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Abstract
Background: We present an analysis of the utility of multispectral versus standard RGB imagery
for routine H&E stained histopathology images, in particular for pixel-level classification of nuclei.
Our multispectral imagery has 29 spectral bands, spaced 10 nm within the visual range of 420–700
nm. It has been hypothesized that the additional spectral bands contain further information useful
for classification as compared to the 3 standard bands of RGB imagery. We present analyses of our
data designed to test this hypothesis.

Results: For classification using all available image bands, we find the best performance (equal
tradeoff between detection rate and false alarm rate) is obtained from either the multispectral or
our "ccd" RGB imagery, with an overall increase in performance of 0.79% compared to the next
best performing image type. For classification using single image bands, the single best multispectral
band (in the red portion of the spectrum) gave a performance increase of 0.57%, compared to
performance of the single best RGB band (red). Additionally, red bands had the highest coefficients/
preference in our classifiers. Principal components analysis of the multispectral imagery indicates
only two significant image bands, which is not surprising given the presence of two stains.

Conclusion: Our results indicate that multispectral imagery for routine H&E stained
histopathology provides minimal additional spectral information for a pixel-level nuclear
classification task than would standard RGB imagery.

Background
The use of multispectral imaging capabilities is relatively
new to the field of cyto- and histo-pathology, particularly

for transmitted brightfield microscopy [1,2]. Recent pub-
lications (e.g., [3-6]) have begun to explore the use of
extra information contained in such spectral data (29–33
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wavelengths in the visible spectrum, from 400 nm to 720
nm, spaced 10 nm apart), in particular for multiply
stained (>2 stains) specimens. Specifically, there have
been comparisons of spectral unmixing algorithms (to
separate constituent dyes) which demonstrate the advan-
tage of multispectral data [5,7]. The added benefit of mul-
tispectral imaging for analysis of routine H&E cyto/
histopathology imagery, however, is still largely
unknown, although some promising results are presented
in [6].

While the use of multispectral light microscopy is new to
cyto/histopathology, many researchers have used single
or dual narrow-band filters to enhance imagery for partic-
ular stains, most using a red filter (or the red channel of
an RGB image) for enhancement of Hematoxylin or Feul-
gen staining [8-12], and some using a green filter for
enhancement of Feulgen staining [13-16].

We present analyses of our multispectral data designed to
test the hypothesis that the additional spectral bands con-
tain more information useful for classification as com-
pared to the 3 standard bands of RGB microscopy
imagery. The work presented here is an extension of the
work presented in [17].

Results and discussion
Classification using all image bands
We split our dataset in (approximately) half to create a set
of training images and a set of test images; half each of the
benign and malignant subsets were randomly assigned to
the training or test set to allow for even representation of
benign and malignant characteristics in both sets. (One
less benign image is included in the training set.) Apply-
ing all six classifiers to each image, using all available
image bands, and averaging over the images contained in
the test (out-of-sample) set, we achieve the results shown
in Figure 1. Since the AFE tool GENIE is stochastic, we
average ten independent runs. We would like to point out
that the quadratic SVM (NLSVM) was run with only 10%
of the total training data.

The best performance P is obtained with either the multi-
spectral or ccd image stacks, with ML and AFE performing
better with ccd imagery, and MED, FLDA, SAM, and both
SVMs performing better with multispectral. It is important
to note, however, that these increases in performance are
only, on average, 0.79%. We use a paired Wilcoxon signed
rank test to determine the statistical significance of these
differences in performance, and show our results in Table
1; we see that less than half of these differences are statis-
tically significant.

We have shown in this section, using a pairwise Wilcoxon
signed rank test, that only a few performance differences

between multispectral and RGB imagery are statistically
significant. Furthermore, we note that these statistically
significant differences are 0.46%, 0.76%, and 0.38%
increase in favor of multispectral imagery over rgbequal,
truecolor, and ccd, respectively, for MED; 0.32% in favor
of multispectral over rgbequal for SAM; 0.58% in favor of
multispectral over rgbequal and 0.35% in favor of ccd
over multispectral for AFE; 1.06% in favor of multispectral
over rgbequal for LSVM; and 1.7%, 1.1%, and 1.1% in
favor of multispectral over rgbequal, truecolor, and ccd,
respectively, for NLSVM.

Classification using single image bands
To gain a better understanding of the relative contribu-
tions of specific image bands, we apply the ML, MED,
FLDA, and AFE classifiers to each individual image band
for each image type. We exclude the SAM classifier here
since it will fail on one-band images, and we exclude the
SVM for computational reasons (it would be prohibitively
computationally intensive to optimize kernel parameters
for each image band). Performance scores for classifica-
tion using single multispectral bands are shown in Figure
2A. Here we see the best performance scores occurring in
the red portion of the spectrum, with poorer performance
in the lower green portion and at the extremes of the spec-
trum.

Similarly, we note that for RGB images, the red channels
yield the best performance (Figure 2B); we choose the AFE
classifier for presentation here since it consistently yields
the highest performance scores, though the other three
classifiers display the same trends. While it may seem con-
tradictory that in RGB imagery the green channel outper-
forms the blue channel when the opposite is true in
multispectral imagery, it is important to remember how
the multispectral bands are allocated to each of the RGB
bands. Consider, for example, the allocation of bands in
rgbequal imagery: the bands from 510 nm to 600 nm are
averaged to yield the green channel. Referring to Figure 2A
we see that these bands have a large variation in perform-
ance. Thus, to obtain the green channel, we are averaging
multispectral bands, several of which have relatively good
performance. A similar situation occurs with the truecolor
and ccd imagery, albeit with a weighting applied to each
band.

We find the analysis of performance on single image
bands satisfactory from an intuitive standpoint. Since the
nuclei are stained with the blue-colored Hematoxylin
which will block red light, the red portions of the spec-
trum have the best contrast and perform the best for this
nuclear classification task. While green light is also
blocked by the Hematoxylin, so also is it blocked by the
Eosin, rendering the green portion of the spectrum less
informative for the task at hand.
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The distinction in performance of red channels between
the RGB image types is not large; we do note, however,
that the single best performing multispectral band yields
a performance increase of 0.57% as compared to the sin-
gle best RGB band, averaged over all 4 classifiers. This per-
formance increase is consistently in favor of single
multispectral image bands, but are not generally statisti-
cally significant (refer to Table 2).

We have shown in this section that performance differ-
ences between single multispectral image bands and sin-
gle RGB image bands are not statistically significant. This
would seem to indicate that the individual multispectral
image bands are not yielding any more specific spectral
information than are the individual RGB image bands for
this nuclear classification task.

Analysis of FLDA coefficients and bands chosen in AFE 
solutions
We expect that the single image bands which yield the best
performance should also be the bands used most often by
the classifiers. A direct examination of this is possible with
the FLDA and AFE classifiers. For FLDA, image bands are
weighted and summed; the higher the absolute value of
the coefficient, the more important the image band. Plots
of these coefficients for multispectral and RGB imagery
are shown in Figure 3. For the AFE classifier, more impor-
tant image bands should be chosen more often in solu-
tions; plots of the average number of times an image band
is chosen in an AFE solution are shown in Figure 4, where
the 10 independent runs have been averaged. Once again,
in both the FLDA and AFE classifier, we note a preference
for the red portion of the spectrum.

We note also that with RGB imagery, the FLDA classifier
weights the red channel the most, followed by the blue,
and finally green channels. Similarly, the AFE classifier
chooses the red channel most often, followed in turn by
blue and green. Comparing the multispectral plots for the
AFE and FLDA classifiers, there are striking similarities in
the relative use/weighting of bands, particularly in the red
portion of the spectrum (i.e., 580–650 nm). The more
prevalent use of green and blue bands in the AFE classifier,
compared to FLDA, may be due to the classifier's ability to
extract local features, making those bands more useful
beyond the raw spectral attributes used by the FLDA clas-
sifier. Overall, considering the disparate nature of these
two classifiers, we find it very interesting that they both
display similar preferences for particular image bands.

We use the analysis in this section as a complement to the
analysis of performance on single image bands. Specifi-
cally, we have shown that image bands that yielded the
better performances are also the image bands chosen pref-
erentially in both the FLDA and AFE classifiers. While it
may be more qualitatively satisfying if the plots of Figures
3 and 4 would bear more resemblance to those of Figure
2, it is important to remember that these two analyses are

Average performance using all available image bandsFigure 1
Average performance using all available image 
bands. Performance (Equation 1) is presented within the 
range [0, 1].

Table 1: Wilcoxon p-values for performances of multispectral versus RGB imagery.

Classifier Image Image
rgbequal truecolor ccd

ML multi 0.5440 0.0978 0.0822
MED multi 0.0000 0.0001 0.0000
SAM multi 0.0057 0.7343 0.8290
FLDA multi 0.0656 0.0752 0.1156
AFE multi 0.0030 0.1109 0.0285
LSVM multi 0.0012 0.6288 0.4284
NLSVM multi 0.0000 0.0047 0.0060

Wilcoxon paired signed-rank test p-values are presented to 5 significant digits, and bold entries correspond to statistical significance at the p-value 
of 0.05.
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very distinct from one another. In the case of Figure 2, we
are limiting the classifiers to a single image band, and
optimizing the performance, whereas for Figures 3 and 4
we are providing the classifiers with a choice of all availa-
ble image bands and optimizing performance. As a more
intuitive example, for the FLDA classifier, even if a specific
image band X performs well when used alone, this same
image band X may not yield as much information as, say,
the linear combination of bands Y and Z. We have shown,
therefore, in this analysis, a classifier preference for image
bands which yield better performance when used singly in
classification.

Principal components analysis of image stacks
We use Principal Components Analysis (PCA) as a dimen-
sionality reduction method to see how many "important"
bands actually exist within our multispectral image stacks.
We choose PCA rather than another dimensionality
reduction technique, such as Independent Components
Analysis (ICA), since PCA has a well established ranking

for the resulting vectors. While there has been at least one
ranking method suggested for ICA, the ratio of between-
class to within-class variance [18], there is not a univer-
sally accepted ranking for ICA vectors. While ICA may
yield a better separation of the independent causes in our
data (i.e., the two stains), we are interested in the use of a
dimensionality reduction technique mainly to help inter-
pret the (lack of) differences in performance we have pre-
sented for our multispectral and RGB imagery.

As input to the PCA algorithm, we use the (768·896) × 29
matrix where the rows correspond to a single image pixel
and the columns are the pixel values for each of the 29
multispectral image bands. We plot the average sorted
eigenvalues of the covariance matrix of this input in Figure
5, where for each image we normalize the eigenvalues so
that the largest eigenvalue has unit value. We note that
there appears to be one dominant eigenvalue, with the
second ranked eigenvalue at approximately one-tenth the
value of the dominant one; given the two stains in our his-

Table 2: Wilcoxon p-values for performances of the best multispectral band versus the red RGB channel.

Classifier Band Band
rgbequal R truecolor R ccd R

ML multi 590 nm 0.0316 0.3086 0.3389
MED multi 600 nm 0.0218 0.2452 0.1714
FLDA multi 620 nm 0.0017 0.2452 0.3600
AFE multi 660 nm 0.0937 0.4048 0.4653

Wilcoxon paired signed-rank test p-values are presented to 5 significant digits, and bold entries correspond to statistical significance at the p-value 
of 0.05.

Performance on single image bandsFigure 2
Performance on single image bands. (A) Out-of-sample performance scores on single multispectral bands. (B) Out-of-
sample performance scores on single RGB bands for the AFE classifier.
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topathology imagery, we expected two dominant eigen-
values. We show in Figure 6 the projection of an example
image onto the first three eigenvectors. The first projection
seems to highlight nuclear regions (i.e., the Hematoxylin),
the second projection seems to highlight the connective
tissue and cytoplasm (i.e., the Eosin), and the third and
subsequent projections do not have any obvious correla-
tion with the tissue stains.

We have thus found that PCA indicates the presence of 2
dominant eigenvalues, when we consider the principle
components responsible for 97% of the variation in the
data. This indicates the presence of only 2 information-
bearing bands in the imagery for this nuclear classification
task, providing insight into the approximately equivalent
performance of the RGB imagery and multispectral. We
have also shown that these 2 informative bands demon-
strate a direct relationship to the two image stains. Inter-
estingly, the first component is responsible for 93% of the
total variation; this band is generally correlated with
Hematoxylin, but is sometimes correlated instead with
Eosin. The possibility that other image bands may contain
important diagnostic information for further analysis is
still an open question [2].

Conclusion
We have shown a demonstration of performance for dif-
ferent image types and different classifiers in a nuclear
classification task. Results seem to indicate only slight per-
formance differences (less than 1%) using multispectral
imagery as opposed to our derived RGB imagery; while
these performance increases are small, we report them

here since they are a direct result from our experiments,
and may be statistically significant. These conclusions
hold for both classification using all available image
bands as well as using single image bands, indicating that
the multispectral bands do not contain much more dis-
criminatory spectral information than do the RGB bands
for this nuclear classification task. There are, undoubtedly,
a number of metrics that could be used in a study such as
this, and we may have been able to find a metric for which
multispectral would fare better (or worse) than presented
here. However, we wanted to use a metric that provides an
equal trade-off between two commonly used metrics
(detection rate and false alarm rate). We have also shown
that the single image bands with the best performance are
the image bands chosen more often/weighted more heav-
ily by the AFE and FLDA classifiers. Finally, we have
shown through the use of PCA as a dimensionality reduc-
tion method, that only 2 image bands are carrying 97% of
the variation in our image data, and appear to be corre-
lated with the two image stains. This result provides some
insight into the roughly equivalent performance of RGB
imagery to multispectral. While the results presented here
are intriguing, they are by no means complete, since we
are considering only a single pixel-level classification task.
Future work will continue to compare multispectral with
RGB imagery for further classification tasks, as well as
other image analysis tasks, including object-level analysis.
In particular, we are currently researching methods to seg-
ment (i.e., delineate) individual nuclei using the results of
these pixel-level classifications.

FLDA coefficientsFigure 3
FLDA coefficients. (A) FLDA coefficients for multispectral imagery. (B) FLDA coefficients for RGB imagery.
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Methods
Sample preparation and image acquisition
Our dataset contains 58 H&E stained histopathology
images of breast tissue from the Yale Tissue Microarray
Facility [19]. The data was captured from 5 microarrays
(ytma10, 12, 49, and 55), with (6, 6, 34, and 6) images
captured per array, respectively; in total we have 26 malig-

nant images, and 32 benign (including 6 normal from
ytma55). Our 58 images are not microarray images in the
general sense since we are dealing with single histopathol-
ogy images as might be obtained from standard clinical
biopsy specimens. The multispectral images have 29
bands, spaced 10 nm apart, ranging within the visible
spectrum from 420 to 700 nm, acquired using the VariS-
pec™ (CRi, Woburn, MA) liquid crystal tunable filter and
a typical clinical pathology microscope setup with a 40×
objective (400× total magnification). Each band is repre-
sented in an image stack as an 8 bit, 768 × 896 grayscale
image; an example is shown in Figure 7. It should be
noted that each image band has been corrected for illumi-
nation differences via a flat-fielding operation; this is part
of the acquisition software included with the VariSpec™.

Derivation of RGB imagery
One could foresee many methods for the derivation of
RGB imagery from multispectral. We use here:

1. rgbequal: created by (approximately) equally allocat-
ing the 29 bands to R, G, and B, similar to the approach in
[7], reflecting a rough approximation of the three spectral
ranges associated with the three colors red, green, and
blue, albeit with some ambiguity in allocation of interme-
diate colors (e.g., yellow).

2. truecolor: created by converting the illumination wave-
length for each band into the constituent RGB values as
perceived by humans, then averaging the contribution to

Logarithmic plot of the eigenvalues of multispectral imagery, from PCAFigure 5
Logarithmic plot of the eigenvalues of multispectral 
imagery, from PCA. Eigenvalues for each image are nor-
malized so that the largest eigenvalue has unit value.

Spectral bands chosen in AFE solutions, averaged over 10 independent runsFigure 4
Spectral bands chosen in AFE solutions, averaged over 10 independent runs. (A) Multispectral bands chosen in AFE 
solutions. (B) RGB bands chosen in AFE solutions.
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R, G, and B for each band. This method utilizes the Matla-
bCentral [20] function spectrumRGB.

3. ccd: a modification of truecolor imagery to better match
the spectral response of common 3-CCD color cameras
used in microscopy setups for biomedical research. This
method also utilizes the spectrumRGB function.

It should be noted that the ccd and truecolor representa-
tions differ only in the red band. The RGB responses of the
function spectrumRGB function are shown in Figure 8 and
examples of each of these three types of RGB images are
shown in Figure 9.

Classifiers
We describe here the six pixel-level classifiers used in this
study. We choose these classifiers based on their estab-
lished performance and use for multispectral data, spar-
sity of parameters to optimize, computational efficiency,
and the use of (primarily) spectral information. The use of
primarily spectral information is important in these anal-
yses since the basic hypothesis in question deals with the
spectral information content of our imagery. The excep-
tions to these characteristics are noted in the classifier
descriptions to follow.

• Maximum Likelihood (ML) [21]: Maximizes the likeli-
hood of a pixel belonging to a certain class. That is, a pixel
is assigned the label of the class that it is most likely to be
a member of. Likelihood is defined probabilistically,

Projection of example image onto first three eigenvectorsFigure 6
Projection of example image onto first three eigenvectors. (A) Projection on first eigenvector. (B) Projection on sec-
ond eigenvector. (C) Projection on third eigenvector.
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using the estimated joint probability density or mass func-
tion. We assume a Gaussian density model, and estimate
the mean and covariance matrix for each class. These
assumptions result in a quadratic discrimination bound-
ary.

• Minimum Euclidean Distance (MED): Minimizes the
Euclidean distance between an observation and the class
means.

• Spectral Angle Mapper (SAM): Minimizes the angle
between an observation and the class means.

• Fisher Linear Discriminant Analysis (FLDA): Projects
the multi-dimensional data to one dimension, maximizes
a function representing the difference between the pro-

jected class means, and normalizes by the within-class
scatter along a direction perpendicular to the decision
hyperplane [22]. This is also equivalent to a Maximum
Likelihood formulation assuming equal covariance matri-
ces for each class, resulting in a linear discrimination
boundary.

• An Automated Feature Extraction (AFE) tool called
GENIE: GENIE is based on evolutionary computation,
and is designed to explore the entire feature space of mul-
tispectral data, and evolve a solution best fit for the classi-
fication task. More practically speaking, GENIE selects an
initial set of algorithms consisting of randomly selected
operators and randomly selected data planes as input.
Throughout the evolution process, only appropriate algo-
rithms with appropriate data input will survive. GENIE

Example multispectral stackFigure 7
Example multispectral stack. Only a portion of the 768 × 896 image is shown.
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has the ability to use information from both the spectral
and spatial domain, which renders it unique among the
six classifiers. For more information, see Reference [23].

• Support Vector Machine (SVM): Constructs a linear
hyperplane that maximizes the margin between classes. In
the case of nonlinear SVMs, the data is first mapped to a
higher dimensional space where a linear hyperplane is
computed to separate the classes, using a kernel function
which defines the inner product operation in the higher
dimensional space [24]. We have implemented an SVM

using SVMlight [25], with a linear kernel (LSVM) using all
training data as input, and a quadratic kernel (NLSVM)
using a randomly selected 10% of our training data as
input (to speed the training process to a reasonable time).
For this classifier, the kernel parameters must be explicitly
optimized for the training data; this is the only classifier
used in this study which requires optimization of param-
eters.

Before discussing our performance metric and results, we
would like to briefly discuss how these pixel-level nuclear
classifications will be used. We are currently working
towards a hierarchical image analysis system, where we
will alternate classification and segmentation of the
imagery in an interactive system eliciting user feedback.
Current active research involves nuclear segmentation,
i.e., the proper delineation of all nuclei contained in the
image. As such, it is necessary to achieve an accurate clas-
sification of all nuclei pixels if we are to use shape and
other appropriate metrics to their best advantage in the
nuclear segmentation process.

Humans inherently incorporate higher-level information
in their analysis of imagery; since we are considering the
nuclear classification performance based on primarily
spectral information, it is difficult, if not impossible, to
specify the expected level of performance for a human
expert. The issues of human performance in diagnosis,
particularly the inter- and intra-observer variability (see
[26,27] and the references therein) will be an important
consideration in our future work and is indeed a strong
motivation for a computerized quantitative analysis.

Performance metric
We choose a general metric of classification performance
that equally penalizes both types of classification errors:
1) true (nuclei) pixels incorrectly labeled as false (non-

RGB representations of the example multispectral stack of Figure 1Figure 9
RGB representations of the example multispectral stack of Figure 1. The same portion of the 768 × 896 image is 
shown here. (A) Bands allocated equally and averaged, "rgbequal" (B) Bands allocated with MatlabCentral function spectrum-
RGB, "truecolor." (C) Bands allocated to approximate spectral responses of common 3-CCD color cameras, "ccd."

RGB responses for the function spectrumRGBFigure 8
RGB responses for the function spectrumRGB. Note 
the second lobe of the red response in the smaller wave-
lengths. This is due to the perception of such wavelengths as 
violet, represented in RGB as a combination of red and blue. 
The ccd image representation removes the contribution of 
this second lobe.
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nuclei) and 2) false pixels incorrectly labeled as true. In
particular, the performance metric is defined as

P = 0.5(Rd + (1 - Rf)), (1)

where Rd is the fraction of true pixels classified correctly
(detection rate), Rf is the fraction of false pixels classified
incorrectly (false alarm rate), and the factor of 0.5 scales
the metric to the range [0, 1]. Note that a perfect segmen-
tation will yield a performance score of 1 (100%), while a
score of 0.5 (50%) can be obtained by a trivial solution of
all pixels labeled as a single class (true or false). This met-
ric is an equal tradeoff between detection rate and false
alarm rate.

As a compromise between the necessity of comprehensive
ground truth for proper quantification of classification
accuracy, and the tedious and time-consuming aspect of
human delineation of such ground truth, we have marked
a 200 × 200 pixel window in each of our 58 histology
images. This window is used to determine classification
performance for each image.
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