-biotin. Twenty-four hours before transfection, the indicated
amounts of target cells were plated in a medium containing heat-inactivated FCS and
treated with 6.5–7.5 × 103 hybrid polyplex nanoparticles/cell for 12 h before exchanging
with a fresh medium.

2.9. Multiparameter Nanoparticle Tracking Analysis

Multiparameter nanoparticle tracking analysis was performed using the ZetaView®

PMX120 (Particle Metrix, Inning am Ammersee, Germany) according to the manufac-
turer’s instructions to determine the particle quantities, zeta potential, and particle size
of scFv(AM1)-P-BAP-hybrid polyplexes with MC. Hybrid polyplexes were prepared as
described above. Data were analyzed using the manufacturer’s software (ZetaView 8.05.05).

2.10. Western Blot Analysis

The produced scFv-P-BAP and scFv-P-BAP:neutravidin conjugates were investigated
using immunoblot analysis. Therefore, 1 µg of scFv-P-BAP was separated by SDS PAGE
(12% polyacrylamide gel) under reducing conditions. Neutravidin conjugates includ-
ing 1 µg of scFv-P-BAP were separated under non-reducing conditions. Subsequently,
separated proteins were transferred by semi-dry Western Blot to a PVDF membrane (What-
man plc, Maidstone, UK). The PVDF membrane was blocked with 5% non-fat dry milk
in Tris-buffered saline (TBS) containing 0.1% Tween 20 (TBS-T) during a 1 h incubation
followed by washing with TBS-T and TBS. Immune detection was performed using a
primary monoclonal murine anti-c-myc antibody (1:5000, Invitrogen) and a secondary
polyclonal rabbit anti-mouse IgG HRP conjugate (1:1000; Dako Agilent, Santa Clara, CA,
USA). Biotinylated scFv-P-BAPs were detected by HRP-conjugated anti-biotin antibody
(1:3000, Sigma-Aldrich). For immunoblot analysis of the conjugates, scFv(AM1)-P-BAP, and
neutravidin were mixed in advanced at various molar ratios from 8:1 to 0.5:1 in 1 × PBS
and incubated for 30 min at room temperature.
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For analysis of targeted TP53 transposition, HCT116p53−/−/PSCA cell clones were
pooled after transfection with scFv(AM1)-P-BAP-guided hybrid polyplexes, containing
MC-SB100 and MC-p53-puroR or MC-puroR as a mock control, grown to 80% confluence
in DMEM complete containing 2 µg/mL puromycin and incubated with 500 µg/mL zeocin
(Invitrogen) for 4 h. Zeocin-treated and-non-treated cells were lysed in lysis buffer (10 mM
Tris-HCl; pH 8.0; 140 mM NaCl; 1% Triton X-100). Equal amounts of total protein were
subjected to SDS-PAGE under reducing conditions and blotted on a PVDF membrane using
semi-dry Western Blotting. After blocking PVDF membrane with 5% BSA in TBS-T, p53,
phospho-p53 (Ser 15) and p21waf/cip were detected with a polyclonal rabbit-anti-human
p53 antibody (1:500; 7F5; Cell Signaling Technology, Danvers, MA, USA), a polyclonal
rabbit-anti-human phospho-p53 antibody (1:500; ab1431; Abcam, Cambridge, UK) and
a polyclonal rabbit-anti-human p21 antibody (1:500; 12D1; Cell Signaling Technology),
followed by an HRP-conjugated anti-rabbit IgG secondary antibody (1:1000; Dako Agilent).
To detect equal loading, PVDF membranes were stripped and subsequently stained with an
anti-α tubulin antibody (1:5000; Sigma-Aldrich), followed by a secondary polyclonal rabbit
anti-mouse IgG HRP conjugate (1:1000; Dako Agilent). Visual capturing of proteins was
performed by a chemiluminescent method using Luminata Forte Western HRP substrate
(Merck Millipore) and the G:Box Chemi XX9 (VWR, Radnor, PA, USA) gel doc documenta-
tion system. Analysis of immunoblots was performed using Fiji software (ImageJ 1.51 k,
National Institute of Health, Bethesda, MD, USA).

2.11. Polymerase Chain Reaction

Analysis of transposon integration was performed by polymerase chain reaction (PCR)
using PhusionTM High-Fidelity DNA Polymerase (Thermo Fisher Scientific). 1 × 105 293T
cells polyethylenimine (PEI)-transfected with a total amount of 2 µg DNA containing
MC-transposon-GFP alone or MC-transposon-GFP together with MC-SB at a molar ratio
of 3:1, were harvested 28 days after transfection. Genomic DNA was prepared using the
QIAamp DNA Mini Kit (Qiagen). Primers for the transposon (T) were MC-GFP-inside-For
5′-ccaacaagatgaagagcacc-3′ and MC-GFP-inside-Rev 5′-aagggacgtagcagaaggac-3′, for the
minicircle backbone (MC) MC-GFP-outside-For 5′-gacggcgacaagcaaacatg-3′ and MC-GFP-
outside-Rev 5′-tcgccttctatcgccttcttg-3′ and for the transposase SB100X (SB) MC-SB100X-For
5′-gtctggttcatccttgggag-3′ and MC-SB100X-Rev 5′-gggtcattgtcgtgttggaag-3′. The amplifica-
tion protocol was: 98 ◦C denaturation 30 s, followed by 35 cycles at 98 ◦C denaturation 10 s,
59 ◦C annealing 30 s and 72 ◦C extension 90 s 5 µL PCR-product were separated by agarose
gel electrophoresis [1% (w/v)] and analyzed under UV light (G:Box Chemi XX9, Syngene,
Cambridge, UK).

2.12. Clonogenic Survival Assay

For analysis of direct effects after targeted p53 transposition, 2 × 104 HCT116p53−/−PSCA

or H4PSCA cells plated in 6-well plates in DMEM complete were incubated with scFv(AM1)-
P-BAP MC-SB100/MC-p53-puroR hybrid polyplexes. Cells treated with scFv(AM1)-P-BAP
MC-SB100/MC-puroR hybrid polyplexes were included as mock control. Treated cells were
continuously grown in a medium containing 2 µg/mL puromycin starting 24 h after transfec-
tion. Clonogenic survival was analyzed after 14 days. In order to investigate the long-term
replicative potential of the treated cells, parallel experiments were performed and surviving
HCT116p53−/−PSCA and H4PSCA cell clones were pooled. 1 × 103 cells thereof were plated
on 10 cm dishes and analyzed after 14 days or grown until 80% confluency for Western blot
analysis of transgenic p53 (see above). In all clonogenic survival experiments, cell clones were
stained with crystal violet staining solution (Merck Millipore), photographed and counted
using ImageJ software (National Institute of Health, USA).

2.13. Flow Cytometry

Binding of biotinylated scFv(AM1)-P-BAP to PSCA-positive target cells and isogenic
parental cells was analyzed by flow cytometry. 2 × 105 cells were stained with 5 µg
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scFv-P-BAP for 1 h at 4 ◦C, followed by secondary anti-biotin-VioBlue antibody (Miltenyi
Biotec, Cologne, Germany). Cells stained with the secondary antibody alone served as the
control. To evaluate the targeted delivery of DNA, 2 × 105 293TPSCA cells were incubated
with scFv-P-BAP hybrid polyplexes loaded with Cy3-labelled plasmid DNA (Mirus Bio,
Madison, WI, USA, plasmid # MIRUMIR7904, 2.7 kb) for 4 h at 37 ◦C. Cy3-plasmid-loaded
hybrid polyplexes conjugated with control scFv(MR1.1)-P-BAP were included as a negative
control. Subsequently, the cells were washed with 0.1% Heparin/PBS (Sigma-Aldrich). To
evaluate the transfection efficiency, 1 × 105 293TPSCA were incubated with PPI:MC-GFP
dendriplexes containing 1 µg MC-DNA and PPI at different mass ratios for 48 h. At least
2 × 104 cells were measured by MACSQuant Analyser 10 flow cytometer (Miltenyi Biotec)
and analyzed by FlowJo software version 10.1 (TreeStar, Ashland, OR, USA).

2.14. Confocal Laser Scanning Microscopy

For visualization of cellular DNA uptake, 6 × 105 293TPSCA cells grown on a coverslip
were incubated with scFv(AM1)-P-BAP hybrid polyplexes loaded with Cy3-labelled plas-
mid DNA at 37 ◦C. After 24 h, cells were fixated with 4% paraformaldehyde in PBS (w/v).
Subsequently, cell membranes and nuclei were stained with Alexa Fluor 647-conjugated
wheat germ agglutinin (WGA, Life Technologies) and Hoechst 33,342 (Invitrogen). The
early endosomes were stained with EEA1 (E-8) Alexa Fluor 647 (Santa Cruz Biotechnology,
Dallas, TX, USA) according to the manufacturer’s protocols. The coverslips were placed
upside down in a mounting medium (Vector Laboratories, Burlingame, CA, USA) on
a microscope slide. Cells treated with Cy3-labelled hybrid polyplexes conjugated with
non-binding control scFv(MR1.1)-P-BAP were included as negative control. Fluorescence
microscopy images were captured by a confocal laser scanning microscope (Leica SP5, Leica
Microsystems, Wetzlar, Germany) and analyzed by Fiji software (ImageJ 1.51k, National
Institute of Health).

2.15. Statistical Analysis

All experiments were performed at least two times in at least triplicates. Differences
between groups were examined for statistical significance using Student’s t-test. Values of
p < 0.05 were considered statistically significant: * p < 0.05, ** p < 0.01, *** p < 0.001.

3. Results
3.1. Characterization of β-cyclodextrin-Modified PPIs

The toxicity of cationic PPI dendrimers is a major concern, especially when applying
them as DNA carriers for cancer therapy. Therefore, we assessed the cell viabilities of 293T
cells incubated with increasing concentrations of 2nd generation PPI (G2), 4th generation
PPI (G4), and with the corresponding β-cyclodextrin-modified PPIs (PPI (G2) modified with
25% β-cyclodextrin and PPI (G4) modified with 6% β-cyclodextrin (CD-PPI (G2), CD-PPI
(G4)) (Figure 1A). We also included PPI (G4) modified with 19% maltose (mal19-PPI (G4)) in
the experiments. As shown in Figure 1B, the cytotoxicity of PPI dendrimers increased with
the PPI generation. PPI (G2) was essentially non-toxic even at a concentration of 10 µM,
whereas the LD50 value calculated for PPI (G4) was 3.5 µM. After surface modification of
PPIs with β-cyclodextrin, PPI (G2) remained non-toxic; remarkably, the LD50 value of PPI
(G4) increased up to 4.75 µM, suggesting that shielding of the peripheral primary amino
surface groups by β-cyclodextrin decreased cytotoxicity. This is consistent with the results
observed with mal19-PPI (G4), where, as described previously, grafting maltose units onto
the surface groups significantly reduced cytotoxicity. To confirm dendriplex formation
with minicircle DNA (MC), unmodified and β-cyclodextrin modified PPIs were incubated
at MC/PPI mass ratios ranging from 1:5 to 1:0.2. As analyzed by gel electrophoresis, MC
mobility was completely inhibited regardless of PPI surface modification at MC/PPI mass
ratios 1:5, 1:3 and 1:1, indicating that the positive net charge of the PPIs was sufficient for
MC complexation (Figure 1C). Treatment of 293T cells with PPI dendriplexes containing
GFP-encoding MC at mass ratios ranging from 1:1 to 10:1 revealed that β-cyclodextrin



Cancers 2022, 14, 1925 8 of 22

modification strongly correlated with increased transfection efficiency. Surface modification
with β-cyclodextrin resulted in the mean in a 35-fold or 3.5-fold increase in transfection
efficiency for CD-PPI (G2) or (G4), respectively, using mass ratio of 5:1, compared with the
corresponding unmodified PPIs. Best transfection efficiencies were obtained with CD-PPI
(G2) at a PPI/MC mass ratio of 5:1. As described previously, unmodified PPI dendrimers
and mal19-PPI were nearly transfection incompetent [7]. As positive control, the cells were
transfected with increasing PEI/MC mass ratios (Figure 1D,E).

Figure 1. Properties of surface-modified β-cyclodextrin PPIs. (A): Chemical structure of
β-cyclodextrin modified PPIs. (B): Cytotoxicity profile of PPIs with various grades of surface modifi-
cation with β-cyclodextrin or maltose (2nd generation PPI (PPI (G2)), 4th generation PPI (PPI(G4)),
PPI (G2) modified with 25% β-cyclodextrin (CD-PPI (G2)), PPI (G4) modified with 6% β-cyclodextrin
(CD-PPI (G4) and PPI (G4) modified with 19% maltose (mal19-PPI (G4)). 293T cell were incubated
with increasing concentrations of PPIs and measured in an AlamarBlue assay (n = 3, mean ± SD).
(C): Electrophoretic mobility gel shift assay of minicircle (MC) DNA binding to PPI (G2), PPI (G4),
CD-PPI (G2), and CD-PPI (G4). (D): Transfection efficiency of unmodified and corresponding β-
cyclodextrin-modified PPIs. 293T cells were incubated with increasing ratios of PPI:MC-GFP and
analyzed by flow cytometry. As controls, cells were transfected with PEI:MC-GFP and mal19-PPI
(G4):MC-GFP (n = 3, mean ± SD). (E): Representative Dot Plot analysis on the transfection effi-
ciency of unmodified and corresponding β-cyclodextrin-modified PPIs. 293T cells were transfected
with PPI:MC-GFP at a mass ratio of 5:1. As controls, cells were transfected with PEI:MC-GFP and
mal19-PPI:MC-GFP in the same ratio.
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3.2. Characterization of scFv-P-BAP

All scFv-P-BAP constructs contained an N-terminal Igκ chain leader sequence for
extracellular secretion as well as a C-terminal c-myc-epitope and a 6x histidine (His)-
tag for detection and purification, respectively (Figure 2A). In addition to the detection
of the c myc-epitope in Western Blot analysis, the successful enzymatic biotinylation of
scFv(AM1)-P-BAP and of the control antibody scFv(MR1.1)-P-BAP was confirmed by a
biotin-specific antibody (Figure 2B). The observed bands show a molecular mass of approxi-
mately 55 kDa, which roughly fits the calculated mass. The Coomassie Brilliant Blue stained
polyacrylamide gel confirmed purity and successful expression of the full-length proteins
(Figure 2C). In subsequent experiments, the binding properties of scFv(AM1)-P-BAP were
assessed. As shown in Figure 2D, the results demonstrated highly efficient binding to
the PSCA-positive target cells 293TPSCA, HCT116p53−/−PSCA and H4PSCA. Detection of
scFv(AM1)-P-BAP via a biotin-specific secondary antibody confirmed the accessibility of
the biotin residue under native conditions. In comparison, scFv(AM1)-P-BAP did not
bind to PSCA-negative isogenic control cells 293T, HCT116p53−/− and H4. As expected,
scFv(MR1.1)-P-BAP, which binds to the neo-epitope of the mutated epidermal growth factor
variant III (EGFRvIII) did not bind to PSCA-positive target cells and therefore represented
a valid negative control scFv for further experiments.

Figure 2. Production and characterization of recombinant biotinylated scFv(AM1)-P-BAP and
scFv(MR1.1)-P-BAP. (A): Schematic presentation of the scFv(AM1)-P-BAP and control antibody
scFv(MR1.1)-P-BAP protein domains. (B): Western Blot analysis of biotinylated scFv(AM1)-P-BAP
and scFv(MR1.1)-P-BAP using anti-c-myc and anti-biotin antibodies. Uncropped Western Blots can be
found at Figure S4. (C): Coomassie Brilliant Blue-stained polyacrylamide gel of purified scFv(AM1)-P-
BAP and scFv(MR1.1)-P-BAP recombinant antibody derivatives. (D): Flow cytometry analysis of 293T,
HCT116p53−/−, H4, 293TPSCA, HCT116p53−/−PSCA and H4PSCA cells stained with scFv(AM1)-P-BAP
or scFv(MR1.1)-P-BAP. Binding of the scFvs was detected by secondary anti-biotin-VioBlue (grey
histograms). Open histograms represent control staining using only a secondary antibody.

3.3. Characterization of scFv-Guided Hybrid Polyplexes

The stable conjugation of scFv(AM1)-P-BAP to neutravidin was validated by Western
Blot analysis shown in Figure 3A. Therefore, the two components were incubated at molar
ratios of scFv-P-BAP to neutravidin of 8:1, 4:1, 3:1, 2:1, 1:1, and 0.5:1. The conjugates
remained stable during SDS-PAGE, which is due to the high affinity of neutravidin to
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biotin. The scFv(AM1)-P-BAP/neutravidin conjugates were detected by their C-terminal
c-myc-epitope of the scFv-P-BAP. Distinct scFv(AM1)-P-BAP/neutravidin conjugate bands
were detected at approximately 100 and 160 kDa for molar scFv-P-BAP/neutravidin ratios
2:1, 1:1, and 0.5:1. Non-conjugated scFv(AM1)-P-BAP proteins containing an accessible
biotin residue were detected by an anti-biotin antibody at approximately 55 kDa at mo-
lar scFv/neutravidin ratios 8:1, 4:1, and 3:1. In contrast, non-conjugated biotinylated
scFv(AM1)-P-BAP proteins were absent when using scFv-P-BAP/neutravidin molar ratios
of 2:1, 1:1, and 0.5:1 (Figure 3A).

Figure 3. Assembly of scFv(AM1)-P-BAP-guided hybrid polyplexes. (A): Titration for the bind-
ing of scFv(AM1)-P-BAP to neutravidin with increasing molar ratios. Western Blot analysis
showing scFv(AM1)-P-BAP/neutravidin complex formation or unbound scFv(AM1)-P-BAP us-
ing anti-c-myc and anti-biotin antibodies. Uncropped Western Blots can be found at Figure S5.
(B): Schematic representation of the successive conjugation of scFv(AM1)-P-BAP-guided hybrid
polyplexes. (C): Assessment of particle sizes and zeta potential of scFv(AM1)-P-BAP-guided hy-
brid polyplexes. (D): Representative dot plot analysis of 293TPSCA cells, transfected with MC-GFP
using scFv(AM1)-P-BAP-guided hybrid polyplexes in comparison to PSCA-unspecific scFv(MR1.1)-
P-BAP-hybrid polyplexes. (E): Transfection efficiency of scFv(AM1)-P-BAP-guided hybrid polyplexes
in comparison to PSCA-unspecific scFv(MR1.1)-P-BAP-hybrid polyplexes. (n = 3, mean ± SD).
*** p < 0.001.

For generation of tumor-specific hybrid polyplexes loaded with gene-coding DNA,
neutravidin was conjugated with mono-biotinylated scFv-P-BAP and mono-biotinylated
mal19-PPI-biotin in a 1:2:1 molar ratio. To avoid potential biotin-driven agglutination due
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to undesired cross-linking of the components, the remaining biotin-binding pockets of
neutravidin were saturated by the addition of D-biotin after conjugation of scFv-P-BAPs
and mal19-PPI-biotin. Complexation between CD-PPI (G2) or (G4) and MC was achieved at
a mass ratio of 5:1. The electrostatic interactions between the intermediate conjugates mal19-
PPI-biotin/neutravidin/scFv-P-BAP (bioconjugation adduct (1) and CD-PPI/MC (biocon-
jugation adduct (2) resulted in scFv(AM1)-P-BAP-guided hybrid polyplexes (Figure 3B).
Assessment of the physiochemical properties revealed a negative net charge for the in-
termediate conjugate mal19-PPI-biotin/neutravidin/scFv-P-BAP (−30.8 ± 0.5 mV) and a
positive net charge for CD-PPI (G2) or (G4) dendriplexes (5.3 ± 0.2 mV, 3.7 ± 0 mV). Com-
plexation between both intermediate conjugates resulted in a mean negative net charge
of −16.8 ± 0.2 mV and −11.7 ± 0.3 mV and a mean particle size of 146.5 ± 72.9 nm and
136.9 ± 55.1 nm for scFv(AM1)-guided hybrid polyplexes containing CD-PPI (G2) or (G4),
respectively (Figure 3C).

To analyze targeted DNA delivery to tumor cells, 293TPSCA were treated with MC-
GFP-loaded scFv(AM1)-P-BAP-guided hybrid polyplexes. As negative control, non-specific
hybrid polyplexes containing the EGFRvIII-specific scFv(MR1.1)-P-BAP were included.
Up to 87.2 ± 2.8% and 64.5 ± 4.7% 293TPSCA cells appeared GFP-positive after treatment
with scFv(AM1)-guided hybrid polyplexes containing CD-PPI (G2) and (G4), respectively.
Remarkably, transfection efficiencies decreased to 38.6 ± 4.9% and 10% ± 0.9 for hybrid
polyplexes containing CD-PPI (G2) or CD-PPI (G4) after conjugation of the control antibody
scFv(MR1.1)-P-BAP (Figure 3D,E). These results clearly indicate that hybrid polyplexes,
when coupled with scFv-BAPs, can successfully deliver gene-coding DNA in target cells
expressing the cognate surface receptor. In contrast, transfection efficiencies of MC-GFP-
transposon loaded scFv(AM1)-P-BAP- and non-specific scFv(MR1)-P-BAP polyplexes con-
taining mal19-PPI (G4) were 38.5 ± 4.5% and 14.0 ± 1.1%, respectively, indicating selective
but only moderate transfection efficiency of DNA in target cells (Supplementary Figure S1).

3.4. Targeted Delivery of DNA in PSCA-Positive Target Cells Employing scFv(AM1)-P-BAP
Hybrid Polyplexes

Further, we focused on the route of internalization of scFv-guided hybrid polyplexes,
particularly scFv(AM1)-guided hybrid polyplexes containing CD-PPI (G4), which confers
most specific transfection efficiencies in 293TPSCA cells. To this end, 293TPSCA were treated
with scFv(AM1)-P-BAP-guided hybrid polyplexes loaded with Cy3-labelled plasmid DNA.
As negative control, non-specific hybrid polyplexes containing the EGFRvIII-specific
scFv(MR1.1)-P-BAP were included. Flow cytometry analysis demonstrated scFv(AM1)-P-
BAP-mediated internalization of the hybrid polyplexes by 293TPSCA cells, whereas signif-
icantly less Cy3 signals were detectable in cells after treatment with non-specific hybrid
polyplexes conjugated with scFv(MR1.1)-P-BAP (Figure 4A,C). Confocal laser scanning
microscopy studies, shown in Figure 4B,D, supported the data obtained by flow cytom-
etry analysis. The tumor-specific scFv(AM1)-P-BAP hybrid polyplexes were found to
be internalized by 293TPSCA cells. Staining with a wheat germ agglutinin conjugate re-
vealed that the Cy3-labelled plasmid DNA was located intracellularly in the cytoplasm.
Additional staining with the early endosome associated protein EEA1 (early endosome
antigen (1) demonstrated partial location in early endosomes. In contrast, the non-specific
scFv(MR1.1)-P-BAP-guided hybrid polyplexes showed less nanoparticle uptake. Quan-
titative analysis of Cy3 signals revealed significantly more signals overall and per cell
after treatment with scFv(AM1)-P-BAP hybrid polyplexes compared to control hybrid
polyplexes (Figure 4E,F).
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Figure 4. Targeted delivery of scFv(AM1)-P-BAP-guided hybrid polyplexes (G4) in PSCA-positive
cells. (A,C): 293TPSCA cells were treated with scFv(AM1)-P-BAP or scFv(MR1.1)-P-BAP hybrid
polyplexes containing Cy3-labelled plasmid DNA for 4 h (grey histograms). As control, untreated
293TPSCA cells were utilized (open histograms). After Heparin-washing of surface-bound antibodies,
the internalized Cy3-labelled plasmid DNA was measured by flow cytometry. (B,D): Confocal laser
scanning microscopy analysis of 293TPSCA cells treated with scFv(AM1)-P-BAP or scFv(MR1.1)-P-BAP
hybrid polyplexes containing Cy3-labelled plasmid DNA. To visualize the route of internalisation,
cells were additionally stained with wheat germ agglutinin or early endosomal marker EEA1. Arrows
depict Cy3-labelled pDNA or early endosomes. (E,F): Quantification of Cy3-labelled pDNA dots per
image section or per cell. At least 14 image sections were analyzed (mean ± SD). *** p < 0.001.

To investigate if a receptor-mediated endocytosis contributes to uptake of scFv-P-BAP
hybrid polyplexes, we blocked clathrin-dependent and clathrin-independent endocytosis
using chlorpromazine [29] and filipin III [30]. Both filipin III and chlorpromazine treatment
of cells lead to significant decrease in the fraction of GFP-positive 293TPSCA cells when
transfected with scFv(AM1)-P-BAP hybrid polyplexes loaded with MC encoding GFP.
None of the used endocytosis inhibitors completely blocked transfection of GFP, suggesting
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that besides clathrin-dependent and -independent endocytic pathways a direct uptake
mechanisms of scFv-P-BAP-guided hybrid polyplexes might have supported the delivery
of transposon MCs encoding GFP (Supplementary Figure S2).

3.5. Targeted Transposition of Minicircle DNA Using scFv-P-BAP-Guided Hybrid Polyplexes

To achieve stable gene transfer, we sought to combine targeted DNA-minicircle de-
livery using scFv-P-BAP-guided hybrid polyplexes with the Sleeping Beauty transposon
system, which enables transposition-based integration of DNA-sequences into chromo-
somes. So far, efficiency and functionality of the SB transposon system was confirmed in
293T cells transfected with MC encoding GFP transposon with or without co-delivery of
minicircle encoding SB transposase SB100X (MC-SB). As expected, control cells transfected
with only MC encoding transposon-GFP lost GFP expression over time whereas cells trans-
fected with transposon and SB100X showed enduring gene expression in approximately
50% of cells. (Supplementary Figure S3A). In line with this, PCR analysis of cell lysates
revealed stable integration of the transposon (T) into the genome, but not of minicircle
sequences outside the transposon sequence and of the transposase SB100X, respectively
(Supplementary Figure S3B).

Next, we extended our studies employing targeted transposition of TP53 in p53-
deficient HCT116p53−/−/PSCA and H4PSCA tumor cells. To this end, cells were treated
with MC encoding p53-puroR transposon and MC encoding SB. Cells transfected with
scFv(AM1)-P-BAP-guided hybrid polyplexes loaded with MC encoding transposon-puroR
and MC-SB served as negative control. Whereas the hypodiploid colorectal carcinoma cell
line HCT116p53−/− is derived from the parental chromosomally stable cell line HCT116,
the near triploid glioma cell line H4 display an increased chromosomal instability [31].
Furthermore, H4 cells have lost one copy of the TP53 gene and are further characterized
by loss of PTEN, which eventually results in enhanced MDM2-mediated ubiquitinylation
and degradation of p53 protein [25,32]. Theoretically, H4 cells are more prone to p53
gene therapy than HCT116p53−/− cells since continuous mitotic defects and DNA-damage
should result in posttranslational modifications (i.e., phosphorylation, acetylation) and
stabilization of transgenic p53. Analysis of direct effects 10 days after targeted transposi-
tion of TP53 revealed decreased clonogenic survival of HCT116p53−/−/PSCA transfected
with p53-transposon when compared to mock controls. Yet, the effect of targeted p53
transposition was even more increased in transfected H4PSCA glioma cells when com-
pared to the control (Figure 5A). Surviving H4 glioma cell clones had in general fewer
cell numbers (data not shown) and pooled clones could not be further propagated. In
contrast, pooled HCT116p53−/−/PSCA cell clones that survived scFv(AM1)-P-BAP-guided
transposition of p53 were readily propagated onto new culture dishes (Figure 5B). This
intriguing result prompted us to investigate p53 levels in surviving p53 transposon-treated
HCT116p53−/−/PSCA cells. We anticipate that less DNA damage occurs during mitosis of
chromosomally stable HCT116p53−/−/PSCA cells limiting the effects of p53. As depicted
in Figure 5, transgenic p53 protein was not detected in cell lysates of cells treated with
p53-transposon, which might be related to its continuous degradation. Strikingly, by
treatment with DNA-damaging reagent zeocin, we were able to stabilize transgenic p53
protein expression. As depicted in Figure 5C, treatment of surviving HCT116p53−/−/PSCA

cells carrying the p53 transposon with zeocin readily induced a DNA-damage response
indicated by upregulation of p53 protein and its phosphorylated form phospho-p53 (Ser15).
Furthermore, expression of p53’s downstream transcriptional target p21waf/cip was noted
(Figure 5C). In controls cells, either treated with PBS and/or carrying a mock-transposon,
p53 expression was undetectable and no induction of p21waf/cip was observed, which
indicates continuous degradation of transgenic p53 in HCT116p53−/−/PSCA cells carrying
p53 transposon. Altogether, our results demonstrate that scFv-P-BAP-directed hybrid poly-
plexes in combination with the SB transposon system can efficiently deliver transposons to
target cells displaying a cognate surface antigen.
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Figure 5. scFv(AM1)-P-BAP-guided transposition of TP53 in p53-deficient, PSCA-positive tumor cells.
(A): Clonogenic assay of A: HCT116p53−/−PSCA colorectal carcinoma cells or H4PSCA glioma cells
treated with scFv(AM1)-P-BAP MC-p53-puroR hybrid polyplexes and cultured in DMEM complete
supplemented with 2 µg/mL puromycin or (B): Surviving HCT116p53−/−PSCA colorectal carcinoma
cell clones that escaped transgenic p53. Cells were cultured for 10 days before staining with crystal
violet. The relative number of colonies with more than 15 cells were counted (n = 3, mean ± SD).
Cells transfected with scFv(AM1)-P-BAP MC-puroR hybrid polyplexes served as negative control
(mock). (C): Western blot analysis of HCT116p53−/−PSCA colorectal carcinoma cells surviving the
targeted transfection with p53 transposon demonstrates an increase in steady state protein levels
of p53, phospho-p53 (Ser15) and p21waf/cip in response to DNA damage by the bleomycin family
antibiotic zeocin when compared to untreated cells. Cells with targeted transfection of MC-puroR
and therefore devoid of p53 transgene served as negative control. Uncropped Western Blots can be
found in Figure S6. ** p < 0.01, *** p < 0.001.

4. Discussion

Successful therapeutic gene delivery depends on the vector used for overcoming the
main obstacles to DNA transfer: low uptake by the plasma membrane and insufficient
release of DNA molecules into the cytoplasm. The vectors currently used can be roughly
divided into viral vectors and non-viral vectors. Non-viral techniques for gene delivery
are direct physical methods such as microinjection and particle bombardment, i.e., gene
gun, electroporation, sonoporation, laser beam, and magnetofection, and the chemical-
based approaches such as non-viral carrier systems (liposomes, lipoplexes, polymers,
peptides, nanoparticles; for a review, see [33]). Despite the great advantages of non-viral
vectors—they are neither immunogenic nor carcinogenic and can provide large quantities
of therapeutic DNA efficiently and cost-effectively—none of these vectors has yet proven
more efficient than viral vectors for the transfer of therapeutic genetic material.

Recently, we established a novel tumor-specific siRNA delivery system, consisting
of maltose-modified PPI/PPI-biotin, neutravidin, and a biotinylated scFv for targeted
siRNA delivery to tumor cells [7]. Yet, subsequent studies using polyplexes containing
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mal19-PPI revealed selective but only modest transfection efficiency of gene-coding DNA
into corresponding target cells. In the present study, we therefore further modified this
modular platform technology by combining transfection-incompetent antibody-conjugated
mal19-PPIs with transfection-competent β-cyclodextrin-modified PPIs (CD-PPI) to reduce
cytotoxicity of PPI while increasing transfection efficiency. It is well known that dendritic
poly(amido amine) dendrimers with unshielded cationic surface groups exhibit generation-
dependent high cytotoxicity in vitro. Moreover, the number of free amine groups is linearly
related to their cytotoxicity [34,35]. Recently, we showed that partial surface modifications
by direct maltose coupling to PPI-dendrimers are an effective way to optimize cytotoxic
profiles [7]. We obtained comparable results using partial surface modifications with β-
cyclodextrin. Remarkably, in contrast to maltose-modified PPIs, β-cyclodextrin-modified
PPIs showed high non-specific transfection efficiency of gene-coding DNA. This is consis-
tent with previous reports describing the incorporation of β-cyclodextrin into polycationic
dendrimer vectors for enhanced DNA transfer [36]. Yet, the assembly of hybrid polyplexes
consisting of β-cyclodextrin-modified PPI, maltose-modified PPI-biotin, neutravidin, and
a mono-biotinylated scFv significantly reduced the non-specific transfection efficiency.
Since a positive surface charge has been described as a prerequisite for efficient in vitro
transfection [37,38], we hypothesize that the reduced zeta potential of the PSCA-specific
hybrid polyplexes compared to dendriplexes containing only β-cyclodextrin-modified
PPIs prevents non-specific in vitro transfection. Consequently, targeted gene delivery to
PSCA-positive target cells with PSCA-specific hybrid polyplexes was mediated by the
biotinylated scFv-P-BAP via receptor-mediated uptake. We chose PSCA as a target antigen
on tumor cells, since it is found on a broad range of tumor entities [13,14,39,40]. Re-
cent studies from our group have established PSCA as a targetable antigen, which after
receptor-crosslinking by anti-PSCA immunoconjugates induces endocytosis [23]. In this
study, we identify a mixed clathrin- and caveolae-mediated uptake as the mechanism
of PSCA-specific hybrid polyplex internalization. These results are similar to our recent
report, which revealed a mixed clathrin- and caveolae-mediated uptake of nanoparticle-like
immunoconjugates comprising mono-biotinylated anti-PSCA-scFv conjugated via neu-
travidin to mono-biotinylated Toll-like receptor 3 (TLR3) agonist [23]. However, when
using hybrid poylplexes, it cannot be completely ruled out that their β-cyclodextrin moi-
eties, when brought in close proximity to the cell membrane, augment direct uptake of
hybrid polyplexes.

In our concept of hybrid polyplexes for targeted gene therapy, we furthermore sought
to avoid delivery of bacterial non-methylated CpG-motifs and to simultaneously implement
a transposable element for stable expression of the delivered transgene. This combination
should prevent unwanted activation of Toll-like receptor 9 or other pattern recognition
receptors in treated cells, eventually leading to inflammation and activation of defense
mechanisms, which ultimately lead to degradation of foreign DNA [41]. In this regard,
it has been shown that electroporation of eukaryotic cells with SB transposase and trans-
poson in minicircle format leads to 20-fold higher DNA transfer efficiency compared to
conventional plasmids, and to profoundly reduced cellular toxicity in human cells by
up to 50% [42]. Of note, our concept using minicircle Sleeping Beauty transposons goes
beyond a recent concept using biodegradable poly(β-amino ester)-based nanoparticles
electrostatically complexed with polyglutamatic acid-modified anti murine CD3ε-(Fab)2
for targeted delivery of full length plasmids encoding PiggyBac transposase and chimeric
antigen receptors (CARs) transposon to murine CD3ε -positive cells. In that respect, disap-
pointing ex vivo transfection efficiencies in murine T cells might be related to the above
mentioned defense mechanisms [43]. Yet, this study and our own results clearly indicate
the feasibility of transposon systems to achieve long-lasting gene expression. In particular,
clonogenic survival assays of chromosomally stable HCT116p53−/−/PSCA colorectal cancer
cells and chromosomally instable H4PSCA glioma cells demonstrated significant decreased
cell survival in response to targeted transposition of TP53 in vitro using our PSCA-specific
hybrid polyplexes. While the small amount of surviving glioma cells clones could not be
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propagated further in cell culture, a notable fraction of colon cancer clones that escaped
transgenic p53 showed loss of p53 protein expression and was further passaged in cell
culture. Remarkably, in these cells, profound transgenic p53 expression was restored by
treatment with the DNA-damaging bleomycin family antibiotic zeocin, which demonstrates
efficiency of the transposon system and furthermore suggests that cancer cells with stable
karyotype are also a legitimate target for p53 gene therapy.

5. Conclusions

In summary, we successfully developed a modular platform technology for the tar-
geted delivery of therapeutic gene-coding DNA to tumor cells. By combining our tumor-
specific hybrid polyplexes with the Sleeping Beauty transposon system in minicircle format,
we achieved long-term transgenic p53 gene replacement in PSCA-positive tumor cells. In
further experiments, the reproducibility for other gene therapy targets needs and feasi-
bility in pre-clinical in vivo models must be investigated to pave the way for potential
clinical applications.

6. Patents

W.J., S.T., D.A. and A.T. hold IP rights for the hybrid-polyplex system for targeted
delivery of DNA to eukaryotic cells.
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Appendix A.

Appendix A.1. Materials

Fifth and third generation poly(propylene imine) dendrimer (PPI)* was delivered
from SyMo-Chem as DAB-Am-64 and DAB-Am-16. Triethylamine (NEt3), benzotriazol-1-
yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP), maltose monohy-
drate, sodium tetraborate decahydrate, 8 M borane-pyridine complex in THF, anhy-
drous dimethylsulfoxide, propargylamine, tert.-butanol, sodium ascorbate, CuSO4*5 H2O,
and zinc powder were purchased from Sigma-Aldrich. Biotin-PEG12-COOH (PEG12B)
and N3-PEG(2)-COOH*cyclohexylamine were obtained from Iris Biotech. 6-Mono-O-(p-
toluenesulfonyl)-beta-cyclodextrin was purchased from Cyclolab. Dialyses were carried
out using ZelluTrans regenerated cellulose dialysis tubes with a molecular weight cut-off
(MWCO) of either 500 or 2000 Da from Carl Roth.

* Comparing polyamine dendrimer of different compositions, we followed the sugges-
tion by Tomalia and Rookmaker [44]. As a result, the 5th and 3rd generation dendrimers
DAB-Am64 and DAB-Am16 are described as 4th and 2nd generation PPI dendrimers here.

Appendix A.2. Characterization Techniques
1H NMR Spectroscopy experiments were carried out using a Bruker Avance III

500 NMR spectrometer operating at 500.13 MHz. Either DMSO-d6 or deuterium oxide
(D2O) was used as solvent. Chemical shifts were referenced on solvent peaks (DMSO-d6,
δ = 2.50 ppm, D2O, δ = 4.75 ppm) and others mentioned in text. Matrix-Assisted Laser
Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) investigations
were performed on a Bruker Autoflex Speed TOF/TOF in reflector or linear modes, respec-
tively, and positive polarity by pulsed smart beam laser (modified Nd:YAG laser). The ion
acceleration voltage was set to 20 k. For the sample preparation, the substances were mixed
with 2,5-dihydroxy benzoic acid as matrix, both dissolved in millipore water.

Synthesis of βCD-PEG-acid
We followed a previously published process [45]:
Mono-6-deoxy-6-propargylamine-β-cyclodextrin (5, 100 mg, 0.0853 mmol, 1 eq.), N3-

PEG(2)-COOH*cyclohexylamine (36.9 mg, 0.1280 mmol, 1.5 eq) and sodium ascorbate
(50.7 mg, 0.2560 mmol, 3 eq.) were added to a mixture of water (1.6 mL) and tert-butanol
(0.4 mL). After charging the reaction vessel with argon for 20 min, CuSO4*5 H2O (32.0
mg, 0.1280 mmol, 1.5 eq.) was added and the solution was stirred at 40 ◦C for 48 h.
Then, the reaction mixture was filtered and activated zinc powder (40.0 mg) was added to
eliminate all copper residues. After 2 h stirring, zinc powder was removed by filtration and
the desired product was purified by dialysis (regenerated celluloses tubing membranes,
MWCO 500 Da) in deionized water for 48 h. After freeze-drying, the product was obtained
as a white-tan solid (49%).

βCD-PEG-CO2H—1H NMR (D2O): δ = 8.18 (4′), 5.2–4.9 (1,1.), 4.64 (5′), 4.42 (2′), 4.11
(5.), 4.0–3,45 (2–6,2.,3.,6′-9′), 3.36 (1′), 2.5 ppm (10′) (Figure A1). 13C NMR: δ = 180.2 (CO2H),
138.6 (3′), 127.6 (4′), 102.6, 102.5 (1), 101.8 (1.), 83.8 (4.), 81.8, 81.6, 81.2 (4), 73.9, 73.8, 73.4
(3,3.), 73.1 (2.), 72.7–72.4 (2,5), 70.2–70.0 (7′,8′), 69.1 (6′), 68.4 (9′), 68.0 (5.), 61.0 (6), 50.8(5′),
47.9 (1′= 6), 42.3 (2′), 38.0 ppm (10′) (Figures A2 and A3). (calibration with aceton 2.2 ppm)
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Appendix A.3. Synthesis and NMR Characterization of CD-PPI (G2) and CD-PPI (G4)

Table A1. Educts used for the synthesis of CD-PPI (G2) and CD-PPI (G4).

G4
7168 g/mol

βCD-PEG-acid
1375 g/mol

BOP
442.28 g/mol

Et3N
101.19 g/mol DMSO Yield

CD-PPI
(G4)

1.0
3.125× 10−6

22.4 mg

8.6
2.687 × 10−5

36.9

33.4
1.04 × 10−4

46.2
0.1 2 + 2 43

72.4
eq

[mol]
[mg]

eq
[mol]
[mg]

eq
[mol]
[mg]

[mL] [mL] [mg]
[%]

G2
1687 g/mol βCD-PEG-acid BOP Et3N DMSO Yield

CD-PPI
(G2)

1.0
5.2 × 10−6

8.77 mg

5.0
2.6 × 10−5

35.4 mg

20
1.44 × 10−4

63.6 mg
50 3 + 3 34

76.4
eq

[mol]
[mg]

eq
[mol]
[mg]

eq
[mol]
[mg]

[µL] [mL] [mg]
[%]

CD-PPI (G2)—1H NMR (D2O): δ = 8.1–7.9 (4′), 5.3–4.9 (1,1.), 4.9–3,4 (2–6,2.,3.,5.,2′,5′,6′-9′), 3.6–2.35
(b,c,e,f,h,i,k,k′,1′,4.,6,10′), 2.1–1.0 ppm (a,d,g,j). CD-PPI (G4)—1H NMR (D2O): δ = 8.1–7.9 (4′), 5.3–4.9 (1,1.),
4.9–3,4 (2–6,2.,3.,5.,2′,5′,6′-9′), 3.6–2.3 (b,c,e,f,h,i,k,l,n,o,q,q′,1′,4.,6,10′), 2.1–1.0 ppm (a,d,g,j,m,p).

Appendix A.4. Determination of Attached βCD-PEG-CO2H Units at CD-PPI (G2) and CD-PPI
(G4) Surface

1H NMR spectra of βCD-PEG-CO2H, CD-PPI (G2) and CD-PPI (G4) are presented in
Figures A1, A4 and A5. To determine the ratio of coupled βCD-PEG-CO2H units at both
PPI dendrimer surfaces, anomeric proton (1, 1.) of glucose in βCD-PEG-CO2H (Figure A1)
and CH2-groups in dendritic scaffold of CD-PPI (G2) and (G4) can be used at which CH2-
groups of CD-PPI (G2) (Figure A4) and (G4) (Figure A5) were calibrated 60 and 254 protons.
Thus, integrals of anomeric protons in both 1H spectra of CD-PPI (G2) and (G4) were
divided by 7 to obtain the chemically coupled βCD-PEG-CO2H units at CD-PPI (G2) and
CD-PPI (G4) surface. In both cases, around four units of βCD-PEG-CO2H were attached.
This resulted in molecular weights of 7100 g/mol for CD-PPI (G2) and 12,700 g/mol for
CD-PPI (G4), respectively. MALDI-TOF mass spectrometry was also used to determine the
molar mass of βCD-modified PPI (G2) and (G4), but failed due to undesired degradation
during the ionization process of both surface-modified dendrimers.

Red color in Figures A1–A5 is only given for a better visualization of glucose units in
βCD which do not wear any PEG substituent. Blue color in Figures A1–A5 is only given
for a better visualization of the glucose unit in βCD which wears a PEG substituent.

Figure A1. 1H NMR spectrum of βCD-PEG-CO2H in D2O. * unknown 1H NMR signal next to
anomeric protons (1 and 1.) of βCD.



Cancers 2022, 14, 1925 19 of 22

Figure A2. 13C NMR spectrum of βCD-PEG-CO2H in D2O. * unknown 1H NMR signal next to
anomeric carbon atoms (1 and 1.) of βCD.

Figure A3. 13C NMR spectrum of βCD-PEG-CO2H in D2O.

Figure A4. 1H NMR spectrum of CD-PPI (G2) in D2O. * unknown 1H NMR signal next to anomeric
protons (1 and 1.) of βCD unit.
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Figure A5. 1H NMR spectrum of CD-PPI (G4) in D2O.
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