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Abstract
Orofacial clefts include cleft lip (CL), cleft palate (CP), and cleft lip and palate
(CLP), which combined represent the largest group of craniofacial
malformations in humans with an overall prevalence of one per 1,000 live
births. Each of these birth defects shows strong familial aggregation,
suggesting a major genetic component to their etiology. Genetic studies of
orofacial clefts extend back centuries, but it has proven difficult to define any
single etiologic mechanism because many genes appear to influence risk. Both
linkage and association studies have identified several genes influencing risk,
but these differ across families and across populations. Genome-wide
association studies have identified almost two dozen different genes achieving
genome-wide significance, and there are broad classes of ‘causal genes’ for
orofacial clefts: a few genes strongly associated with risk and possibly directly
responsible for Mendelian syndromes which include orofacial clefts as a key
phenotypic feature of the syndrome, and multiple genes with modest individual
effects on risk but capable of disrupting normal craniofacial development under
the right circumstances (which may include exposure to environmental risk
factors). Genomic sequencing studies are now underway which will no doubt
reveal additional genes/regions where variants (sequence and structural) can
play a role in controlling risk to orofacial clefts. The real challenge to medicine
and public health is twofold: to identify specific genes and other etiologic
factors in families with affected members and then to devise effective
interventions for these different biological mechanisms controlling risk to
complex and heterogeneous birth defects such as orofacial clefts.
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Introduction
Orofacial clefts represent a group of anatomically distinct birth 
defects where there is a gap or break in normal features of the 
mouth, most commonly the roof of the mouth (the palate) or the 
upper lip or both. As shown in Figure 1, the most common ana-
tomical forms of orofacial clefts include cleft lip (CL), cleft palate 
(CP), and cleft lip and palate (CLP). Other features of the face and 
mouth can also be affected by orofacial clefts, but the overwhelm-
ing majority of all cases are infants with one of these three common 
forms1. Normally, development of the face and mouth occurs very 
early in pregnancy and reflects a complex process of cell growth 
and migration followed by fusion of symmetric structures to form 
the palate separating the mouth and nasal cavity, with the outer 
structures of the face developing before the inner structures. 
Collectively CL, CLP, and CP are the most common craniofacial 
birth defects worldwide, and affected individuals face feeding 
difficulties early in life and typically require multiple correc-
tive surgeries, therapeutic dental procedures, and speech therapy 
throughout childhood2–4. In addition, individuals born with an 
orofacial cleft have increased incidence of mental health problems 
and higher overall mortality rates at all stages of life, even in 
developed countries with good medical care5,6. Where access to 
medical care is severely limited, infants born with CP or CLP 
generally have high mortality rates due to difficulty in breastfeed-
ing, while untreated CL and CLP cases can face social discrimi-
nation throughout their lives. Thus, these birth defects have been 
subject to substantial selective pressure for most of human history.

Although clefts develop early in pregnancy, most epidemiologic 
data are based on cleft frequencies at birth. The worldwide 
average birth prevalence of all orofacial clefts is 9.92 per 10,000 

(close to one per 1,000), but there is substantial variation among 
populations7. In general, East Asian and Native American 
populations have substantially higher birth prevalence rates than 
do European and South Asian populations, while African ancestry 
populations have lower birth prevalence rates8–10.

Environmental risk factors for orofacial clefts
There are several recognized environmental risk factors and 
multiple genes involved in the etiology of orofacial clefts, which 
means the etiology is complex and heterogeneous. Maternal 
smoking during pregnancy is a recognized risk factor for orofacial 
clefts, and it is estimated that 6.1% (95% confidence interval 
[CI]=4.4–7.7%) of orofacial clefts could be avoided by eliminat-
ing maternal smoking11,12. Passive or “second-hand” exposure also 
appears to be a risk factor13. Evidence for maternal alcohol con-
sumption as a risk factor is less consistent, although consuming 
large amounts over a short period of time (e.g. “binge drinking”) 
appears to increase risk14. Broad measures, e.g. socio-economic 
status, have been suggested as risk factors, but it is difficult to sep-
arate out the combined effects of maternal nutrition and health15. 
Several prescription medications have also been reported to increase 
risk when taken during the first trimester, including folate antago-
nists and certain other drugs exhibiting anti-folate properties7.

Interestingly, a substantial number of studies suggest genetic 
and environmental risk factors may “interact” to modify risk to 
orofacial clefts. Several common exposures, including maternal 
smoking, alcohol consumption, and vitamin supplementation 
(a protective factor), have yielded statistical evidence of gene– 
environment (GxE) interaction, although the results from dif-
ferent studies are not always consistent. While biologically GxE 

Figure 1. Examples of orofacial clefts. A. Left unilateral cleft lip. B. Bilateral cleft lip. C. Left unilateral cleft lip plus cleft palate. D. Bilateral 
cleft lip plus cleft palate. E. Cleft palate.
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interaction is eminently rational, replicating statistical evidence 
across studies is difficult and proving interaction exists remains a 
major challenge16.

Familial aggregation and the genetic basis of orofacial 
clefts
Orofacial clefts show strong familial aggregation, which suggests 
a major genetic component to their etiology. Marazita and Leslie17 

have recently reviewed the extensive history of genetic studies 
of orofacial clefts, which dates back to the 18th century (see their 
Table 1). Despite decades of genetic research, it remains unclear 
exactly how many genes might control risk or how they act to 
influence risk to orofacial clefts. In general, close relatives of cleft 
cases have a greatly increased risk of being affected. Nationwide 
vital records from Norway18 show the relative risk to a first-degree 
relative of a case with CL with or without CP (CL/P, i.e. CL 

Table 1. Genes achieving genome-wide significance as influencing risk to orofacial clefts. 
Adapted and updated from Table 2 in Leslie and Marazita1.

Associated 
locus

Candidate gene in 
region

Associated 
phenotype

Analysis method References for 
genome-wide 
significance

1p36.13 PAX7 CL/P GWAS meta-analysis, 
GWAS replication

36,50,51

1p36 GRHL3 CP GWAS, GWAS replication 52,53

1p22 ARHGAP29 CL/P GWAS 36,54

1q32.2 IRF6 CL/P GWAS, linkage 25,27,33,36,54

2p13 TGFA CL/P Linkage 25

2p21 THADA CL/P GWAS meta-analysis 50

2p24 FAM49A CL/P GWAS 54

3p11 EPHA3 CL/P GWAS meta-analysis 50

3q12 COL8A1/FILIPIL CL/P GWAS replication 51

3q27–28 TP63 CL/P Linkage 25

8q21.3 DCAF4L2 CL/P GWAS meta-analysis, 
GWAS replication

50,51,54

8q22.3 BAALC CP & multivitamins GWAS x E 55

8q24 Gene Desert CL/P GWAS 27,33,36,54,56

9q22.33 FOXE1 CL/P and CP Linkage 25,28

9q31.1 SMC2 CP & maternal 
alcohol

GWAS x E 55

10q25.3 VAX1 CL/P GWAS 27,36,54

12q14 TBK1 CP & maternal 
smoking

GWAS x E 55

13q31.2 SPRY2 CLP GWAS meta-analysis 50

14q21–24 PAX9, TGFB3, BMP4 CL/P Linkage 25

15q22 TPM1 CL/P GWAS meta-analysis 50

15q24 ARID3B CL/P GWAS 54

16p13 CREBBP CL/P GWAS 57

16q24 CRISPLD2 CL/P Linkage 25

17p13.1 NTN1 CL/P GWAS meta-analysis, 
GWAS replication

49–51,54

17q22 NOG CL/P GWAS 27,49,54

17q23.2 TANC2 CL/P GWAS 54

18q22 ZNF236 CP & maternal 
smoking

GWAS x E 55

19q13.11 RHPN2 CL/P GWAS 54

20q12 MAFB CL/P GWAS 36,54

Abbreviations: CL/P, cleft lip with or without cleft palate; CLP, cleft lip and palate; CP, cleft palate; GWAS, genome-wide 
association study.
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and CLP cases combined) was 32 times higher than the baseline 
population risk, and for relatives of a CP case this relative risk 
was 56 times higher than baseline risk. This increased risk drops 
with increasing genetic distance: nationwide registry data from 
Denmark spanning the entire second half of the 20th century19 
show the relative risk among all first-degree relatives (parents, full 
siblings, and offspring) of CL/P cases was highest, while risks to 
second-degree relatives (half-siblings, avuncular relatives, and 
grandparents) were much smaller, and risks to third-degree relatives 
(first cousins and half-avuncular relatives) were not significantly 
above the baseline population risk in Denmark (see their Table 2). 
When rules of exclusions and phenotype definition were adjusted 
between these population-based studies (Norway and Denmark), 
both gave similar patterns of strong familial aggregation, i.e. 
relatives of cleft cases always had a high relative risk compared 
to the population’s baseline risk, and there is a steep drop with 
increasing genetic distance between relatives.

Twin studies of orofacial clefts consistently show higher concord-
ance rates in monozygotic (MZ or identical) twins compared to 
dizygotic (DZ or fraternal) twins, again suggesting a major role 
for genes in controlling risk of being affected. Clearly, because 
MZ twins have identical genes over their entire genome, anything 
less than 100% concordance indicates some non-genetic compo-
nent to the etiology of orofacial clefts, but whenever MZ twins 
consistently show greater concordance than DZ twins, it suggests 
some proportion of the variation in risk is under genetic control. 
Grosen et al.20 linked population-level vital records (birth 
certificate and twin registry data from Denmark) spanning most 
of the 20th century, achieving virtually complete ascertainment of 
cases for the latter part of the century. They showed MZ twins had 
much higher concordance rates than did DZ twins (47% MZ twins 
with 95% CI=31–64% compared to 8% for DZ twins with 95% 
CI=4–14%). These concordance rates yielded estimates of herita-
bility (the proportion of variation in risk attributable to unobserved 
independent genes) of 91% for CL/P and 90% for CP. However, 
because the concordance rate among MZ twins is more than four 
times that of DZ twins, these Danish findings also raise the pos-
sibility that specific combinations of different genes (termed 
“epistasis”) may be important in the etiology of orofacial clefts.

While clearly orofacial cleft risk shows strong familial aggrega-
tion, it does not strictly adhere to Mendel’s laws of inheritance, 
even within multiplex families (i.e. those with two or more affected 
members), which has bedeviled geneticists for decades. Statistical 
methods for fitting genetic models to family data are collectively 
termed “segregation analyses”, and these trace back to the founda-
tions of human genetics. Statistical methods were initially devel-
oped in the early 20th century by statisticians such as R.A. Fisher, 
W. Weinberg, and J.B.S. Haldane17,21. By the 1970s, segregation 
analysis had evolved to allow formal tests within a framework of 
“mixed models” that simultaneously considered straightforward 
Mendelian components (i.e. a “major gene”) and a more general 
residual “heritability” reflecting combined effects of many 
independent genes (collectively termed “polygenes”). A number of 
segregation analyses of orofacial clefts were performed during 
the early 1970s through the early 1990s for various racial/ethnic 

groups21. Collectively, however, this modeling approach rarely 
resulted in definitive and reproducible findings, and the most suit-
able model of inheritance remained the “multifactorial threshold 
model”, which is exquisitely vague in defining genetic mechanisms 
and statistically cannot discriminate between a single major gene 
vs. multiple “polygenes”. This multifactorial model hypothesizes 
a continuous “genetic liability” for risk, plus unspecified non- 
genetic risk factors that could also influence risk. Under this 
very general model, it is possible to estimate the “heritability” or 
the proportion of variation in risk attributable to any number of 
independent, autosomal genes, but it is not possible to estimate 
the penetrance or allele frequencies at any one of these separate 
risk genes.

Still, this multifactorial threshold model adequately explains the 
clear gender differences in risk to CL/P and CP (where the former 
shows a distinct excess of affected males, while the latter has a 
slight excess of females, suggesting gender-specific thresholds) and 
the higher risk to relatives of more severe cases (i.e. bilateral ver-
sus unilateral CL/P)19. The sharp decline in relative risk to relatives 
of cases with increasingly distant relationships is also completely 
compatible with the multifactorial threshold model because the 
probability of sharing alleles identical by descent is constant 
whether one gene, a few genes, or many genes control risk. 
However, other explanations could potentially result in these same 
patterns of risk to relatives. Thus, even sophisticated statistical 
approaches to modeling genetic inheritance have failed to define 
any single biological mechanism controlling risk to orofacial clefts 
in all families; indeed it has been suggested that multiple genes, 
perhaps two to six independent genes (possibly up to 14) could 
determine risk to orofacial clefts22. This concept of multiple differ-
ent genes involved in the etiology of orofacial clefts is increasingly 
borne out by the results of genomic studies, as summarized below.

Mapping genes for orofacial clefts
Different types of genetic studies create the opportunity to map 
genes in the absence of a well-defined model of inheritance. 
There are two general types of approaches: “linkage analysis” and 
“association analysis”. Linkage analysis always requires multiplex 
families and tests for co-segregation of observed genetic mark-
ers and a hypothetical gene controlling the affected vs. unaffected 
phenotype within a family, while association analysis simply tests 
for differences in frequencies of markers in samples of affected 
and unaffected individuals from a population, which could reflect 
linkage at a population level (termed “linkage disequilibrium”). 
Linkage analysis is a powerful approach for mapping individual 
genes for traits following clear Mendelian patterns within multi-
plex families, but it is less effective in mapping genes for complex 
traits (such as orofacial clefts).

Both linkage and association analysis can be used on one genetic 
marker or on many scattered over the entire genome. Importantly, 
both approaches can be adapted to accumulate evidence when 
multiple causal variants (in different genomic locations) exist in 
the data being analyzed (multiplex families or groups of cases and 
controls), and thus both can be used effectively to study orofacial 
clefts at the genome-wide level.
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Numerous groups used linkage studies to map genes in multiplex 
cleft families23, but limits on the number and size of these families 
and the underlying high level of “linkage heterogeneity” (where 
different families yielded evidence of co-segregation to different 
genes) made it extremely difficult to obtain consistent results. A 
consortium of multiple research groups pooling genome-wide 
markers (~400 microsatellite markers) identified linkage to six 
different chromosomal regions (chromosomes 1q32, 2p, 3q27–28, 
9q21, 14q21–24, and 16q24)24,25. Further fine-mapping stud-
ies of these regions showed consistent evidence of linkage to 
chromosome 1q32 near the IRF6 gene. Interestingly, mutations 
in IRF6 account for most of the known cases of Van der Woude 
syndrome, a Mendelian autosomal dominant syndrome which 
includes orofacial clefts as a key phenotype23. In addition, markers 
in and near this gene have also consistently shown evidence of 
association in population-based studies. Another gene, FOXE1 
on chromosome 9q21, yielded consistent evidence of linkage in 
multiplex families25,26 and recent association studies27,28. Thus, 
linkage studies based on multiplex families successfully identified 
some causal genes29, but clearly multiple genes control risk to 
orofacial clefts and these vary from family to family.

Association studies ask a much more general question than linkage 
analysis, and typically this involves rather simple statistical 
comparisons of marker allele or genotype frequencies between 
groups of unrelated people. While interpreting a positive result from 
linkage analysis represents more compelling evidence that a puta-
tive gene controls risk, these multiplex families are rare (i.e. most 
cleft cases do not have any affected close relative) and individual 
families are not representative of the full population. Interpreting 
statistically significant results from an association study is more 
ambiguous and less definitive than results from linkage analysis, 
and unrecognized bias in the study design can produce spurious 
results (especially if the cases and controls are not drawn from the 
same population). As with linkage studies, one, several, or millions 
of markers can be compared between case and control groups, but 
of course as the number of tests increases some accommodation 
must be made for false positive results obtained by chance alone 
(i.e. where in truth there is no real difference between groups). 
Conversely, false negative results can become important too, i.e. 
where a key risk gene is missed because the markers used for tests 
of association are not informative and do a poor job of covering 
that gene in one population or another.

Association studies of orofacial clefts
Association studies using case–control designs have been used to 
examine numerous selected “candidate” genes for orofacial clefts 
(CL/P and less commonly CP) for over 25 years30, but the results 
were not always consistent across studies. This inconsistency could 
merely be because of limited sample sizes of individual studies, 
subtle biases in study design, or could reflect genetic differences 
across populations. Interestingly, sequencing the candidate genes 
themselves (and the regions immediately surrounding the gene) has 
identified some rare mutations that would impair the function of the 
corresponding gene product and could be directly causal31,32. While 
such rare variants are potentially biologically relevant and certainly 
justify further study of that candidate gene, their very low frequency 
in the population makes them difficult to incorporate either into 

standard statistical tests or for use in predicting risk to individuals 
(which is notoriously difficult for heterogeneous disorders).

Beginning early in the 21st century and building upon the Human 
Genome Project, genome-wide association studies (GWAS) became 
feasible as genotyping technology improved to allow hundreds of 
thousands (or millions) of single nucleotide polymorphic (SNP) 
markers to be typed efficiently on large samples. The first GWAS 
of orofacial clefts used a classic case-control design to compare 
markers between CL/P cases from Germany to “universal” or 
unphenotyped German controls33. The use of “universal” controls 
(typically adult controls from an independent study) is reasonable 
because the birth prevalence of orofacial clefts is relatively low. 
However, when conducting association studies, even subtle dif-
ferences in the genetic background between the case and control 
groups can be a potential source of bias and must be considered. 
The key advantage of GWAS is its ability to identify simultane-
ously one or several regions of the genome likely to contain genes 
controlling risk to orofacial clefts. In the presence of multiple 
causal genes, there should be multiple genomic regions giving 
statistically significant results.

An alternative to the traditional case–control design is the 
family-based case–parent trio or “triad” design, which has the 
advantage of being robust to the confounding caused by “popu-
lation stratification” or differences in marker allele frequencies 
between groups of cases and controls. Now the contrast is between 
the marker (allele, genotype, or haplotype) seen in the case and 
the set(s) that are possible given the parental mating type, yielding 
a comparison between the observed case and a matched set of 
“pseudo-controls” drawn from the parental mating type. This 
study design actually tests a composite null hypothesis of strict 
Mendelian transmission of marker alleles (or their genotypes), 
and rejecting this composite null represents evidence for both 
linkage and association34,35. This design was used by Beaty et al.36 
in an international collaboration supported by the Genes and 
Environment Association (GENEVA) consortium37 where distinct 
racial groups (European and Asian) were well represented.

To date, there have been seven independent GWAS for CL/P 
and two for CP. They have identified at least two dozen different 
genes/regions achieving genome-wide significance for CL/P, but 
only one for CP. Leslie and Marazita38 listed a dozen different 
genes/regions attaining genome-wide significance either in one 
GWAS or from meta-analysis across multiple GWAS, and Table 1 
shows an updated list. Some of these genes have accumulated 
support from older candidate gene studies, and a few have been 
identified as causal genes for Mendelian malformation syndromes 
including orofacial clefts as a key phenotype. Of these genome-
wide significant regions, four (IRF6 on 1q32–41, the gene desert 
region on 8q24, 17q22, and 10q25.3) appear to account for 
20–25% of the estimated genetic variation in risk or “heritability” 
to CL/P, a much larger proportion of the estimated heritability 
attributable to markers identified by GWAS than seen for many 
other complex disorders17.

However, the level of statistical support is frequently limited to 
one or another racial/ethnic group (e.g. the support for the gene 
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desert region in 8q24 is consistently strong in European ances-
try groups but much less so among Asian ancestry groups). This 
may reflect limitations in “tagging” by widely used SNP marker 
panels39 or true differences in the frequency of causal mutations 
across populations. Because this strong statistical evidence 
comes from SNPs in a “gene desert” with no recognized coding 
regions nearby, it is particularly intriguing that mouse models have 
suggested this region may contain a regulatory region critical for 
normal craniofacial development40.

The future challenges: expanding into genomic 
sequencing
In many ways, the progression in genetic studies of orofacial 
clefts has repeatedly applied standard tools of genetics to a 
disorder that is unexpectedly complex and heterogeneous. 
Clearly there is a genetic basis to the etiology of orofacial clefts; 
however, it must involve multiple genes (maybe dozens) and 
several environmental risk factors (which may interact with differ-
ent genes). Our analytical tools, both statistical and technological 
(for genotyping and sequencing), have greatly expanded in recent 
years but always seem to fall short of the mark in dealing with 
the high level of etiologic heterogeneity for this relatively rare 
disorder. Technological advances now make it feasible to sequence 
the entire exome (i.e. all gene regions known to code for proteins) 
and even the entire human genome. However, we still must 
carefully consider the most appropriate study design and how to 
analyze sequence data most effectively.

Family study designs can be very effective in identifying 
causal genes41, but if many rare mutations can lead to the same 
phenotype, it is entirely possible that each family could reflect 
effects of a unique gene or unique combination of genes. Bureau 
et al.42,43 recently showed how whole exome sequencing (WES) 
data in distant affected relatives (second-degree and more distant 
relatives) drawn from multiplex families originally recruited for 
linkage studies could be used to identify rare variants that modify 
risk to orofacial clefts. From a long list of candidate genes, this 
approach identified one novel variant in CHD1 shared by three 
affected second cousins in a single multiplex family. CHD1 is a 
strong candidate gene because mutations in this gene can cause 
both gastric cancer and orofacial clefts, and several studies 
have shown evidence of association or excess of rare variants in 
this gene44–47. A comprehensive whole exome analysis revealed 
a separate novel variant in ADAMTS9 achieving statistical 
significance over the entire exome in a small number of families42. 
While this gene had been identified as potentially causal in mouse 
models, this is the first evidence from human studies, and the 
risk allele is extremely rare. This same method of testing for rare 
shared variants can be applied to structural variants, such as 
deletions detected from WES data48.

Leslie et al.49 demonstrated the potential of sequencing studies 
in a large study of case–parent trios (where 13 regions around 
candidate genes were sequenced). This case–parent trio design 
allows the detection of de novo mutations, where a new mutation 
(not present in the parents) occurs in the child. This type of mutation 
simply cannot be identified in case–control studies, and such 

mutations are by their nature extremely rare. Also, if a de novo 
mutation lies outside any known coding or regulatory region, 
it is difficult to judge its true functional status. This group con-
cluded de novo variants probably don’t represent a major etiologic 
component for orofacial clefts, although they may be relevant for 
other complex diseases.

This case–parent trio study of sequencing data yielded evidence 
consistent with previous GWAS studies, where multiple genomic 
regions showed strong statistical evidence of linkage and asso-
ciation for common polymorphic markers, but it also was able to 
analyze rare variants that could themselves be directly causal for 
orofacial clefts. Careful analysis of low-frequency and rare variants 
using available methods for collapsing or combining multiple 
variants within a gene to assess the overall impact of that gene on 
risk yielded mixed results: two of 13 candidate regions (NOG and 
NTN1) showed some statistical evidence for distinct rare variants 
within the gene being important in controlling risk, while four of 
the 13 genes yielded no such evidence (BMP4, FGFR2, MSX1, 
and PTCH1). Because obtaining statistical evidence for rare 
variants is always difficult, even in large studies, building a 
biological case for a putative causal mutation requires functional 
studies for confirmation49.

Large-scale whole genome sequencing (WGS) studies are now 
underway and are being applied to a number of complex and het-
erogeneous diseases (including orofacial clefts). Practical chal-
lenges in using WGS data include cleaning and processing the 
huge volume of data. The amount of data scales up dramatically 
from GWAS to WES to WGS: GWAS data represent hundreds of 
thousands or millions of typed markers (and potentially millions 
more imputed markers); WES represents 1–2% of the human 
genome sequenced 30–50 times and aligned to yield a consensus 
sequence for ~50 Mb of the genome; WGS represents similarly 
aligned read data on all 30 billion base pairs of the genome 
(although even with WGS there are gaps and some regions are not 
well covered). The primary advantage of WGS data is that it can 
be used to analyze any type of sequence variant from the refer-
ence genome (single nucleotide variants or SNVs, including the 
common SNP markers), small deletions (termed indels), or larger 
structural changes (e.g. deletions and duplications, which are 
collectively called copy number variants or CNVs, plus more 
complex structural variants such as inversions and translocations 
where the order of genes may be changed through chromosomal 
breakage and exchange). The challenge comes in defining the par-
ticular assessment/comparison being made with variants identified 
by WGS data (which is always a reflection of the study design 
and hypothesis being considered), and then interpreting any 
“significant” differences from expected. The study design always 
determines the hypothesis to be tested (strict Mendelian transmis-
sion, co-segregation, differences in frequencies, etc.), but the huge 
number of tests must be considered, along with the potential biases 
inherent in the study design. Dealing with WGS data will involve 
tens of millions of markers or SNVs on individuals, and most of 
these will be quite rare. Most observed sequence variants will 
occur outside known coding regions, and our ability to recognize 
important regulatory regions remains limited.
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The more important challenge facing genetic studies of orofacial 
clefts is to develop strategies for dealing with multiple causal 
genes within any data set and applying these strategies effectively 
to orofacial clefts as a complex and heterogeneous birth defect. 
The full range of study designs (selected relatives from large mul-
tiplex families, nuclear families, case–parent trios, and groups of 
unrelated individuals) is available, but interpreting the biological 
function of a novel variant detected by sequencing will not be 
simple. Furthermore, because any given patient could represent 
the effects of one or more variants in several different genes,  
translating new genetic findings into meaningful medical or pub-
lic health applications remains a daunting task. In reality, for 
orofacial clefts (or any other birth defect), because the first 
occurrence occurs well before birth, it is difficult to define 
opportunities to intervene. Nonetheless, the tools to detect genes 
controlling risk to orofacial clefts have expanded greatly in this 
first part of the 21st century, and it is our challenge to use them as 
effectively and efficiently as possible. It is likely that there will be 
classes of “causal genes” and “genetic risk factors”: a few genes 
with “major effects” may simultaneously control truly Mendelian 
malformation syndromes and show association with apparent 
non-syndromic forms of orofacial clefts, while possibly many 
“genetic risk factors” have the typical modest estimated effect 
sizes identified through GWAS but nonetheless achieve genome-
wide significance as studies are combined via meta-analysis.
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