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Glossary
Basic reproductive number Often written R0, this is the
average number of onward transmission events resulting
from the introduction of a single index case into a
completely susceptible population.
Coalescent The Coalescent is a retrospective population
genetic model that attempts to trace all alleles of a gene in
a sample population to their most recent common ancestor
(MRCA). This produces a gene genealogy. Coalescent theory
seeks to understand the statistical properties of this
genealogy under different selective or demographic
scenarios.
Incidence New cases of disease occurring within a
specified time period.
Malthusian fitness Where the population is growing in
size, individuals that reproduce more quickly gain an
advantage and will come to predominate even if their total
net number of onward infections is less than more slowly
growing competitors.
Phylodynamics The use of phylogenetic data to infer
elements of epidemiological processes that have given rise
to it, by examining the shape and topology of the genealogy
as estimated from sequence data (see ‘The Coalescent’).
Prevalence The frequency of a disease in a population at
a particular time point. Often expressed as a proportion or
percentage.
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Reproductive number Also known as the reproductive
ratio or rate, this is the average number of onward
transmission events produced from each infection.
SIR model In an SIR model hosts move from the
susceptible compartment (S), to the Infected (I) and then
(if they survive infection) into a separate resistant (R)
compartment. This allows us to model immunity, by
allowing hosts in the R compartment to be less likely to be
successfully infected. An extra level of complexity can allow
immunity to wane over time such that eventually hosts in
the R compartment return to the S one – resulting in an
SIRS model.
SIS model In an SIS model, hosts initially susceptible (S)
become infected (I) and upon clearing the infection
immediately becomes susceptible once more (S). Such
simple models may be used where little or no immunity
results from infection, or may be a useful approximation in
the case that antigenic variation on the part of the pathogen
is so rapid that immunity is negligible.
Superspreader An individual who infects a
disproportionately large number of secondary hosts relative
to the majority of cases of infection.
Zoonoses Any case where transmission of infectious
agents occurs between different species of animals, most
often used when disease is transmitted from nonhumans to
humans.
Modern infectious disease epidemiology contains two distinct
intellectual lineages: mathematical models are used to explore
disease dynamics and the consequences of interventions
(Anderson and May, 1991; Grassly and Fraser, 2008), while
analysis of the genetic variation in pathogen populations is
used to ‘type’ and define strains associated with resistance,
virulence, or other features of interest. Recently these have
been starting to come together with population genetic ana-
lyses of genetic (and increasingly genomic) variation that can
tell us about the history of the sampled sequences. This has
been termed ‘phylodynamics’ as a result of the combination of
phylogenetic methods with the study of disease dynamics
(Grenfell et al., 2004).

Epidemiology is a population science that studies the pat-
terns of disease incidence, attempting to infer causes and
consequences. Classical epidemiology, for instance, might seek
to identify risk factors for a given condition, which might be
environmental or genetic. This allows us to identify inter-
ventions to minimize the risk of disease. In the case of a
transmissible disease, the situation is somewhat different.
The spread of infectious disease is a dynamic process in which
the increasing numbers of cases increase the risk to the rest
of the population. Similarly, as people recover they may
become immune (or more pessimistically they may succumb
to disease – it makes little difference to the infecting organism)
and be removed from the system. Hence the numbers of hosts
available to be infected change over time. To describe the
changing state of the population, infectious disease epidemi-
ology makes use of mathematical models comprising sets of
differential equations, or statistical models that are defined
using a probabilistic framework. These models can then be used
to explore the impact of vaccination or other interventions.
The Reproductive Number

A crucial parameter in infectious disease epidemiology is R:
how many successful transmission events and new infections
result on average from one infection. With an unlimited pool
of susceptible individuals, this is equivalent to R0 or the basic
reproductive number. It is easy to intuitively relate these
numbers to the course of an outbreak. If the reproductive
number is41, the expected number of new cases will increase,
whereas if it is o1, then the numbers will fall. It is important
to distinguish the incidence from the prevalence. Incidence is
the number of new cases per unit time, whereas prevalence is
the overall frequency of the disease in the population. The
incidence can be falling but the prevalence can continue to
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Figure 1 An idealized epidemic curve showing how the prevalence,
incidence, and reproductive number R vary over the course of an
outbreak. The illustrated case is the result of an SIR model, in which
recovered hosts become entirely resistant to infection and as a result
the prevalence returns to zero. The point at which the decline in the
availability of susceptible hosts means each case causes on average
just one onward infection is that where R¼1, and is indicated. Note
that this is coincident with the peak incidence, which precedes peak
prevalence as described in the text.
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Figure 2 Four simple compartmental model structures referred to in
the text: (a) shows an SI model in which hosts become infected and
never recover; (b) shows an SIS model in which recovery is possible
as shown by the additional arrow; (c) shows an SIR model in which a
recovered population is resistant to infection; and (d) a SIRS model
incorporating waning immunity. The rates with which hosts transition
between compartments can then be described using differential
equations.
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rise, albeit at a slower rate. This is illustrated in Figure 1, which
shows an idealized epidemic curve, and how R changes over
the course of the outbreak. While in the illustrated case the
epidemic burns out after the pathogen has run out of hosts to
infect, if sufficient susceptible hosts are continually introduced
(e.g., by birth or waning immunity) the disease can become
endemic.

Although the expected final size of the outbreak falls rap-
idly as R0 decreases, it is possible for outbreaks to occur in the
case where R0 is less than 1. To understand how this can
happen we have to remember that R0 is an average value, and
by chance initial cases may result in an above-average number
of onward infections. The effects of this can be probed using a
stochastic approach, in which events are modeled as randomly
sampled realizations from a probability distribution. While
such models aim to capture the typical contact and transmis-
sion dynamics in a population, they can be confounded by
rare cases of extreme behavior. For instance, a so-called
‘superspreader’ event may by chance infect many new hosts,
starting an outbreak that persists until all the transmission
chains descending from it die out (Lloyd-Smith et al., 2005;
Garske and Rhodes, 2008). For a real example of such a
superspreader event, consider the early stages in the 2003 SARS
(severe acute respiratory syndrome) outbreak in Hong Kong,
when a single infected person infected at least 13 and possibly
as many as 20 others staying at the same hotel (Braden et al.,
2013). The estimated R0 for SARS is much lower than this
unusual event would lead you to suspect (Riley et al., 2003).

We can construct a simple transmission model by dividing
the population into compartments, and then writing down
equations for the rate of movement of individuals from one
compartment to another in each time step. The simplest
models contain just two compartments: susceptible and in-
fected (Figure 2(a) and 2(b)). The results are a so-called SI or
SIS model. In the first example, hosts move from being sus-
ceptible to being infected, and in the second, to infected
hosts can clear the infection and become susceptible again.
The slightly more complicated SIR model adds a ‘resistant’
compartment (Figure 2(c)), reflecting immunity that prevents
infection while waning immunity can be incorporated in a
SIRS framework where after a period of time hosts in the re-
sistant compartment move back to S (Figure 2(d)). This flex-
ible approach can be extended to include important features
such as vaccination (McLean, 1995) (in the simplest case of a
100% effective vaccine, each vaccinated susceptible would
move to the resistant compartment), and host population
structure. This is important in multiple contexts; for instance
the child–child contact rate is very high in daycare settings and
hence the transmission rate too, which can have important
consequences for model results (Schenzle, 1984). Similarly,
humans vary greatly in the number and sort of sexual contacts
they make, which is important to modeling sexually trans-
mitted infections. In the case of vector-borne diseases, whether
the vector is a biting insect or a health care worker (as in
nosocomial infections), they can and should be incorporated
into the model. It is easy to see intuitively how the endemic
prevalence of disease depends on the supply of new suscep-
tibles, either from birth or waning immunity.
Transmission Routes and the Target of Selection

Infectious agents can be categorized by how they get from one
host to another, and whether this involves any intermediate
hosts or environments. Some pathogens spread without
spending significant time in the environment, examples being
influenza or sexually transmitted infections. Vector-borne dis-
eases in contrast rely on an additional host for transmission,
often a biting insect. A considerable burden of disease also
results from pathogens that transmit between humans rarely if
at all. These infections arise from environmental exposure to
the pathogen, and can include zoonoses – infections acquired
from other species. In each case it is useful to consider which
traits of the pathogen will be scrutinized by selection.
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In the case of directly transmitted pathogens it is of para-
mount importance to colonize new hosts; in other words,
maximize the reproductive number. Note that this does
not necessarily mean causing disease, merely transmission,
although some features of disease such as sneezing may be
adaptive traits. As immunity builds in the population the
effective reproductive number will fall, and one possible
means of increasing it is immune escape, and there is typically
evidence of strong diversifying selection on those antigens that
can yield protective immunity (Li et al., 1995). Vector-borne
pathogens must successfully survive in and transmit between
the host and the vector species, and vice versa. Again, we expect
and observe strong diversifying selection on those antigens
targeted by the immune system.

One area of particular interest is the evolution of virulence.
It is commonly stated that virulence reflects an adaptive mis-
match between the host and the pathogen: it is to the
advantage of both parties that virulence be minimal, such that
the host can continue to transmit for a long period of time
without limits on the numbers of contacts they make. Em-
pirical evidence for this comes from the example of myxo-
matosis in Australia, where the myxoma virus was introduced
to control rabbit populations. With extraordinary vision, Frank
Fenner of the Australia National University collected and
stored isolates of virus collected from wild rabbits over dec-
ades, and showed evidence for both gradual attenuation of the
virus, and adaptation of the rabbit population to become
more resistant (Fenner, 1956).

While this argument sounds persuasive, it is also regarded
with suspicion as an example of group selection. Surely more
rapidly growing parasite variants should be selected during
infection and, if this is linked to virulence, produce disease
(Levin and Bull, 1994)? The tension between the two selective
pressures – for growth within the host, and for transmission
within the host population – is dependent on the link between
virulence and transmission (Lipsitch and Moxon, 1997; Vale
et al., 2011). If by causing disease, a pathogen transmits to
more new hosts than it would do otherwise, then virulence
will be increased even if the result is the death of the host or
the clearance of the infection (Anderson and May, 1982). This
explains virulence in terms of the theory of life-history trade-
offs. A crucial factor is the availability of new hosts, because if
opportunities for transmission are rare it will select for variants
that do not kill their hosts before they can transmit (Lipsitch
and Nowak, 1995; Lenski and May, 1994). In an outbreak
situation, virulence can be temporarily selected even if the
virulent strain infects fewer hosts per infection than its com-
petitors, provided it does so more quickly. Selection for more
rapidly growing variants is also termed Malthusian fitness
(Orr, 2009).

The question of whether virulence is adaptive is not of
merely academic interest. HIV-1 infection includes a long
asymptomatic period in which the viral load (the amount of
virus particles in peripheral blood) fluctuates around a value
known as the ‘set point’ (Mellors et al., 1996). It has been
proposed that the set point viral load has been the object of
selection to maximize transmission, the result of a trade off
between the effect of set point viral load on infectiousness and
the duration of the asymptomatic period (Fraser et al., 2007).
If set point viral load is too high, then infected individuals
have fewer opportunities to transmit before developing AIDS
whereas if it is too low, they are not infectious enough to
efficiently transmit the virus. For natural selection to act on set
point viral load, it must be a heritable property. That is to say,
the set point viral load of the infector and infected must be
correlated. If it is not, then there is no heritable variation on
which natural selection can work. Subsequent work has pro-
duced evidence that set point viral load is indeed heritable,
and correlated with viral genotype (Hollingsworth et al., 2010;
Alizon et al., 2010).

Virulence has also been suggested to be adaptive in malaria
transmission. Here, the greater the numbers of parasites in
peripheral blood (higher parasitemia), the greater the chance
that a mosquito becomes infected while feeding. Parasitemia is
also correlated with severity of disease. If disease can limit
onward transmission, ‘imperfect’ or partially effective vaccines
have been proposed to select for strains capable of growing to
a higher titer in both hosts receiving the therapy and those
who are not (Gandon et al., 2001; Barclay et al., 2012). This
could lead to an increase in virulence in the absence of vac-
cination – and given known inequities in access to health care,
such a perverse outcome could have a major impact on some
patient populations. However, unpicking which factors con-
tribute to virulence is extremely difficult and the goal of
virulence management remains an aspiration rather than an
actuality (Dieckmann and International Institute for Applied
Systems Analysis, 2005).
Molecular Epidemiology: The Short and Long Term

It is often important to be able to link individual cases of
disease on the basis of the similarity of the infecting pathogen,
such as in defining an outbreak or identifying drug resistant
lineages. These are examples respectively of short-term and
long-term epidemiology. To address such questions, the vari-
ation in the pathogen population must be assayed in some
way, and the results compared. This is now almost always
done using molecular variation, i.e., nucleic acid sequences
and the proteins they encode. How much variation is present
in the population, and of what sort, is the result of evolution,
and how data from molecular epidemiology studies are in-
terpreted is a question of phylogenetics. Increasingly, popu-
lations of viruses and bacteria are characterized using genomic
methods, and it is likely that in the near future whole ge-
nomes will become the standard for molecular epidemiology
(Croucher et al., 2013).

Molecular epidemiology catalogs the variation in the
pathogen population as different ‘types’ that can be dis-
tinguished. Historically these have often been defined using
antibodies to distinguish between different variants of cell
surface markers and divide the population into serotypes.
Pathogens of all kinds have been distinguished using this
approach: viruses, bacteria, and protozoa. When we speak of
a case of influenza caused by ‘H5N1,’ we are referring to
the serotypes of the surface proteins hemagglutinin and
neuraminidase, which in this case are those associated with
‘avian flu.’ In Escherichia coli and Salmonella, the ‘O’ antigens
(oligosaccharides) are combined with the ‘H’ antigens (fla-
gellar proteins) to provide a discriminating serotyping scheme.
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Salmonella enterica alone can be divided into more than 2500
serovars (Grimont and Weill, 2007). The O:1 and O:139
serotypes of Vibrio cholerae produce a phage-borne toxin,
cholera toxin, which causes the disease that bears its name
(Finkelstein, 1996). More than 200 serotypes of V. cholerae are
known that do not produce cholera toxin or cause cholera
(Shimada et al., 1994).

Serotyping and other typing methods that assay pheno-
types suffer from limited discrimination: they use a tiny frac-
tion of the diversity associated with a strain, and the variation
they assay is frequently produced by intense diversifying se-
lection from the immune system. The ideal data for typing are
unambiguous and easily portable between labs. We also want
to be able to describe how the types we identify are related.
We can group serologically related strains as serovars or
serogroups, but the relationships within and between these
cannot be ascertained in detail. A single serological type can
contain many different genotypes, and any horizontal transfer
of the locus determining serotype can lead to distantly related
lineages being indistinguishable by this method.

Outbreak analysis is a short-term question requiring highly
discriminating methods. The response is to assay multiple,
rapidly changing regions in the entire genome. Examples of
such regions are restriction sites, sites at which PCR primers
can bind, or regions of repeat sequences, where the numbers of
repeats can change rapidly. Pulsed Field Gel Electrophoresis
(PFGE), which uses restriction sites, is an excellent example.
Genotypes are distinguished by banding patterns on a gel
resulting from changes in the position and numbers of re-
striction sites. PFGE remains a commonly used method in this
context (e.g., Choi et al., 2014).

PFGE and related methods are less useful for evolutionary
or population genetics. The selective impacts of the changes
are unknown, because we do not know where the restriction
sites lie in the genome. While we can identify closely related
banding patterns, beyond very closely related strains rela-
tionships become hard or impossible to discern. Practically
it is difficult to compare results between laboratories. As
sequencing has become easier and more accessible, it has
become standard to use nucleic acids as the source of assayed
variation. In bacteria, a popular approach is to sequence
multiple loci scattered around the genome that encode core
metabolic or ‘housekeeping’ functions. This allows the analysis
of synonymous SNPs that are unlikely subjects for diversifying
selection. The approach, first applied to Neisseria meningitidis,
is termed multi-locus sequence typing (MLST) (Maiden et al.,
1998), and is illustrated in Figure 3.

Unlike bands on gels, the sequence data used by MLST are
unambiguous. This means that the effort of collecting data on
the allelic variants found in the community can be distributed
to researchers worldwide. Individual labs in remote locations
can determine the sequence of the loci used in the MLST
scheme, and then compare them with an online database
(mlst.net and pubmlst.net). If the allele is novel, it may be
added to the database for future users. Each isolate is defined
by the combination of alleles at the MLST loci. Each unique
allele is identified by an integer, and the combination of these
makes up the allelic profile and the sequence type (ST). MLST
has been applied to numerous organisms. One of the side
effects of the data collected by epidemiologists has been in the
study of homologous recombination (reviewed in this volume
by Feil). The wealth of discriminating data collected for
MLST has shown that in many named species, recombination
is a more frequent source of change at the MLST loci than
mutation.
Genomic Epidemiology

The genomic revolution promises to have a profound effect on
molecular epidemiology. While in the past, whole genome
analyses were the preserve of virologists, it is now economical
and, more importantly, easy to obtain quality data on a far
higher proportion of the bacterial (or protozoal) genome than
afforded by previous methods. Genomic methods have been
applied to outbreaks of diseases including tuberculosis (Gardy
et al., 2011; Walker et al., 2013), E. coli infections (Grad et al.,
2012; Mellmann et al., 2011) and cholera (Katz et al., 2013;
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Eppinger et al., 2014), and are becoming folded into the
routine epidemiologic work of public health authorities.

The pace of change in this field is such that any detailed
discussion of technology will be shortly superseded. Never-
theless, important principles can be defined. At present
multiple technologies for sequencing exist, and moreover,
multiple approaches for putting raw data together to make a
genome. The great majority of studies are more properly called
‘genomic’ rather than ‘whole genome’ methods, because in
hardly any cases have genomes been completely sequenced.
Instead, a very high proportion of the genome is determined.
While high-quality draft genomes can be used for many
interesting things, they are not finished: we do not know the
sequence of the chromosome all the way round from the
origin of replication.

Which parts of the genome get missed? This depends on
the sequencing platform and the methods of assembly, but
typically highly unstable regions such as repeats are prob-
lematic. These are of course the regions that are most useful for
short-term questions in epidemiology. In their absence, we can
look at single nucleotide polymorphisms elsewhere in the
genome. In comparing very closely related isolates that may
differ at a handful of SNPs, the possibility of false positives
becomes acute, so we must deal with the fact that different
technologies and analytic approaches have different error rates
(Croucher et al., 2013).

Taken together, the profusion of genomic methods means
that rather than removing ambiguity in the comparison of
closely related isolates, new sources of ambiguity have been
discovered. At the level of resolving more distantly related
isolates into major lineages, equivalent to MLST, genomics has
been highly successful and revealed both considerable vari-
ation within closely related STs, and perhaps surprisingly
shown that MLST in most cases effectively identified the major
lineages. The potential of methods that can sequence through
unstable repeat regions with high fidelity is real, but has not
been conclusively shown at the time of writing. This is likely to
change, but for the benefit to be felt the technology will have
to be cheap enough for many labs to use.
Phylodynamics and Using DNA Sequence to Study
Transmission

The most exciting recent development at the interface of
evolutionary biology and epidemiology has come about from
the proliferation of sequence data combined with methods
capable of making inferences about the history of a sample of
sequences from the structure of the genealogy underlying
them. A key concept is the coalescent (Kingman, 1982), which
describes the genealogy of a sample of sequences in terms
of how often their lineages ‘coalesce’ or come together to form
an internal node in the tree. Combined with a molecular
clock that relates the accumulation of sequence divergence to
time, this allows us to infer events that have happened in
the history of the sequences, most notably and relevant for
epidemiology, changes in population size. The basic rationale
is readily grasped, and accessible software is available to
implement the methods (Drummond et al., 2012; Bouckaert
et al., 2014).
As stated above we describe the structure of a genealogy by
looking at how often the lineages coalesce, relative to the
branch length, which in the case of a molecular clock is a proxy
for time. The most valuable data are sequences sampled over
time, providing ‘measurably evolving populations’ that can be
used to estimate the clock rate (Ewing et al., 2004). An alter-
native approach is to model transmission as a birth death
process, as discussed in Boskova et al. (2014).

The rate of coalescence over the tree is simply related to
population size by reflecting that in a smaller population in-
dividuals are more likely to share a parent in the previous
generation by chance. In fact the probability two individuals
share the same parent in the previous generation is the re-
ciprocal of population size. As a result the rate of coalescence
is higher in smaller populations. This allows inference as
to whether the population is expanding, has experienced a
bottleneck, or any of multiple other demographic and other
processes.

The ability to study changing population size from se-
quence alone can be used, with an estimate of the serial
interval or time between infection and transmission, to esti-
mate the reproductive number. Analysis of sequence variation
has been used to study pathogens including Influenza (Hedge
et al., 2013), V. cholerae (Katz et al., 2013), MERS (Cauchemez
et al., 2014) and the recent Ebola outbreak (Gire et al., 2014).
This work has shown the potential of the approach. While
these analyses are readily approached using the BEAST suite of
programs (Bouckaert et al., 2014; Drummond et al., 2012), as
usual it should not be assumed that default parameters are
appropriate.

Using sequence data to infer demographic history is dis-
tinct from using it to infer recent transmission. At the ex-
tremely local level it is hoped that we might be able to define
infector and infected using high-resolution sequence data
alone. Indeed, highly resolving methods that stop short of the
whole genome have been used as a valuable complement to
classical contact tracing for the control of gonococcal disease
(Bilek et al., 2007). At a higher level we might ask whether
cases of disease occurring some distance apart are due to
closely related pathogens, which might imply transmission
over greater distances – for an example, involving wind-borne
transmission of avian influenza see Ypma et al. (2013b). The
overall principle is that the transmission tree is considered
closely related to the phylogenetic tree (Ypma et al., 2013c).
To be useful this need not be the precise resolution of who
infected whom; different epidemiological events like super-
spreading (Ypma et al., 2013a) may leave distinct signatures in
the resulting tree structure (Colijn and Gardy, 2014). Software
packages are becoming available that implement multiple
methods to probe sequence data to provide the detailed his-
tory of an outbreak (Jombart et al., 2014a,b). However, con-
cerns exist over the potential for within-host evolution to
produce sequence diversity that can obscure true transmission
networks (Didelot et al., 2014; Worby et al., 2014). The
amount of diversification that occurs within the host is not
known in most cases, but may be large (Nasser et al., 2014).
Coupled with the uncertainty arising from imperfect sampling
and other missing data, it is likely that the most valuable uses
of sequence data will be as a complement to traditional epi-
demiologic approaches (Ypma et al., 2012).
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Conclusion

Infectious disease epidemiology is a practical science, con-
cerned with minimizing the impact of pathogens on public
health. As both pathogens and their hosts have evolved, evo-
lutionary biology is relevant to understanding the nature of
their interactions for fitness, and also in resolving the history
of pathogen transmission. Mathematical models can explore
the consequences of different selective scenarios, and
molecular data can define strains and the genetic variation that
is the raw material on which natural selection acts. Recent
advances, especially in the rapid determination of sequence
data, are bringing evolutionary biology ever closer to the
clinic.
See also: Evolutionary Medicine IV. Evolution and Emergence of
Novel Pathogens. Recombination in Bacterial Populations
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