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Reversible protein S-palmitoylation confers spatiotemporal control of protein function by
modulating protein stability, trafficking and activity, as well as protein–protein and
membrane–protein associations. Enabled by technological advances, global studies revealed
S-palmitoylation to be an important and pervasive posttranslational modification in eukar-
yotes with the potential to coordinate diverse biological processes as cells transition from
one state to another. Here, we review the strategies and tools to analyze in vivo protein
palmitoylation and interrogate the functions of the enzymes that put on and take off
palmitate from proteins. We also highlight palmitoyl proteins and palmitoylation-related
enzymes that are associated with cellular differentiation and/or tissue development in
yeasts, protozoa, mammals, plants and other model eukaryotes.

Introduction
Protein S-acylation or S-palmitoylation involves the posttranslational addition of fatty acyl chains,
typically a palmitate (C16:0), to cysteine residues of proteins via thioester linkages (Figure 1A). In
contrast with other forms of protein lipidation, S-palmitoylation is uniquely reversible due to the
high-energy thioester bond formed between the acyl group and the cysteine side chain, potentially
allowing for rapid spatiotemporal control of protein function akin to protein phosphorylation.
S-Palmitoylation predominantly serves to target proteins to specific membrane compartments and/or
microdomains [1–4]. While typically not the primary membrane association signal, S-palmitoylation
often acts in concert with other lipid modifications, such as N-myristoylation and prenylation, to
determine the intracellular distribution of soluble proteins [2–4]. By influencing protein localization
and trafficking, palmitoylation/depalmitoylation can have critical effects on protein function as epito-
mized by compartmentalized Ras signaling, where spatial segregation of distinct signal transduction
modules diversifies the signaling outputs by a single protein [5,6]. Palmitoylation may also regulate
protein activity in diverse ways, such as inducing protein conformational changes, modulating protein
stability and protein–protein interactions and interacting with other posttranslational modifications
[7–12]. These functional consequences of protein palmitoylation are not mutually exclusive, and a
single palmitoylation event can simultaneously modulate multiple aspects of protein function [13].
S-Palmitoylation of intracellular proteins is mainly mediated by an evolutionarily conserved family

of palmitoyl acyltransferases (PATs), which are identified by the characteristic catalytic
Asp-His-His-Cys (DHHC) motif embedded within a cysteine-rich domain. First discovered in
budding yeast Saccharomyces cerevisiae [14,15], PAT orthologs are found in all eukaryotes, ranging
from 5 PATs in fission yeast Schizosaccharomyces pombe to ∼23 in mammals and 24 in Arabidopsis.
While there is overlapping substrate specificity between multiple PATs [16,17], it is clear that there are
additional specificity determinants in the variable domains of the PATs [18] as well as regulatory
mechanisms that determine the context-dependent protein substrate pool and function of individual
enzymes. Regulation of specific PATs at the transcriptional [19], translational [20] and posttransla-
tional [21] levels has been reported with significant changes in the palmitoylation state of the corre-
sponding protein substrates. Additionally, PAT activity can be determined by its subcellular trafficking
[22], oligomerization state [23] or additional protein subunits [14,24,25]. Notably, these are isolated
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examples in specific host systems looking at a few protein substrates. In general, the in vivo substrate selectivity
and regulation of PATs as well as the physiological significance of PAT-mediated protein palmitoylation remain
to be fully characterized.
Until recently, depalmitoylation of cytosolic cysteine residues has been attributed to only two related acyl

protein thioesterases APT1/LYPLA1 and APT2/LYPLA2 [26]. Since APT1 and APT2 are both palmitoylated,
autoregulatory mechanisms are proposed where the depalmitoylating enzymes control their physical access to
protein substrates [27,28]. Studies focusing on serine hydrolases led to the independent discovery of the
ABHD17 proteins that depalmitoylate N-Ras and PSD-95 in mammalian cells [29,30]. ABHD12 and ABHD13
also exhibited depalmitoylating activities, albeit weaker than ABHD17, when tested against PSD-95 as the sub-
strate [29]. Interestingly, an ABDH13 ortholog in Toxoplasma, TgPpt1, was demonstrated to depalmitoylate
proteins and to have important functions in regulating host cell invasion by the parasite [31]. These findings
suggest that the family of depalmitoylating enzymes may be larger and more diverse than previously appre-
ciated. Like the PATs, the substrate selectivity and biological importance of depalmitoylating enzymes remain
to be determined, but it is clear that cellular context matter and factors, such as cell type and physiology, can
affect depalmitoylating activity toward specific protein substrates [29,30].
This review focuses on protein S-palmitoylation in the context of cellular differentiation, which is the process

by which cells becomes more specialized to perform specific functions. We will introduce the main chemical
strategies and various chemical tools to analyze in vivo protein palmitoylation, and to interrogate the activity of
palmitoylating and depalmitoylating enzymes in different cellular states. We will then highlight palmitoyl pro-
teins and palmitoylation-related enzymes that are involved with cellular and tissue development in yeasts,
protozoa, mammals, plants and other model eukaryotes. Other forms of protein acylation such as
N-myristoylation, N-palmitoylation and O-palmitoleoylation of secreted proteins (e.g. Wnt and Hedgehog) and
the family of membrane-bound O-acyltransferases that mediate these modifications will not be included in this
review [32,33].

Chemical strategies and tools to study protein
S-palmitoylation
Advances in our understanding of protein S-palmitoylation over the last decade can be largely attributed to the
development of chemical tools that enable rapid quantitative analyses of palmitoylated proteins. These chemical
tools can be broadly categorized into two main strategies. In the first strategy (Figure 1B), cells are metabolically
labeled with fatty acid chemical reporters, which are site-specifically installed onto cysteines of target proteins
via native thioester linkages by the endogenous enzymatic machinery. Visualization or enrichment probes are
subsequently introduced using bioorthogonal labeling reactions to allow detection or identification of modified
proteins [34,35]. Because these bioorthogonal fatty acid chemical reporters can be competed away by endogen-
ous substrates, they have been employed in pulse-chase experiments to monitor palmitate turnover kinetics on
proteins [36,37]. Fatty acid chemical reporters with cross-linking functionalities have also been developed to
interrogate protein–protein interactions that depend on protein palmitoylation [38]. The second strategy
involves the selective chemical modification of thioester-linked cysteines in S-palmitoylated proteins
(Figure 1C). After initial capping of free thiols on proteins, selective cleavage of thioester linkages liberates
thiols that can be selectively labeled to facilitate detection and/or enrichment by biochemical methods or mass
spectrometry [39,40]. Methods, such as acyl-biotin exchange (ABE) and acyl-resin-assisted capture, employ this
strategy. Notably, the selective hydrolysis and removal of thioester-linked acyl groups facilitate the identification
of palmitoylation sites since direct mass spectrometry detection of acylated peptides can be challenging [41]. In
a recent variation of the latter strategy, acyl-PEG switch/exchange uses PEGylated thiol-reactive reagents to
induce electrophoretic mobility shift of modified proteins to monitor the relative abundance of palmitoylated
versus nonpalmitoylated forms of target proteins and the number of palmitoylation sites [29,42,43]. Both strat-
egies have been successfully employed to detect and identify S-palmitoylated proteins in global and focused
studies of various cell types.
The ability to visualize and profile dynamically S-palmitoylated proteins on a global scale has greatly

expanded the scope of the modification by revealing new palmitoylated proteins and regulatory roles of protein
palmitoylation in eukaryotic physiology and disease. Since the first global profiling of palmitoylated proteins in
yeast by Roth et al. [16], dozens of palmitoyl proteomes consisting of ∼10% of the proteomes in yeasts, proto-
zoans [44], plants [45,46] and mammalian systems have been reported [47–49]. Despite the lack of a ‘consensus
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sequence’ surrounding palmitoylation sites, the ever increasing number of palmitoyl proteomes led to the devel-
opment and refinement of in silico predictive programs [50–53], which are robust in predicting modification
sites for proteins with canonical palmitoylation motifs (e.g. dual acylation, cysteines near to prenylation motifs
or transmembrane domains) and for those with validated palmitoylated homologs or orthologs. Our predictive
ability for proteins with atypical modification sites will likely continue to improve as the list and diversity of
experimentally validated proteins and palmitoylation sites expand.
Improving the quality, analysis and curation of palmitoyl proteomes will be important as the field moves

toward comparative proteomics to identify palmitoylation events that are critical for various biological phenom-
ena and disease states. Notably, the overlap between palmitoyl proteomes obtained using the chemical reporter
strategy and those obtained using the selective chemical modification strategy is limited, reflecting the different
sources of false positives from each technique (Table 1) [54]. With metabolic labeling, metabolism of the fatty
acid chemical reporters can lead to enrichment of proteins with other forms of protein lipidation, although
alk-16 (also known as 16-ODYA) has been shown to be preferentially incorporated into palmitoylated proteins
[34,48]. The biotin switch strategy will enrich for proteins with any thioester-linked modifications, which also
include SUMOylation and ubiquitination. Marrying these independent complementary approaches minimizes
these pitfalls for more accurate global analyses of protein S-palmitoylation in cells [44]. Since bona fide palmi-
toylated proteins are more likely to be identified using multiple methods, Blanc et al. [54] combined the data

Figure 1. Protein S-palmitoylation and analytical strategies.

(A) Dynamic S-palmitoylation is mediated by DHHC-containing PATs (DHHC-PATs) and acyl protein thioesterases that put on and take off palmitate

from cysteine residues of proteins, respectively. (B) Metabolic and bioorthogonal labeling strategy using fatty acid chemical reporters as well as (C)

the selective chemical labeling strategy for analysis of protein S-palmitoylation. In both strategies, the incorporation of detection or enrichment

probes in the final step allows for direct detection or enrichment and mass spectrometry identification of tagged proteins.
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from existing databases, global and focused palmitoylation studies to generate a high confidence SwissPalm
database for improved prediction of palmitoylated proteins and modification sites. Comparison of SwissPalm
with other databases uncovered potentially extensive cross-talk between palmitoylation and various posttransla-
tional modifications [54].
In addition to biochemical analyses, the ability to rapidly and selectively perturb the modification in cells

will be valuable toward understanding the biological significance of palmitoylation in different physiological
contexts. Chemical inhibitors provide a rapid and convenient method to perturb protein palmitoylation, espe-
cially in organisms and cells that are challenging to manipulate genetically. Readers are referred to a review that

Table 1 Chemical tools to study protein S-palmitoylation

Fatty acid
probes Principle of method Detection

Identification of
modified proteins

Variations/other
applications

Metabolic labeling

Radiolabelled (e.g.
3H, 13C, 125I) fatty
acids

Autoradiographic
detection

Sensitive and
quantitative

X Indirect identification
(e.g. immunoprecipitation
and overexpression)

Used in pulse-chase
experiments to determine
turnover kineticsX Cumbersome and

requires long
exposure periods or
additional safety
protocols
X False positives as a
result of fatty acid
metabolism, including
crosstalk between
different forms of
protein fatty acylation

X Requires prior
knowledge of candidate
proteins

Bioorthogonal
fatty acid chemical
reporters (e.g.
azide-, alkyne-
functionalized)

Introduction of custom
detection and/or
enrichment probes
post-metabolic labeling
via bioorthogonal
reactions

Rapid, sensitive and
quantitative non-
radioactive detection

Selective enrichment of
palmitoylproteomes

Used in pulse-chase
experiments to determine
turnover kinetics

Multiplex detection is
possible with
orthogonal reporters
and detection probes
X False positives as a
result of fatty acid
metabolism, including
crosstalk between
different forms of
protein fatty acylation

X Challenging site ID due
to difficult MS detection of
acylated peptides

Fatty acid chemical reporters
with crosslinking
functionalities enable the
interrogation of
palmitoylation-specific
protein-protein interactions

X False positives as a
result of fatty acid
metabolism, including
crosstalk between different
forms of protein fatty
acylation

Method Principle of method Detection
Identification of
modified proteins

Variations/other
applications

Selective chemical labeling of palmitoylated cysteines

Acyl-biotin
exchange (ABE) or
Acyl-resin-assisted
capture (acyl-Rac)

After initial capping of
free thiols, selective
cleavage of thioester
bonds liberates free
thiols for reaction with
thiol-reactive reagents
that enable detection
and enrichment

Rapid, sensitive and
quantitative non-
radioactive detection

Selective enrichment of
palmitoylproteomes

The population of modified
proteins can be determined
using thiol-reactive reagent
that alters protein
electophoretic mobility
(acyl-PEG switch/exchange)

Identification of
modification sites

Acyl-PEG-
exchange (APE) or
Acyl-PEG-switch

X False positives with
other thioester-linked
PTMs and also with
incomplete thiol
capping

X False positives with other
thioester-linked PTMs and
also with incomplete thiol
capping

X symbol indicates the limitations of each strategy. PTMs, posttranslational modifications.
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includes a dedicated section on the different classes of small molecule inhibitors targeting palmitoylating and
depalmitoylating enzymes [55]. ‘Clickable’ forms of some inhibitors have also been used to discover and valid-
ate enzymes that modulate protein palmitoylation in cells [30,31,36]. It is important to note that although
2-bromopalmitate has been and remains one of the most widely used inhibitors of protein palmitoylation, it
also inhibits fatty lipid metabolism and should not be used in isolation to prove or interrogate the function of
protein S-palmitoylation. Undoubtedly, the development of potent and highly selective chemical inhibitors for
PATs and depalmitoylating thioesterases will be pivotal toward dissecting their functional contributions and
uncovering insights into the regulation of dynamic protein palmitoylation.

S-Palmitoylation in yeast cellular differentiation
The fission yeast S. pombe is an emerging model organism for palmitoylation studies due to its genetic tract-
ability and relatively simple palmitoylation machinery compared with other eukaryotes. Studies have associated
palmitoylation of several important signal transduction proteins with S. pombe sexual differentiation, which
involves mating between haploid cells of opposite mating types, entry and progression through meiosis to yield
haploid spores. Using the fission yeast system, where a single Ras ortholog is involved in two distinct signaling
pathways with quantifiable phenotypes, the Chang laboratory showed that Ras1 signal transduction is spatially
compartmentalized with cellular morphogenesis regulated by nonpalmitoylated Ras1 at endomembranes and
mating requiring palmitoylated Ras1 at the plasma membrane [5]. Similar to the S. cerevisiase PAT ERF2 that
preferentially modifies heterolipidated GTPases [16], the S. pombe Erf2 ortholog is the primary PAT that palmi-
toylates Ras1 and two other small GTPases — Rho2 and Rho3 [19,56]. High expression levels of SpErf2 and its
noncatalytic protein cofactor SpErf4 during meiosis are required for Rho3 palmitoylation, and dysregulation of
Rho3 palmitoylation triggers aberrant meiotic divisions in sensitized cells [19]. Rho2 palmitoylation is needed
for morphogenesis and cell wall integrity of vegetative cells via the Pmk1 pathway that is antagonistically regu-
lated by Rho3 [56]. Future work will reveal the regulatory roles and mechanisms of SpErf2-mediated palmitoy-
lation in coordinating the signaling outputs of these small GTPases as cells exit vegetative growth and undergo
sexual differentiation.
Cryptococcus neoformans is a facultative intracellular fungal pathogen that is able to survive and proliferate

in the harsh environment of macrophage phagolysosomes. Recent investigations uncover a major role for
PAT-mediated protein palmitoylation in the virulent potential of C. neoformans. The PFA4 gene encoding a
DHHC-PAT was identified from screening genes that influenced host–pathogen interactions, and loss of PFA4
function has dramatic effects on morphology, stress tolerance and virulence potential of C. neoformans [57].
Comparative palmitoyl proteome profiling identified CnPFA4 protein substrates that are involved in cell wall
synthesis, membrane transport, signal transduction and membrane trafficking, which is consistent with the
pleiotropic defects observed for pfa4Δ cells [57]. CnPFA4 was also identified as the major PAT responsible for
Ras1 palmitoylation, which is required for Ras1 localization at the plasma membrane and pathogenesis in a
cryptococcosis murine model [58,59]. Ras1 palmitoylation is not required for C. neoformans sexual differenti-
ation [58], suggesting palmitoylation-dependent compartmentalization of Ras1 signaling.
Protein palmitoylation can affect the function of nuclear proteins. In S. cerevisiae, PFA4-mediated palmitoy-

lation of the telomere-binding protein RIF1 altered heterochromatin dynamics and transcriptional silencing
[60]. It is unclear if RIF1 palmitoylation is regulated, but with 25% of the putative palmitoylated proteins in
mouse and human cells being nuclear proteins [54], this finding raises the interesting possibility that palmitoy-
lation of nuclear proteins may be important in direct modulation of global gene expression during cellular
transitions.

S-Palmitoylation in the virulence and transmission of
protozoan parasites
Apicomplexan parasites are a large group of obligate intracellular protozoan parasites. Most members of this
group have complex asexual and sexual reproduction cycles within multiple hosts, with survival requiring rapid
adjustment to distinct environments and precise spatiotemporal coordination of key cellular processes for host
cell invasion, replication and egress. Recent work demonstrated the pervasive roles of protein S-palmitoylation
in the developmental life cycles of Toxoplasma gondii and Plasmodium falciparum and, by extension, their
pathogenesis. Treatment with 2-bromopalmitate yielded pleiotropic developmental defects and reduced the
invasive capacity of T. gondii and P. falciparum [44,61]. Interestingly, chemical inhibition of depalmitoylation
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activity by palmitoyl protein thioesterase 1 TgPPT1 significantly enhanced host cell invasion by T. gondii [31].
Palmitoyl proteome analyses in T. gondii and P. falciparum reveal palmitoyl proteins that are needed for the
function of specialized invasion organelles, providing further insights into the apparently essential roles of
dynamic protein palmitoylation on host cell invasion by these parasites [44,62]. Many components of the inva-
sion motor glideosome complex, including the well-known GAP45, are palmitoylated, disruption of which is
associated with motility and invasion defects [44,62,63]. Palmitoylation of TgAMA1 and Pf/TgARO is required
for proper apical localization of specialized invasion-associated secretory organelles called rhoptries [62,64,65].
Consistent with the importance of protein palmitoylation in rhoptry function, disruption of rhoptry-localized
TgDHHC7 responsible for TgARO palmitoylation blocks host invasion [64,66]. Global studies of PATs in
Toxoplasma and Plasmodium support functional specialization by the enzymes across different life cycle stages
of the parasites, with PATs’ function determined by differential subcellular localization, expression patterns and
posttranslational modifications [66–68]. These studies also implicate protein palmitoylation in other develop-
mental stages of apicomplexan parasites. For example, PfDHHC2 is essential for the progression through both
asexual and sexual stages in the mammalian and mosquito hosts, respectively [69]. In Plasmodium berghei,
PbDHHC10 expression is translationally repressed in gametocyetes and briefly translated during ookinete for-
mation to mediate palmitoylation events that are required for crystalloid formation and parasite transmission
from the mammalian host to the mosquito vector [70]. PbHHC3 and PbDHHC9 appear to have functionally
overlapping roles in mediating parasite sexual differentiation in the insect host [71,72].
Protein palmitoylation also plays a key role in the life cycle of a different protozoan parasite Giardia lamblia,

which is one of the major global causes of diarrheal disease. Encystation of the parasite to form cysts is critical
for the survival of the parasite outside the host and its transmission. In addition to a changing palmitoyl prote-
ome during encystation, Merino et al. [73] showed that genetic and chemical perturbation of protein palmitoy-
lation by the different PATs in G. lamblia can negatively affect parasite differentiation into cysts. Identifying
the palmitoyl proteins and the respective PATs participating in this key cellular transition will open up oppor-
tunities for therapeutic interventions.

S-Palmitoylation in mammalian tissue development
Meta-analysis of mammalian palmitoyl proteomes reveals dominant roles for protein palmitoylation in neural
development and function, with a striking proportion of synaptic genes encoding for palmitoyl proteins [74],
including neurotransmitter receptors, transporters, adhesion molecules, scaffolding proteins and vesicular traf-
ficking proteins [75]. Reduced ZDHHC2 expression was observed in degenerating dopaminergic neurons and
in patients with incipient Parkinson’s disease [76]. Additionally, mutations in PATs, including ZDHHC17/
ZDHHC13 (HIP14/HIP14L) and ZDHHC8, are associated with neurological disorders such as Huntington’s
disease and schizophrenia, respectively [18,75]. The spine density deficits in a schizophrenia mouse model are
palmitoylation-dependent and can be rescued in vivo by overexpressing ZDHHC8 or one of its substrates —
the constitutively active brain-specific splice isoform of Cdc42-palm [47,77–79]. By regulating its subcellular
localization and RhoGDI (Rho guanine nucleotide dissociation inhibitor) binding, palmitoylation of
Cdc42-palm is required for normal dendritic spine development during synaptogenesis [47,80]. Palmitoylation
of other proteins, including paralemmin [81] and actin regulator LIMK1 [82], have also been shown to affect
dendritic spine maturation that is critical for neuronal plasticity. The modulation of global protein palmitoyla-
tion in response to synaptic activity and cellular signals further supports the regulatory roles of protein palmi-
toylation in neuronal plasticity and development [47]. Palmitate turnover of the most abundant neural
scaffolding protein PSD-95 is accelerated upon glutamate receptor activation, and this down-regulates receptor
signaling activity [83]. On the other hand, suppression of neural activity triggers the ZDHHC2 translocation to
postsynaptic membrane, leading to increased PSD-95 palmitoylation and synaptic accumulation [22]. Synaptic
activity increases ZDHHC5-mediated palmitoylation of intracellular cadherin-binding protein δ-catenin and
stabilizes synaptic cadherin adhesion complexes that are critical for synaptic plasticity [84]. In cultured neur-
onal stem cells, induction of neural differentiation led to the rapid degradation of ZDHHC5 and reduced flotil-
lin palmitoylation [21], implicating protein palmitoylation in neural stem cell differentiation. Palmitoylation
has been shown to stabilize EID1, an inhibitor of the CREB-binding protein/p300 epigenetic regulator for
neural stem cell differentiation [85].
The pivotal role for PATs and their substrates in the development of other tissues that are not part of the

nervous system is indicated by the associations between dysregulated protein palmitoylation with cancers, which
reflect defective control over cellular proliferation and differentiation [74]. The involvement of palmitoyl
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proteins, associated enzymes in cellular transformation and tumorigenesis are covered in a detailed review by
Yeste-Velasco et al. [55]. Here, we focus on the role of protein palmitoylation in cellular and tissue development,
particularly in modulating growth factor and hormone signaling, which mediate intercellular communication
and regulate gene expression programs that drive cellular differentiation in various developmental stages.
Palmitoylation of the epidermal growth factor receptor (EGFR) by ZDHHC20 limits EGFR signaling by inhibit-
ing autophosphorylation and recruitment of the downstream adapter protein Grb2 and increasing receptor turn-
over [86]. For estrogen receptors (ERs), progesterone receptors and the androgen receptors, palmitoylation by
ZDHHC7 and ZDHHC21 is crucial for their plasma membrane localization and function in mediating rapid
tissue-specific responses to steroid hormones [87–89]. Upon estradiol binding, ERα is depalmitoylated and dis-
sociates from caveolin-1, after which it is available to downstream signaling targets in the RK/MAPK and PI3K/
AKT pathways [89]. Mice that are deficient in ZDHHC21 activity showed defects in maintaining skin homeosta-
sis and hair follicle differentiation that results in hair loss [90], though it remains to be determined if these
phenotypes can be attributed to defective steroid hormone signaling. Other protein substrates of ZDHHC7 or
ZDHHC21 include Scribble [91] as well as the death receptor Fas and kinase Lck, highlighting the additional
roles of these two PATs in modulating cellular polarity and proliferation [92,93]. ZDHHC13 knockout mice with
pleiotropic developmental abnormalities of the hair, skin and bone hint at yet to be identified protein palmitoyla-
tion events that affect normal mammalian cellular and tissue development [94].

S-Palmitoylation in plants
Compared with yeast and mammalian systems, the study of protein S-palmitoylation in plants is in the early
stages. There are no reports of plant palmitoyl protein thioesterases to date. Of the 24 Arabidopsis thaliana
DHHC-PATs [95], only a few have been characterized in any detail in terms of their biological roles. AtPAT10
is involved in vacuolar and tonoplast function, while AtPAT24/TIP1 has been implicated in developmental pro-
cesses including pollen tube and root hair growth, shoot branching and cell polarity [96,97]. Recently,
AtPAT13 and AtPAT14 have been shown to be involved in leaf senescence [98,99]. Identifying their protein
substrates will be integral toward understanding how PATs and protein palmitoylation coordinate cellular
differentiation and development in plants, but may require the use of independent methods to confidently
establish PAT–substrate relationships [45]. Among the ∼500 candidate S-palmitoylated proteins in plants
identified using the biotin switch strategy, protein kinases are overrepresented [45,46], suggesting that
S-palmitoylation may have a major role in modulating phosphorylation signaling cascades in plants. These include
RLK (receptor-like kinase) superfamily members that contain conserved cysteines adjacent to predicted transmem-
brane domains or N-myristoylated sites [45]. S-Palmitoylation of the LIP1 and LIP2 receptor-like cytoplasmic
kinases is needed for directing pollen tube growth [100]. Non-RLKs such as the calcium-dependent protein kinase
OSCPK2 in rice require both N-myristoylation and S-palmitoylation for proper subcellular localization [101].
Calcineurin B-like proteins, CBL1 and CBL2, which recruit Ser/Thr protein kinases during Ca2+ signaling, require
S-palmitoylation for targeting to the right membrane compartments in the cell [102,103]. Palmitoylation-deficient
CBL2 fails to localize to the tonoplast and led to seed germination defects [102]. Besides individual proteins, palmi-
toylation can also direct the cellular distribution of large protein complexes. Kumar et al. [104] demonstrated that
all catalytic subunits within the cellulose synthase complex are S-acylated and that the modification is required for
correct localization of the complex to the plasma membrane and normal cellulose synthesis.

S-Palmitoylation in other model organisms
In zebrafish, strong phenotypes observed with various PAT deficiencies support the importance of protein pal-
mitoylation in cellular differentiation and animal development. ZDHHC13 modulates bone morphogenetic
protein signaling for lineage specification during embryogenesis [105]. A preliminary study using
2-bromopalmitate further implicates PATs and protein palmitoylation in mediating the transition from
maternal to zygotic transcriptional programs after embryo fertilization [106]. Knockdown of DHHC15b and
DHHC16 negatively affects forebrain development via dysregulation of neuronal differentiation and neural
stem cell proliferation, respectively [107,108]. The forebrain developmental defect observed in animals deficient
in ZDHHC15b activity is further associated with poor learning ability [108].
In Caenorhabditis elegans, lysosome-related fibrous body-membrane organelles (FB-MOs) are important for

asymmetric cytoplasmic partitioning. Worms with mutations in spe-10, which encodes a DHHC-containing
protein localized to FB-MOs, showed defective spermatogenesis and are sterile, suggesting a role for
SPE-10-mediated protein palmitoylation in establishing cellular polarity during cellular differentiation [109]. A
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systematic study of the other 14 DHHC-containing proteins in C. elegans using single and double RNAi knock-
downs, however, did not yield any obvious phenotypes [110]. A similar functional analysis remains to be per-
formed for Drosophila, in which tissue- and sex-specific expression of specific DHHC-containing genes have
been observed [111].

Perspectives
This is an exciting time to be studying protein S-palmitoylation. Posttranslational modifications increase the
proteome complexity, and pervasive reversible modifications like protein palmitoylation have the potential to
orchestrate diverse biological processes involved as cells transition from one state to another. The tools are in
place to monitor in vivo palmitoylation stoichiometry and dynamics in various eukaryotic systems.
Increasingly, selective small molecule inhibitors complement genetic approaches to profile and rapidly interro-
gate the functional contributions of palmitoylating and depalmitoylating enzymes. Ongoing efforts to minimize
false positives, validate and curate palmitoyl proteomes will continue to enhance in silico predictive programs
and establish the framework for comparative proteomics studies. We are now poised to identify and dissect crit-
ical palmitoylation events that regulate and/or are regulated during cellular differentiation and navigate the
complex regulatory networks governing eukaryotic physiology and disease.
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