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Abstract
Recent studies have shown that variants in FAT atypical cadherin 3 (FAT3), kinectin 1

(KTN1), discs large homolog2 (DLG2) and deleted in colorectal cancer (DCC) genes influ-

ence the structure of the human mesolimbic reward system. We conducted a systematic

analysis of the potential functional single nucleotide polymorphisms (SNPs) in these genes

associated with heroin addiction. We scanned the functional regions of these genes

and identified 20 SNPs for genotyping by using the SNaPshot method. A total of 1080 sam-

ples, comprising 523 cases and 557 controls, were analyzed. We observed that DCC

rs16956878, rs12607853, and rs2292043 were associated with heroin addiction. The

T alleles of rs16956878 (p = 0.0004) and rs12607853 (p = 0.002) were significantly

enriched in the case group compared with the controls. A lower incidence of the C allele of

rs2292043 (p = 0.002) was observed in the case group. In block 2 of DCC (rs2292043-

rs12607853-rs16956878), the frequency of the T-T-T haplotype was significantly higher

in the case group than in the control group (p = 0.024), and fewer C-C-C haplotypes

(p = 0.006) were detected in the case group. DCC may be an important candidate gene

in heroin addiction, and rs16956878, rs12607853, and rs2292043 may be risk factors,

thereby providing a basis for further genetic and biological research.

Introduction

Heroin addiction is a chronic brain disease characterized by compulsive drug-seeking,drug
abuse, physical dependence, tolerance, and relapse [1]. Heroin is one of the most commonly
used drugs in China. At the end of 2014, a total of 2.955 million drug addicts were registered in
China. Opioid drug addicts numbered 1.458 million, 49.3% of whom were heroin users. A total
of 9.3 tons of heroin were seized in 2014. The direct economic losses resulting from drug addic-
tion approach CNY 500 billion every year, representing a substantial economic burden to
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individuals and families. Similarly to other neuropsychiatric diseases, drug addiction results
from a combination of genetic and environmental factors [2]. Family, adoption, and twin stud-
ies have suggested that genetic factors account for 30–60% of the overall variance in the risk of
developing drug addiction [3–5].

Recently, FAT atypical cadherin 3 (FAT3), kinectin 1 (KTN1), discs large homolog 2
(DLG2) and deleted in colorectal cancer (DCC) have been reported to be associated with the
function of the human mesolimbic reward system [6], which is the neurobiological basis of
drug addiction. Cadherin, encoded by the FAT3 gene, regulates neuronal morphology by
affecting cell interactions [7], a crucial mechanism of pathological memory formation during
drug addiction [8, 9]. The FAT3 gene affects the volume of the caudoputamen [6], which
plays important roles in habit formation, motivation, and the mechanism of drug addiction
[10]. KTN1 is responsible for organelle transport and localization [11], and this protein is
also closely associated with the formation and quantity of dendritic spines [12], which form
the common anatomical substrate of drug addiction[9]. Another biological function of KTN1
is facilitating vesicle binding with kinesin, this binding is followed by kinesin-driven vesicle
fast anterograde transport in axons [13, 14], suggesting that KTN1 is a promising candidate
gene involved in drug addiction. Recently, the role of DLG2 has been investigated in a multi-
tude of neuropsychiatric diseases. Genetic variants in DLG2 affect learning and cognitive
flexibility [15]. Genetic mapping of habitual substance users has revealed that DLG2 is over-
expressed at the neural synapse [16]. The DCC gene encodes netrin-1 receptor, which affects
axon guidance and migration [17]. DCC has been widely studied in a multitude of neuropsy-
chiatric diseases. Sensitizing amphetamine pretreatment regimens result in selective upregu-
lation of the expression of DCC in the ventral tegmental area of adult rodents [18], and DCC
haploinsufficiency decreases sensitivity to the cocainemediated enhancement of reward seek-
ing behavior [19]. Furthermore, DCC is a regulator of maladaptive responses, such as toler-
ance, dependence and opioid-induced hyperalgesia to chronic morphine administration [20].
On the basis of these findings, these four genes may be important mediators of drug addic-
tion. To the best of our knowledge, the roles of these genes in heroin addiction have not previ-
ously been reported.

Variations in gene functional regions may represent the most direct molecularmecha-
nisms of disease[21]. The exon sequence can be transcribed into the final mRNA. Variations
in exon regions may change the amino acid sequences. The most prominent example is
brain-derived neurotrophic factor (BDNF), whose rs6265 SNP is directly associated with the
clinical phenotype of drug addiction [22, 23]. Variations in promoter affect the efficiency
of gene transcription. Variations in intron-exon borders may affect exon recognition and
change the attributes of the alternative products [24, 25]. 5’UTRs are DNA regulatory
sequences located in the 5’termini of protein-coding genes. These sequences can be tran-
scribed to mRNA, but cannot be translated to protein. 5’UTRs contain a variety of regulatory
elements, including the 5’cap, secondary structure, alternative 5’UTRs, internal ribosome
entry sites, and upstream open reading frames (uORFs), among others. In general, 5’UTRs
primarily regulate transcriptional initiation[26]. 3’UTRs are DNA regulatory sequences
located downstream of the protein coding sequences, and these sequences primarily regulate
gene expression at the post-transcriptional level, including transcriptional stability and cleav-
age, and polyadenylation, among others [27]. Because determining associations between
functional polymorphisms and heroin addiction would be meaningful, we used HapMap
(Han Chinese population) HCB data to systematically scan the promoter, 5’UTR, 3’UTR,
exon, and intron-exon border regions of FAT3, KTN1, DLG2 and DCC, and 20 SNPs were
selected to do association analysis with heroin addiction.
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Materials and Methods

Subjects

A total of 1080 individuals were recruited for the present study. All of these individuals were
biologically unrelated individuals of China Han ancestry. Among them, 523 individuals were
heroin addiction patients (mean age 45.13±7.270years) recruited from the Methadone Mainte-
nance Treatment (MMT) Program at the Xi’an Mental Health Center betweenOctober 2013
and May 2015. At least two senior psychiatrists independently interviewedall patients, and
urine testing and the Diagnostic and Statistical Manual of Mental Disorders, fourth revision
(DSM-IVR) diagnostic criteria were applied to diagnose opioid addiction. A case vignette was
generated to assist with the diagnosis, using a semi-structured interviewwith questions regard-
ing (a) the age of onset and the duration of heroin use, (b) the quantity of the drug used during
this period, (c) the route of administration (i.e., nasal inhalation or injection), (d) whether
other substances were used or abused, and (e) comorbidity with any other psychiatric disorder.
Participants meetingDSM-IVR criteria for an additional Axis I disorder; with a history of ciga-
rette, alcohol, amphetamine, barbiturate, or benzodiazepinedependence; exhibiting mental ill-
ness or neurological diseases; or a history of hematological diseases, seizures, or other chronic
physical illnesses were excluded.

The control cohort comprised 557 healthy people (mean age 45.80±10.449 years) recruited
from the health examination center at the First Hospital Affiliatedwith the Medical College of
Xi’an Jiao Tong University. The selection criteria were: having no individual history of drug
addiction or mental illness, and frequencymatching to cases on the basis of gender and age.

All participants provided written informed consent. Our study protocol was approved by
the Ethical Committee of Xi’an Mental Health Center, Xi’an, China and the methods were per-
formed in accordance with the approved guidelines.

SNP selection

A total of 20 SNPs were selected on the basis of the following criteria: (1) location in functional
region of the gene, including the promoter region, untranslated regions (UTRs), exons, and
intron-exon borders, and (2) minor allele frequencies (MAF) greater than 0.05 on the basis of
HapMap. The chromosomal positions of the six SNPs in KTN1 (rs10146870, rs1138345,
rs10483647, rs1951890, rs17128657, and rs945270) were searched from 55554095 to
55706484bp. The chromosomal positions of the six SNPs in DCC (rs17753970, rs934345,
rs2229080, rs16956878, rs12607853, and rs2292043) were searched from 52338192 to
53536381bp. The chromosomal positions of the four SNPs in FAT3 (rs10765565, rs4753069,
rs2197678, and rs7927604) were searched from 92312328 to 92896960bp. The chromosomal
positions of the four SNPs in DLG2 (rs575050, rs2512676, rs17145219, and rs2507850) were
searched from 83454513 to 85629270bp. The databases were HapMap and dbSNP (HCB), and
the positions of these SNPs are listed in Table 1.

Genotyping

Peripheral blood samples from the enrolled subjects were collected in EDTA-coated tubes.
Genomic DNA was extracted from blood leukocytes by using E.Z.N.A.™ BloodDNA Midi Kit
(Omega Bio-Tek, Norcross, GA, USA) according to the manufacturer’s instructions. A total of
20 SNPs were genotyped by using SNaPshot SNP technology. A segment of DNA surrounding
each SNP (151–368 bp) was amplified in a 10-μl PCR reaction containing 1XHotStarTaq
buffer, 3.0 mMMg2+, 0.3 mM dNTPs, 1 U of HotStarTaq polymerase (Qiagen Inc., USA), 1 μl
of DNA and 1 μl of each PCR primer. The PCR program included an initial cycle at 95°C for
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Table 1. Genotypic and allelic frequencies of gene polymorphisms in the control and case group and statistical results.

Gene Variable Position MAF Controls (557) Cases (523) P-valuea P-valueb P-valuec OR, 95% CI

No. % No. %

FAT3 rs10765565 Exon17 0.219 0.19 0.712 14.240

GG 345 61.9 321 61.4 0.849 16.980 0.976,0.764–1.248

GT 180 32.3 177 33.8 0.594 11.880 1.071,0.831–1.381

TT 32 5.7 25 4.8 0.478 9.560 0.824,0.481–1.410

G allele 870 78.1 819 78.3 0.910 18.200 1.012,0.825–1.241

T allele 244 21.9 227 21.7

rs4753069 Exon19 0.291 0.43 0.811 16.220

GG 284 51.0 269 51.4 0.883 17.660 1.018,0.802–1.293

GA 222 39.9 201 38.4 0.632 12.640 0.942,0.738–1.203

AA 51 9.2 53 10.1 0.586 11.720 1.119,0.747–1.676

G allele 790 70.9 739 70.7 0.892 17.840 0.987,0.820–1.189

A allele 324 29.1 307 29.3

rs2197678 3’ UTR 0.289 0.178 0.432 8.640

CC 275 49.4 277 53.0 0.238 4.760 1.155,0.909–1.466

CT 242 43.4 207 39.6 0.197 3.940 0.853,0.669–1.087

TT 40 7.2 39 7.5 0.862 17.240 1.041,0.659–1.647

C allele 792 71.1 761 72.8 0.392 7.840 1.086,0.900–1.310

T allele 322 28.9 285 27.2

rs7927604 3’ UTR 0.376 0.69 0.653 13.060

AA 219 39.3 201 38.4 0.765 15.300 0.963,0.754–1.231

AG 257 46.1 254 48.6 0.425 8.500 1.102,0.868–1.400

GG 81 14.5 68 13.0 0.463 9.260 0.878,0.621–1.243

A allele 695 62.4 656 62.7 0.875 17.500 1.014,0.852–1.207

G allele 419 37.6 390 37.3

KTN1 rs10146870 5’ near 0.403 0.33 0.562 11.240

GG 204 36.6 201 38.4 0.540 10.800 1.080,0.844–1.382

GC 257 46.1 244 46.7 0.866 17.320 1.021,0.804–1.297

CC 96 17.2 78 14.9 0.300 6.000 0.842,0.608–1.166

G allele 665 59.7 646 61.8 0.326 6.520 1.090,0.917–1.296

C allele 449 40.3 400 38.2

rs1138345 5’ UTR 0.367 0.21 0.314 6.280

TT 230 41.3 229 43.8 0.407 8.140 1.107,0.870–1.410

GT 245 44.0 233 44.6 0.852 17.040 1.023,0.805–1.301

GG 82 14.7 61 11.7 0.138 2.760 0.765,0.536–1.091

T allele 705 63.3 691 66.1 0.178 3.560 1.129,0.946–1.347

G allele 409 36.7 355 33.9

rs10483647 Intron10 0.291 0.86 0.949 18.980

AA 281 50.4 269 51.4 0.746 14.920 1.040,0.819–1.321

AG 228 40.9 210 40.2 0.794 15.880 0.968,0.759–1.235

GG 48 8.6 44 8.4 0.904 18.080 0.974,0.635–1.494

A allele 790 70.9 748 71.5 0.760 15.200 1.029,0.854–1.240

G allele 324 29.1 298 28.5

rs1951890 Intron18 0.375 0.64 0.234 4.680

AA 220 39.5 218 41.7 0.465 9.300 1.095,0.859–1.396

AG 256 46.0 247 47.2 0.677 13.540 1.055,0.828–1.337

GG 81 14.5 58 11.1 0.090 1.800 0.733,0.511–1.051

(Continued )
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Table 1. (Continued)

Gene Variable Position MAF Controls (557) Cases (523) P-valuea P-valueb P-valuec OR, 95% CI

No. % No. %

A allele 696 62.5 683 65.3 0.173 3.460 1.130,0.948–1.347

G allele 418 37.5 363 34.7

rs17128657 Intron20 0.338 0.028 0.061 1.220

AA 256 46.0 249 48.2 0.587 11.740 1.069,0.841–1.357

AT 226 40.6 222 42.9 0.532 10.640 1.080,0.848–1.376

TT 75 13.5 46 8.9 0.015 0.300 0.620,0.420–0.914

A allele 738 66.2 720 69.6 0.093 1.860 1.168,0.974–1.401

T allele 376 33.8 314 30.4

rs945270 3’ near 0.190 0.96 0.018 0.360

GG 365 65.5 310 59.3 0.034 0.680 0.766,0.598–0.980

GC 172 30.9 177 33.8 0.298 5.960 1.145,0.887–1.478

CC 20 3.6 36 6.9 0.015 0.300 1.985,1.134–3.475

G allele 902 81.0 797 76.2 0.007 0.140 0.752,0.612–0.925

C allele 212 19.0 249 23.8

DLG2 rs575050 5’ near 0.409 0.45 0.750 15.000

TT 190 34.1 186 35.6 0.616 12.320 1.066,0.830–1.370

TG 278 49.9 249 47.6 0.450 9.000 0.912,0.718–1.158

GG 89 16.0 88 16.8 0.707 14.140 1.064,0.771–1.468

T allele 658 59.1 621 59.4 0.886 17.720 1.013,0.853–1.202

G allele 456 40.9 425 40.6

rs2512676 3’ UTR 0.317 0.69 0.146 2.920

TT 262 47.0 260 49.7 0.379 7.580 1.113,0.877–1.413

TG 237 42.5 226 43.2 0.826 16.520 1.027,0.807–1.308

GG 58 10.4 37 7.1 0.053 1.060 0.655,0.426–1.008

T allele 761 68.3 746 71.3 0.128 2.560 1.153,0.960–1.387

G allele 353 31.7 300 28.7

rs17145219 3’UTR 0.230 0.39 0.066 1.320

CC 334 60.0 338 64.6 0.114 2.280 1.220,0.953–1.561

CG 190 34.1 168 32.1 0.488 9.760 0.914,0.709–1.178

GG 33 5.9 17 3.3 0.037 0.740 0.533,0.293–0.970

C allele 858 77.0 844 80.7 0.037 0.740 1.247,1.013–1.534

G allele 256 23.0 202 19.3

rs2507850 3’ near 0.311 0.52 0.146 2.920

GG 268 48.1 261 49.9 0.557 11.140 1.074,0.846–1.364

GA 232 41.7 226 43.2 0.604 12.080 1.066,0.837–1.357

AA 57 10.2 36 6.9 0.050 1.000 0.648,0.419–1.002

G allele 768 68.9 748 71.5 0.192 3.840 1.131,0.940–1.360

A allele 346 31.1 298 28.5

DCC rs17753970 5’ near 0.499 0.19 0.311 6.220

AA 132 23.7 145 27.7 0.130 2.600 1.235,0.940–1.624

AG 294 52.8 259 49.5 0.284 5.680 0.878,0.691–1.114

GG 131 23.5 119 22.8 0.766 15.320 0.958,0.722–1.271

A allele 558 50.1 549 52.5 0.266 5.320 1.101,0.930–1.303

G allele 556 49.9 497 47.5

rs934345 5’ near 0.286 0.17 0.021 0.420

GG 277 49.7 304 58.1 0.006 0.120 1.403,1.103–1.784

(Continued )
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2 min, 11 cycles at 94°C for 20 s, 65°C for 40 s, and 72°C for 90 s, 24 cycles at 94°C for 20 s,
59°C for 30 s, and 72°C for 90 s, with a final cycle at 72°C for 2 min, and an indefinite hold at
4°C. To purify the PCR products, 5 U of shrimp alkaline phosphatase (SAP) enzyme and 2 U
of Exonuclease I (Exo I) were mixed with 10 μl of the PCR product, incubated for 1 hour at
37°C and inactivated for 15 min at 75°C. The purified PCR products were used in a SNaPshot
multiple single-base extension reaction. The extension reaction system (10 μl) contained 5 μl of
the SNaPshot Multiplex Ready ReactionMix (Applied Biosystems Co Ltd., CA, USA), 2 μl of
the purified PCR product, 1 μl of the extension reaction primers, and 2 μl of ultrapure water.
The PCR program initiated at 96°C for 1 min, and this was followed by 28 cycles of 96°C for 10
s, 55°C for 5 s, and 60°C for 30 s, and an indefinite hold 4°C. The products were purified after
incubation with 1 U of SAP for 1 hour at 37°C, and this was followed by inactivation for 15
minutes at 75°C. Subsequently, 0.5 μl of the purified product was added to 0.5 μl of 120 Liz
SIZE STANDARD (Applied Biosystems, Foster City, CA, USA) and 9 μl of Hi-Di (Applied

Table 1. (Continued)

Gene Variable Position MAF Controls (557) Cases (523) P-valuea P-valueb P-valuec OR, 95% CI

No. % No. %

GC 241 43.3 187 35.8 0.012 0.240 0.730,0.571–0.932

CC 39 7.0 32 6.1 0.558 11.160 0.866,0.534–1.404

G allele 795 71.4 795 76.0 0.014 0.280 1.271,1.048–1.541

C allele 319 28.6 251 24.0

rs2229080 Exon3 0.497 0.77 0.195 3.900

CC 139 25.0 125 23.9 0.687 13.740 0.944,0.715–1.247

GC 282 50.6 245 46.8 0.214 4.280 0.859,0.677–1.091

GG 136 24.4 153 29.3 0.073 1.460 1.280,0.977–1.677

C allele 560 50.3 495 47.3 0.171 3.420 1.125,0.950–1.332

G allele 554 49.7 551 52.7

rs16956878 3’ UTR 0.443 0.24 0.0001 0.002

CC 180 32.3 112 21.5 0.0001 0.002 0.571,0.434–0.751

TC 261 46.9 260 50.0 0.348 6.960 1.121,0.883–1.424

TT 116 20.8 148 28.5 0.004 0.080 1.500,1.135–1.984

C allele 621 55.7 484 46.5 0.00002 0.0004 1.447,1.221–1.715

T allele 493 44.3 556 53.5

rs12607853 3’ UTR 0.443 0.20 0.0003 0.006

CC 180 32.3 113 21.7 0.0001 0.002 0.577,0.439–0.759

CT 260 46.7 267 51.3 0.151 3.020 1.191,0.938–1.513

TT 117 21.0 140 26.9 0.026 0.520 1.375,1.038–1.821

C allele 620 55.7 493 47.4 0.0001 0.002 1.393,1.175–1.650

T allele 494 44.3 547 52.6

rs2292043 3’ UTR 0.425 0.16 0.001 0.020

TT 192 34.5 223 42.9 0.006 0.120 1.413,1.105–1.807

TC 256 46.0 235 45.2 0.735 14.700 0.959,0.755–1.219

CC 109 19.6 62 11.9 0.001 0.020 0.553,0.394–0.775

T allele 640 57.5 681 65.5 0.0001 0.002 1.405,1.180–1.673

C allele 474 42.5 359 34.5

P-value a for Hardy-Weinberg equilibrium in controls.

P-value b for genotype and allele frequency difference.

P-value c for P-value b adjusted by Bonferroni correction.

doi:10.1371/journal.pone.0163668.t001
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Biosystems, Foster City, CA, USA), and this was followed by sequencing on an ABI3130XL
Sequencer (Applied Biosystems, Foster City, CA, USA) after degeneration at 95°C for 5 min-
utes. The primary data were analyzed using GeneMapper 4.1 (AppliedBiosystems Co., Ltd.,
USA). The genotypes were determined on the basis of the nucleotide present at the SNP site,
visualized as either one or two color peaks.

For quality control, 5% of the subjects (54 subjects) were randomly selected and blinded
researchers conducted genotyping again, with a reproducibility of 100%.

Expression quantitive trait locus analysis

The mRNA expression level and genotype data for significant SNPs were received from the
SNPexp database (http://tinyurl.com/snpexp)[28]. The HapMap version for the genotype
was HapMap2r23 unfiltered 3.96 million SNPs. The data form RNA expression levels were
obtained from transcripts of lymphoblastoid cell lines from the same 45 unrelated Han Chinese
individuals in Beijing. The correlations between the genotype and mRNA expression levels of
significant SNPs were calculated by using linear regression and theWald test.

Statistical analysis

The genotype and allele frequencies of each individual polymorphism and the Hardy-Wein-
berg equilibrium (HWE) of the control and case groups were calculated by using the chi-square
test. The associations between polymorphisms or other categorical variables with heroin addic-
tion were assessed by using Pearson's Chi-square test. Continuous variables, such as the dose of
heroin used and the age of heroin addiction onset, were analyzed using a correlate test. P values
were calculated on the basis of the codominance or dominance of the rare allele, or the hetero-
sis and recessive models of rare allele inheritance.

We computed pairwise LD statistics (D’ and r2) and haplotype frequencies using Haploview
4.0 (Broad Institute of MIT and Harvard, Cambridge,MA). We constructed haplotype blocks
based on the criteria of Gabriel et al [29]. When the frequency of the haplotype was less than
5%, this value was excluded from the statistic analysis. We used PHASE 2.1.1 [30] software to
verify the composition and frequency of positive haplotypes and to conduct permutation tests.

We analyzed the gene-gene interaction using Multifactor Dimensionality Reduction(http://
sourceforge.net/projects/mdr/)which identifies high dimensional gene-gene interactions[31].

P values are presented as two-sided, and p<0.05 was considered statistically significant.We
used Bonferroni’s correction to adjust the test level, and the p value was multiplied by all 20
loci or the haplotypes of each gene. All statistical analyses were conducted using SPSS 20.0 soft-
ware (SPSS Inc., Chicago, IL, USA).

Power analysis

A sufficient sample size was required in this genetics study [32]. Thus, we conducted a power
analysis using a Power and Sample Size Program (http://biostat.mc.vanderbilt.edu/wiki/Main/
PowerSampleSize).

Results

No significant deviation fromHWE was observed for any of the SNPs in the case group. In the
control group, the rs17128657 SNP statistically deviated from HWE (p = 0.028). Five blocks
were identified in the linkage disequilibrium (LD) analysis of the case and control data. For the
KTN1 gene, block 1 contained five SNPs (rs17128657, rs1951890, rs10483647, rs1138345 and
rs10146870). For the DLG2 gene, block 1 contained three SNPs (rs2507850, rs2512676 and
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rs17145219). For the FAT3 gene, block 1 contained two SNPs (rs10765565 and rs4753069). For
the DCC gene, block 1 contained two SNPs (rs934345 and rs17753970), and block 2 contained
three SNPs (rs2292043, rs12607853 and rs16956878) (Fig 1). The distributions, frequencies
and statistical analyses of the genotype, allele, and haplotype are provided in Tables 1 and 2.

For the DCC gene, the rs16956878 and rs12607853 genotypes were strongly associated
with heroin addiction (p = 0.002, and p = 0.006, respectively). The T allele frequencies of
rs16956878 (p = 0.0004, odds ratio [OR] = 1.447, 95% confidence interval[CI] = 1.221–1.715)
and rs12607853 (p = 0.002, OR = 1.393, 95%CI = 1.175–1.650) were significantly higher in
the case group than in the control subjects. A significant difference was also observed in the
distribution of the genotype frequency for rs2292043 between the case and control groups
(p = 0.020). Compared with the control group, the case group exhibited a lower frequency of
the C allele (p = 0.002, OR = 1.405, 95% CI = 1.180–1.673). For the KTN1 gene, addiction cases
had a significantly higher frequency of the C allele than the control group at rs945270, but was
not significant after Bonferroni correction (p = 0.140, OR = 0.752, 95%CI = 0.612–0.925). The
sample size showed a 79%-91% power to detect associations with heroin addiction, with a pre-
sumedOR of 1.5, alpha value of 5%, and MAF ranging from 0.190 to 0.497.

In block 2 of DCC (rs2292043, rs12607853 and rs16956878), the frequency of the T-T-T
haplotype was significantly higher than that in the control group (p = 0.024, OR = 1.381, 95%
CI = 1.086–1.754), and fewer C-C-C haplotypes (p = 0.006, OR = 0.679, 95% CI = 0.530–0.870)
were observed in the case group. The frequencies of these haplotypes in block 2 were similar to
those obtained using PHASE (S1 Table). The p value was adjusted by using the 1000 permuta-
tions test (p = 0.026). On the basis of the results, we selectedDCC rs16956878 as a representa-
tive of rs2292043, rs12607853 and rs16956878 for subsequent analyses.

Fig 1. LD plot of the 20 SNPs in four genes in the control (left) and case (right) groups. (a) LD plot of the 4 SNPs of the FAT3

gene in the control (left) and case (right) groups. (b) LD plot of the 4 SNPs of DLG2 gene in the control (left) and case (right) groups.

(c) LD plot of the 6 SNPs of the KTN1 gene in the control (left) and case (right) groups. (d) LD plot of the 6 SNPs of the DCC gene in

control (left) and case (right) groups. The values in squares are the D’ calculated using pair-wise analyses. Empty squares indicate

D’ = 1 (i.e. complete LD between a pair of SNPs).

doi:10.1371/journal.pone.0163668.g001
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We analyzed the mRNA expression level and genotype data for DCC rs16956878. The
mRNA expression levels of subjects with TT and CC genotypes were similar, and showed no
significant differences (S2 Table).

The demographic and addiction characteristics were analyzed with respect to DCC
rs16956878 (Table 3). Compared with the CC genotype, the TT and TC genotypes were more
likely to be associated with more varied routes of heroin administration. The TT and TC geno-
types, compared with the CC genotype, were more likely to be associated with heroin use
through sniffing, smoking, intravenous injection, or compound deliverymethods.

The results of the gene-gene interaction usingMDR are listed in Table 4. The testing
balance accuracy and cross validation consistency were the highest in models of rs12607853,
rs2229080, and rs934345 (S1 Fig). Because it had the highest cross validation consistency and
testing balance accuracy, the three-locusmodel was considered to be the optimal model.

Table 2. The frequencies of haplotypes in the four genes and their associations with the risk of heroin addiction.

Gene Block Haplotype Controls(557) Cases(523) P-valuea P-valueb OR, 95% CI

No. % No. %

KTN1 block1 G-T-A-A-A 171 30.7 169 32.3 0.568 1.704 1.078,0.833–1.393

386 69.3 354 67.7

C-G-A-G-T 169 30.3 139 26.6 0.171 0.513 0.831,0.638–1.083

388 69.7 384 73.4

G-T-G-A-A 155 27.8 147 28.1 0.919 2.757 1.014,0.777–1.323

402 72.2 376 71.9

DLG2 block1 G-T-C 380 68.2 370 70.8 0.368 1.104 1.126,0.869–1.460

177 31.8 153 29.3

A-G-G 127 22.8 98 18.7 0.100 0.300 0.781,0.581–1.049

430 77.2 425 81.3

A-G-C 46 8.3 49 9.4 0.520 1.560 1.148,0.754–1.750

511 91.7 474 90.6

FAT3 block1 G-G 273 49.0 257 49.1 0.967 2.901 1.005,0.792–1.276

284 51.0 266 50.9

G-A 162 29.1 153 29.3 0.951 2.853 1.008,0.775–1.311

395 70.9 370 70.8

T-G 122 21.9 112 21.4 0.846 2.538 0.972,0.727–1.298

435 78.1 411 78.6

DCC block1 G-A 279 50.1 275 52.6 0.413 1.239 1.105,0.870–1.403

278 49.9 248 47.4

C-G 159 28.6 126 24.1 0.097 0.291 0.794,0.605–1.043

398 71.5 397 75.9

G-G 119 21.4 123 23.5 0.396 1.188 1.132,0.850–1.507

438 78.6 400 76.5

DCC block2 T-T-T 246 44.2 273 52.2 0.008 0.024 1.381,1.086–1.754

311 55.8 250 47.8

C-C-C 237 42.6 175 33.5 0.002 0.006 0.679,0.530–0.870

320 57.5 348 66.5

T-C-C 74 13.3 67 12.8 0.817 2.451 0.959,0.673–1.367

483 86.7 456 87.2

P-valuea based on comparison of frequency distribution of all haplotypes for the combination of SNPs

P-valueb for P-valuea adjusted by Bonferroni correction.

doi:10.1371/journal.pone.0163668.t002
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Discussion

Addiction is a disease resulting from interactions between genes and the environment [33].
The genetic susceptibility of heroin addiction primarily refers to the likelihoodof individuals
to use or become addicted to heroin because of differences in genetic factors [34–36]. Family,
adoption, and twin studies have suggested that genetic factors account for 30–60% of the over-
all variance in the risk of developing drug addiction [3, 4]. The aim of our research was to iden-
tify additional genetic markers of heroin addiction through a case-control study. In addition to
genetics, the substances effect is also an important factor leading to heroin addiction [37].
Indeed, the effect is different among the same people receiving different doses of heroin in a
certain range [38]. However, not all people exposed to heroin will become addicted to this drug
[37]. Our heroin addicts were recruited from the MMT Program and were diagnosedwith her-
oin addiction. Our healthy controls were never self-exposed to heroin. Thus, our results should
indicate that some subjects are more likely to become addicted to heroin, despite the effects of
environmental factors.

Table 3. Demographic and addiction characteristics of DCC SNP rs16956878.

Variable DCC rs16956878

CC TC TT

Age (year) 46.7±6.19 46.1±5.77 45.7±5.84

Gender (%)

Male 21.3 49.8 28.9

Female 33.3 47.6 19.1

Occupation (%)

Employed 19.2 54.1 26.7

Unemployed 23.1 47.4 29.5

Marital status (%)

Unmarried 19.8 51.9 28.3

Married 23.0 48.0 29.0

Divorced or widowed 16.7 56.3 27.1

Route of heroin administration (%)a

Sniffed or smoked 17.4 57.1 25.5

Injection via vein 21.9 51.7 26.5

Injection via muscle 36.4 36.4 27.3

Compound 26.5 27.9 45.6

Per-usage (gram) 0.3±0.14 0.3±0.34 0.3±0.18

Onset age (year) 29.1±6.68 29.4±6.41 28.6±6.73

a Associated with route of heroin administration of rs16956878, p = 0.003.

The number that follows the ± sign is a standard deviation (s.d.).

doi:10.1371/journal.pone.0163668.t003

Table 4. The results of gene-gene interactions using MDR.

Model Training Bal. Acc Testing Bal. Acc CV Consistency

rs16956878 0.5545 0.5526 8/10

rs16956878 rs934345 0.5802 0.5499 6/10

rs12607853 rs2229080 rs934345 0.6141 0.5824 10/10

rs12607853 rs2229080 rs2512676 rs934345 0.6618 0.5721 7/10

doi:10.1371/journal.pone.0163668.t004
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DCC is involved in axon guidance pathways, and its genetic variants influence the structure
of the human mesolimbic reward system [6], which plays a key role in drug addiction. Our
study provides direct evidence that polymorphisms of the DCC gene are associated with heroin
addiction in the Chinese Han population.

In the present study, we observed that the T alleles of the DCC SNPs rs16956878 and
rs12607853 were strongly associated with an increased risk of heroin addiction, whereas the C
allele of DCC rs2292043 was associated with a decreased risk of heroin addiction, and these
variants are located within the DCC 3’ UTR.Moreover, we observed a significant increase in
the T-T-T haplotype (rs2292043- rs12607853- rs16956878) in heroin addicts compared with
the members of the control group. These results suggest that the subjects carrying the T-T-T
haplotype are more likely to become addicted to heroin. The 3’ UTR of a gene contains a num-
ber of regulatory sequences that are targets of a variety of regulatorymolecules, including RNA
binding proteins (RBPs) and small noncoding RNAs (ncRNAs), which recognize small cis-ele-
ments present in the 3’ UTRs and determine the stability, cellular localization, and translation
of the encodedmRNA [39, 40]. Among these regulatorymolecules,microRNAs down-regulate
genes and promote RNA cleavage through perfect base pairing with a target sequence [27]. By
searching the MirSNP database [41], we observed that when rs12607853 allele changes from T
to C, the mRNA of DCC can combine with hsa-miR-141-3p, and decreaseDCC gene expres-
sion.When the rs2292043 allele changes from T to C, the mRNA of DCC can combine with
hsa-miR-141-3689d, and decreaseDCC gene expression. When the rs16956878 allele changes
from T to C, the combined effect of the mRNA of DCC and hsa-miR-4666a-5p increases,
thereby decreasesDCC gene expression. Thus, in the heroin group, the higher frequency of T
than C alleles, led to increased RNA expression. Our results are in agreement with the previous
animal experimental conclusions. DCC haploinsufficiencymice showed blunted sensitivity to
cocaine-mediated enhancement of reward seeking behavior [19]. We conducted an eQTL anal-
ysis of the mRNA expression level and examined the genotype data for DCC rs16956878
obtained from the SNPexp database. The mRNA expression levels of the subjects with TT and
CC genotypes showed no significant differences. Because the RNA expression level and geno-
type data were obtained from only 45 unrelated individuals, the results may reflect the small
sample size. Therefore, additional studies on the mRNA expression level of DCC and examina-
tion of the genotype data for rs16956878 with larger sample sizes are urgently needed. Grant
et al. have reported an association between schizophrenia and the rs2270954 polymorphism in
the 3’ UTR of the DCC gene [42]. Peng et al have reported an association between schizophre-
nia and the rs2229080 polymorphism in the exon 3 of the DCC gene [43]. These results further
support an important role for DCC in neuropsychiatric diseases. To confirm the link between
the DCC gene and addiction, rs16956878 was analyzed, and the results suggested an association
with the route of heroin administration. The rs16956878 TT and TC genotypes were associated
with increased variance in the route of heroin administration and therefore might be associated
with easier access to drugs. DCC is involved in axon guidance pathways and plays a critical
functional role in the organization of brain development and in adult neuroplasticity [17, 44].
These results suggest that the DCC gene may contribute to the genetic basis of individual differ-
ences in susceptibility to heroin addiction.

KTN1 encodes the protein kinectin,which is primarily found in the endoplasmic reticulum
in the dendrites and thesoma of neurons [12]. KTN1 plays a critical role in the regulation of
neuronal cell shape, spreading, and migration through kinectin–kinesin interactions [45]. Dis-
rupting the kinectin–kinesin interaction results in a morphological change to a rounded cell
shape and reduced cell spreading and migration[45], which decreases the polarization of the
neuronal architecture and the cellular complexity essential for neuronal functions [46]. There-
fore, KTN1may affect the density or complexity of the dendritic spines in drug addicts, thereby
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causing brain region-specific changes in the density of these structures[47]. The rs945270 SNP
is located 50 kb downstream of the KTN1 gene of 14q22.3. The C allele of rs945270 increases
the expression of KTN1 in the frontal cortex and putamen [48, 49]. In the present study, we
identified a significantly higher C allele frequency in the heroin addiction group, although
this result was not significant after correction. It has been suggested that subjects with the C
allele in addicts might exhibit higher KTN1 expression in the frontal cortex and putamen.
Interestingly, amphetamine, cocaine and nicotine increase the spine density on the apical den-
drites of the medial prefrontal cortex [50–52] and morphine significantly increases dendritic
spine density in the orbital frontal cortex of adult rats[47]. Thus, KTN1 may increase the den-
sity or complexity of dendritic spines in the frontal cortices of heroin addicts.

FAT3 is the human homolog of Drosophila FAT which inhibits Yokie through phosphoryla-
tion and subsequently activates the expanded-Hippo-Warts signaling cascade[53]. Phosphoryla-
tion of yes-associated protein 1(YAP1) in Hippo signaling inhibits theWnt signaling cascade
through interactions with β-catenin [54]. The cell polarity protein complex, Dlg/Lgl/Scribaffects
the cell-cell contacts, thus leading to the deregulation of the actin cytoskeleton through interac-
tions with Hippo pathways[55]. Netrin andWnt signaling pathways play important roles in
axon guidance[56]. Netrin signaling is primarily responsible for dorso-ventral (D/V)-graded
distributions andWnt signaling is primarily responsible for antero-posterior (A/P) distributions
[57]. Kinesin-1 acts with DCC in sensory neuron position [58]. Thus, we speculated that these
four genes might be involved in Hippo and/orWnt signaling pathways. Studies have shown that
theWnt pathway regulates the susceptibility of chronic stress and addiction through the regula-
tion of the differentiation of dopamine neurons in the mesolimbic reward system [59, 60].
Unfortunately, we did not obtain direct evidence from the KEGG pathway and PATHWAY
STUDIO databases. The SNPs in the optimal model of gene-gene interaction were rs12607853,
rs2229080, and rs934345, all of which are located in the DCC gene and no gene-gene interac-
tions were detected. Thus, a pathway study of these genes would be meaningful in the future.

Conclusion

To the best of our knowledge, this is the first report demonstrating an association between her-
oin addiction and functional polymorphisms within the DCC gene in a homogeneous sampling
population. However, further replication or validation across populations should be considered
in the future. Moreover, studies of these polymorphisms and their expression are warranted to
further the understanding of how these variants influence the expression and induction of
these genes. These studies should help to elucidate the pathogenesis of heroin addiction and
may offer a basis for the diagnosis and treatment of addiction.
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