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Abstract

Introduction

Aortic distensibility can be calculated using semi-automated methods to segment the aortic

lumen on cine CMR (Cardiovascular Magnetic Resonance) images. However, these meth-

ods require visual quality control and manual localization of the region of interest (ROI) of

ascending (AA) and proximal descending (PDA) aorta, which limit the analysis in large-

scale population-based studies. Using 5100 scans from UK Biobank, this study sought to

develop and validate a fully automated method to 1) detect and locate the ROIs of AA and

PDA, and 2) provide a quality control mechanism.

Methods

The automated AA and PDA detection-localization algorithm followed these steps: 1) fore-

ground segmentation; 2) detection of candidate ROIs by Circular Hough Transform (CHT);

3) spatial, histogram and shape feature extraction for candidate ROIs; 4) AA and PDA

detection using Random Forest (RF); 5) quality control based on RF detection probability.

To provide the ground truth, overall image quality (IQ = 0–3 from poor to good) and aortic

locations were visually assessed by 13 observers. The automated algorithm was trained on

1200 scans and Dice Similarity Coefficient (DSC) was used to calculate the agreement

between ground truth and automatically detected ROIs.

Results

The automated algorithm was tested on 3900 scans. Detection accuracy was 99.4% for AA

and 99.8% for PDA. Aorta localization showed excellent agreement with the ground truth,

with DSC� 0.9 in 94.8% of AA (DSC = 0.97 ± 0.04) and 99.5% of PDA cases (DSC = 0.98 ±
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0.03). AA×PDA detection probabilities could discriminate scans with IQ� 1 from those

severely corrupted by artefacts (AUC = 90.6%). If scans with detection probability < 0.75

were excluded (350 scans), the algorithm was able to correctly detect and localize AA and

PDA in all the remaining 3550 scans (100% accuracy).

Conclusion

The proposed method for automated AA and PDA localization was extremely accurate and

the automatically derived detection probabilities provided a robust mechanism to detect low

quality scans for further human review. Applying the proposed localization and quality con-

trol techniques promises at least a ten-fold reduction in human involvement without sacrific-

ing any accuracy.

Introduction

Aortic distensibility is an independent predictor of cardiovascular morbidity and mortality [1]

that can be estimated non-invasively by cine CMR (Cardiovascular Magnetic Resonance) as

the change of aortic lumen area from diastole to systole, divided by central pulse pressure.

Manual contour tracing is very time consuming and suffers from high inter- and intra-

observer variability, so in the last decade semi-automated methods have been developed to

assess lumen area more rapidly and reduce variability [2,3]. These methods still require visual

quality control of cine series (up to 100 images per scan), manual localization of the region of

interest (ROI) of the ascending (AA) and proximal descending (PDA) aorta, and supervision

of the resulting lumen contours. The required amount of time and user interaction is therefore

a severe limitation in large-scale population-based studies, such as the UK Biobank population

cohort (100,000 scans in total). Consequently, the availability of fully automated methods for

AA and PDA detection-localization and image quality assessment would be highly desirable.

The challenge of developing a fully automated analysis pipeline can be divided into 4 parts:

1) detection and localization of AA and PDA, 2) image quality assessment, 3) frame-by-frame

AA and PDA lumen segmentation, i.e. contouring, and 4) max-systolic and min-diastolic

lumen area estimation. Our study focused on the 1st and 2nd processing steps of the analysis

pipeline. Previous studies have applied the Circular Hough Transform (CHT) to localize

carotid arteries or aorta in black-blood or phase-contrast CMR [4–7]. However, those studies

used small datasets for method validation, some from healthy subjects and mostly without sig-

nificant artefacts (not real-world data). Additionally, to select the correct ROI for the aorta or

carotid arteries from all the candidate ROIs detected by CHT (e.g. to distinguish AA from

PDA, pulmonary artery and vena cava), those methods relied on a set of rules based on heuris-

tics and determined on small datasets. Finally, in alternative to the multi-step approach

described above, a very recent work has proposed to segment the aortic lumen directly using

Recurrent Neural Networks [8].

Our study took a different approach that is data-driven and based on state-of-the-art Com-

puter Vision and Machine Learning techniques, to leverage the unprecedented amount of data

available in the UK Biobank cohort. Contrary to previous studies, we propose to learn the

characteristics of AA and PDA from cine data, using feature extraction techniques to capture

and describe information about the local CMR characteristics in the ROI. The purpose of this

study was to develop a fully automated method to 1) detect and locate the ROIs of AA and
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PDA, 2) provide a mechanism to detect low quality scans, and to assess its performance on a

large dataset from the UK Biobank population.

Materials and methods

Dataset

The dataset comprised the first 5100 aortic cine scans in the UK Biobank cohort from 4996

subjects (repeated scans per subject were included) imaged on a 1.5 Tesla scanner (Siemens

Aera, Syngo Platform VD13A) in a single centre (Cheadle, UK). Retrospectively ECG-gated

cine images were acquired using a transverse balanced Steady State Free Precession (bSSFP)

sequence at the level of the pulmonary trunk and right pulmonary artery during breath-hold.

Typical acquisition parameters were TE = 1.17 ms, TR = 2.8 ms, flip angle = 60˚, Grappa fac-

tor = 2, acquired matrix size = 240×196, voxel size = 1.6×1.6×6 mm3, and actual temporal reso-

lution = 28 ms, which was interpolated to 100 images per cardiac cycle with resolution ~10 ms

[9]. The study has been performed on fully anonymised data, under the ethics governed by the

UK Biobank. Written consent was gained from all study subjects. For further details see http://

www.ukbiobank.ac.uk/ethics.

Ground truth

Ground truth (GT) data were manually generated by 13 human observers across 2 core imag-

ing laboratories in Oxford and London. The observers had different backgrounds and levels of

CMR experience, ranging from 1 to 15 years (average 4.3 years). 6 of them had a technical

background in image analysis, and 7 were medical doctors training in cardiology. Observers

assessed the overall image quality (IQ) of the cine scans and assessed the location and radius of

AA and PDA, following the instructions detailed in the Standard Operating Procedures (SOP,

S1 File). Each observer was trained on a randomized subset of 30 scans that included reference

examples of different artefacts and degrees of quality. Training results for ROI localization and

IQ scores were individually reviewed with LB (12 years of experience in CMR Physics and

Image Analysis). Each observer analysed approximately 800 scans (randomly assigned) and

repeated the analysis on 100 scans to calculate intra-observer variability. Manual analysis was

performed using a dedicated Matlab (MathWorks) interface developed for this purpose, which

loaded the randomised scans and presented them sequentially to streamline the process and

minimize the time required.

In the 1st window (S1 Fig), the application interface showed the cine images acquired dur-

ing the cardiac cycle and asked to score the overall cine IQ selecting one of the following

categories:

• Poor quality (IQ = 0) if the slice location was completely incorrect and both AA and PDA

were not visible (example in Fig 1A) or if the images were affected by severe artefacts and

both AA and PDA lumen boundaries were corrupted throughout the cardiac cycle (example

in Fig 1B).

• Major issues (IQ = 1) if images were affected by artefacts or if the slice location was incor-

rect. In this case AA and PDA lumen boundaries could be corrupted, but still be visible for

most of the cardiac cycle (example in Fig 1F). This option was also selected if either AA or

PDA was not visible (example in Fig 1E).

• Minor issues (IQ = 2) if the cine quality was sub-optimal due to slice location or minor arte-

facts, but AA and PDA lumen boundaries could still be easily and consistently identified

(example in Fig 1G).
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• Good quality (IQ = 3) if the images were acquired at the correct slice location, were artefact-

free with sharp AA and PDA lumen boundaries and good image contrast throughout the

cardiac cycle (example in Fig 1H).

To provide a reliable IQ score for each scan, the visual assessment followed this procedure:

1. Each scan was validated by 2 independent observers to calculate inter-observer variability,

measured by the intra-class correlation coefficient (ICC) using SPSS (IBM).

2. The final IQ score was calculated as the average between the 2 observers weighted by their

individual intra-observer ICC.

3. If the difference between IQ scores was > 1 the scan was reviewed by 3 observers (EL, EH

and LB, with 15, 1 and 12 years of CMR experience respectively) who scored the IQ by

consensus.

Fig 1. Example images with different image quality (IQ) scores. Poor quality (IQ = 0) due to incorrect slice location

(A) and extreme imaging artefacts (B). 0< IQ< 1 due to incorrect slice location (C) and severe artefacts (D). Major

issues (IQ = 1) due to slice location (E) and artefacts (F). Example images with (G) minor issues (IQ = 2) and (H) good

quality (IQ = 3). Please refer to the methods section in the main text for their definitions.

https://doi.org/10.1371/journal.pone.0212272.g001
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Completely manual annotation of 5100 scans was not feasible, so we used the following

strategy:

1. One operator annotated the ROIs of AA and PDA on a subset of data (200 scans), which

were used to train the automated algorithm (described in the next sections) and provide ini-

tial predictions for AA and PDA on all scans.

2. The initial ROI annotations were assessed and corrected by 2 independent observers on the

2nd window (S2 Fig) of the application interface. AA or/and PDA could also be categorised

as ‘not visible’ due to severe artefacts or incorrect slice location.

3. The results of the 2 observers were averaged or, in case of substantial disagreement,

reviewed by a 3rd observer. This final step generated the GT annotations.

At the end of this 3-stage process, all 5100 scans had GT data that were used to train and

test the automated detection algorithm. The Dice Similarity Coefficient (DSC) was used to cal-

culate the spatial overlap between the GT binary mask and that of the automatically detected

ROI:

DSC MROI;MGTð Þ ¼ 2 �
jMROI \MGTj

jMROIj þ jMGTj

where MGT and MROI were the sets of voxels belonging to the foreground of the corresponding

binary masks, and |M| indicated the number of elements in the M set.

ROI detection and feature extraction

We developed a fully automated algorithm to detect and localize AA and PDA, which was

implemented in Matlab using the VLFeat Toolbox [10]. This section describes the detection of

candidate ROIs and the extraction of their local features, while the next section is concerned

with supervised machine learning. The main processing steps are shown in Fig 2.

I) The foreground (i.e. the axial image of the body at the thorax level) was segmented from

the background using Otsu’s thresholding method on the Gaussian-filtered image (σ = 5), fol-

lowed by morphological operations (dilation and erosion) on the largest connected compo-

nents to close the binary mask (using a circular structuring element of radius = 10), and finally

calculate its convex hull. Images and binary masks were then interpolated to 480×392. For dif-

ferent scans, the axial image of the body can vary significantly in size and position within the

field of view (FOV). Thus, by determining the location and extent of the foreground, this

image processing step helps focusing the search area for candidate ROIs (in step 2) and defin-

ing a subject-specific reference frame (in step 3) that is independent of the FOV centre.

II) To find candidate ROIs for AA and PDA, anatomical structures were detected using the

Circular Hough Transform (CHT), similarly to what was previously described for carotids

[5]. The gradient image was computed by convolution with the Sobel operator and strong

edges were detected by Otsu’s thresholding method. Edges cast their votes into a complex

Fig 2. Algorithm flowchart. Automated Ascending and Proximal Descending Aorta (AA and PDA) detection-localization and quality control.

https://doi.org/10.1371/journal.pone.0212272.g002
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accumulator array (480×392), encoding the radius as phase, and producing peaks (with magni-

tude normalized from 0 to 1) that corresponded to the circle centres. The set of candidate

ROIs was selected as the local maxima in the accumulator array with magnitude > 0.1. The

algorithm searched for bright-blood lumina with a wide range of radii (6–36 mm) and was

sensitive to vessels affected by imaging artefacts or pathologies, which appeared as broader

peaks in the accumulator array. The CHT search area was restricted to the core of the body

mask (foreground segmented in step 1), automatically defined as the ellipse centred on the

intensity-weighted centroid with axes equal to 0.6 and 0.7 times the maximum anterior-poste-

rior size of the body mask (blue ellipse in Fig 3). By using CHT to provide a set of candidate

ROIs, this step reduced the complexity of the AA-PDA localization problem compared to

other possible approaches (e.g. sliding-window detection, or voxel-based classification).

III) For each candidate ROI, the algorithm extracted 18 local features engineered to repre-

sent interpretable characteristics of the ROIs, i.e. spatial location, local distribution of the

intensity, motion, anatomical size and shape, as described below and visualized in Fig 3.

Spatial features. The body mask (segmented in step 1) was used to define a new reference

frame centred on the intensity-weighted centroid and with axes along the diagonals of a square

box with sides equal to the maximum anterior-posterior size of the body mask. A) diagBo-
dyRFcentreX and B) diagBodyRFcentreY were the coordinates of the ROI centre in the body

reference frame, while C) normDistMask indicated the distance from the body mask boundary

and was calculated as the average value of the normalized Euclidean distance transform of the

binary mask.

Histogram features. The distribution of ROI intensities was described by D) intensity-
Mean and the statistical moments E) intensityVar, F) intensitySkewness and G) intensityKurto-
sis. Information content was measured by average Shannon entropy H) imageEntropy H(z) =

−∑ip(zi) log2(p(zi)), where p(zi) is the normalized histogram of intensity z, with i = 0,1,. . .,N−1.

Shape features of the anatomical structures were extracted using different techniques. I)

roiCorrelation was the 2D correlation coefficient between the ROI of the original image and

the binary mask of the circle detected by CHT. J) SIFTorientation represented the local orien-

tation (in radians) of the Scale Invariant Feature Transform (SIFT) descriptor [11] calculated

at the ROI centre and at scale = CHTradius. It was computed as the maximum of the histogram

of gradient directions (36 bins covering 2π rad) in a Gaussian-weighted circular window with

SD = 1.5�scale. K) MPmaskDSC characterized the periodicity of aortic wall motion throughout

the cardiac cycle, i.e. aortic wall distension (systole) and recoil (diastole). The temporal fre-

quencies of individual voxels were computed by the Fourier Transform of the time series of

cine signal intensities. Voxel spectra were then normalized and thresholded to detect the fre-

quency with highest magnitude that identified periodic motion during the cardiac cycle. This

generated a binary image, which was then filtered to detect boundary voxels and obtain the

motion periodicity (MP) map. CHT was then applied to the MP map to find circular structures

and calculate their DSC against candidate ROIs. L) CHTmetric indicated the strength of

the peak in the CHT accumulation array, ranging from 0 to 1, while M) CHTradius was the

estimated radius of the circular ROI. N) MSERregions was the number of Maximally Stable

Extremal Regions (MSERs) [12] detected in a square centred on the ROI centre and with

side = 6�CHTradius (extremal regions are defined as the connected components of the inten-

sity level sets). The step size between intensity threshold levels was set to 1% of the maximum

intensity. Among the extremal regions, those that were maximally stable, i.e. their areas

changed the least, were selected as MSERs. The maximum area variation between extremal

regions at varying intensity thresholds was set to 50%. O) MSERmaskDSC denoted the maxi-

mum overlap measured by DSC between MSERs and the candidate ROI and identified the

corresponding MSER as optimal (OMSER) for further analysis. P) MSERnotOverlap was
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calculated as jMOMSER \MC
ROIj=jMROIj, i.e. the proportion of the OMSER not overlapping with

the candidate ROI. Q) MSERsolidity indicated the convexity of OMSER and was calculated as

the ratio between the OMSER area and the area of its convex hull. R) MSEReccentricity repre-

sented the eccentricity of OMSER and was computed from the ellipse with equivalent second-

order moments.

Finally, in order to compare detection accuracy, the general approach used to select the ves-

sels of interest in previous studies [4–6] was replicated, i.e. the local maxima search in the

Fig 3. ROI features. Graphical representation and list of local features (A-R) extracted for each candidate ROI (yellow

circles) and divided into groups. Spatial features: diagonal axes A-B and distance mask C of the body. Shape features: J

is indicated by the line inside the circles; K is represented by the red circles on the Motion Periodicity (MP) map; L and

M describe the circles detected by the Circular Hough Transform (CHT); and N-R characterize the Maximally Stable

Extremal Regions (MSER) marked by the red contours. Graphical representation was not possible for features D-I.

Please refer to the methods section in the main text for the definition of each image feature.

https://doi.org/10.1371/journal.pone.0212272.g003
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Hough domain was constrained by a set of rules based on heuristics and organized in a simple

classification tree: AA had to be bigger, anterior and to the right of PDA, and their

distance� 18 mm [6].

Supervised learning with random forest

Once circular structures were detected by CHT as candidate ROIs and local image features

were extracted for each of them, the task of identifying AA and PDA among all the candidates

(Fig 2-IV) was formalised as a multinomial classification problem, i.e. that of assigning one of

the 3 possible classes—AA, PDA, or NA (Not Aorta)—to each ROI. The classification was per-

formed by a supervised learning technique called Random Forest (RF) using GT location and

radius of AA and PDA provided by the human observers. The RF algorithm learned the fea-

ture statistics of AA and PDA from a training set of labelled scans, in which the circular ROIs

scoring DSC> 0.75 against GT were categorised as AA (or PDA), while the others were

marked as NA, i.e. identifying other anatomical structures. When building the RF model,

prior probabilities for the 3 classes (NA, PDA and AA) were empirically estimated by the algo-

rithm from the class frequencies in the training data.

The RF algorithm is based on bootstrap aggregation (bagging) and random feature selec-

tion to build an ensemble classifier from weak learners [13]. RF provides computationally-effi-

cient multinomial classification with confidence estimation, is robust to noisy and correlated

features, and can compute the relative importance of features. RF combines the results of an

ensemble of classification trees, which are characterized by low bias and high variance. By

ensuring low correlation among the individual classification trees, RF minimizes the risk of

overfitting the training data and yields a classifier with both low bias and low variance. This

was achieved by randomizing the process of building the forest.

Different bootstrap samples—randomly selected with replacement from observations in the

training set—were used to train different trees, the results of which were aggregated into the

RF model. This procedure used a bag containing 63.2% of the observations to build the trees in

the forest. The out-of-bag (OOB) observations were not in the training set of each tree, so they

were used as a validation set to estimate the RF performance internally. The size of the training

dataset and the optimal internal parameters for our RF model (the number of randomly

selected features per decision split and the number of trees) were estimated using OOB obser-

vations. The relative feature importance was derived from OOB permutations, i.e. the contri-

bution of a feature to the RF performance was estimated from the increase in classification

error due to the values of that feature being randomly permuted across the OOB observations.

A fixed-size subset of the available features was randomly sampled at each node (decision split)

in each classification tree. From the subset, the algorithm split the tree using the feature that maxi-

mized the decrease of node impurity ΔIn, as measured by the Gini index In ¼
P3

c¼1
fcð1 � fcÞ

where fc represented the fraction of observations at node n that belong to class c = 1 (NA), c = 2

(PDA), and c = 3 (AA). The decrease of Gini impurity obtained by splitting the parent node n
into child nodes l and r is given by ΔIn = In−flIl−frIr where fl and fr are the sample fractions from

node n to node l and r. Each individual tree in the RF was grown to its full depth (unpruned). A

termination node (leaf) of a tree was reached when there was no splitting that could decrease the

Gini impurity (ΔIn = 0) and the observation was assigned to the most probable class.

In the test dataset, the features extracted for each candidate ROI of every scan were passed

down the trees in the RF model to calculate the probability of belonging to class AA, PDA, or

NA. Class posterior probabilities were determined by the average over all the trees in the RF

model, and the predicted class for an ROI was the class with maximum posterior probability.

In every scan there could be more than one candidate ROI identifying AA (or PDA) with
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slightly different location and radius. Hence, only the best predictions, i.e. the ROIs with maxi-

mum AA and PDA probabilities, were selected.

Finally, we hypothesized that these probabilities could be used as an automated mechanism

for quality control (Fig 2-V). To investigate the association between the combined AA×PDA

detection probabilities and the IQ scored by human observers for the scans in the test dataset,

we performed the Kruskal-Wallis rank test and multiple pairwise comparisons using the Bon-

ferroni method at 5% confidence level. We then divided the scans into 2 groups using different

IQ cut-offs, performed the Mann-Whitney-Wilcoxon test, and analysed the Receiver Operat-

ing Characteristic (ROC) curves to identify an optimal threshold for AA×PDA detection prob-

ability that can be used for quality control.

Results

Ground truth

Each observer scored the IQ of 800 scans and repeated on 100 of the 800 scans. Single mea-

sures of intra-observer consistency were good (median ICC = 0.65, IQR = 0.62–0.71,

range = 0.47–0.85). Inter-observer ICC was calculated in 39 randomly allocated combinations

of 100 repeat cases. Absolute agreement was fair/good (median ICC = 0.59, IQR = 0.52–0.63,

range = 0.27–0.71), while consistency was better (median ICC = 0.74, IQR = 0.68–0.77,

range = 0.42–0.83), indicating the presence of small systematic differences between observers.

IQ difference between observers was > 1 in 342 out of 5100 scans that were reviewed by a

panel to assign a final IQ by consensus. Final IQ scores were calculated as the average between

2 independent observers weighted by their individual intra-observer ICC. The distribution of

IQ scores (example images in Fig 1) was the following:

• 94 scans (1.8%) were classified as poor quality (IQ = 0);

• 116 (2.3%) had weighted IQ > 0 and< 1;

• 462 (9.1%) had major issues (IQ = 1);

• 651 (12.8%) had weighted IQ > 1 and < 2;

• 1062 (20.8%) had minor artefacts (IQ = 2);

• 1717 (33.7%) had weighted IQ > 2 and < 3;

• 998 (19.6%) were found to be of good quality (IQ = 3).

AA and PDA location and radius in 5100 scans were validated by 2 independent observers,

who disagreed substantially on AA in 45 scans and on PDA in 33 scans, which were reviewed

by a 3rd observer. Both AA and PDA were not visible in 26 scans (observers could not reliably

identify the location and draw the lumen boundary) due to very poor image quality (average

IQ = 0.1) and incorrect slice location (in 9 cases), as exemplified in Fig 1A and 1B. In other 63

scans, only AA was not visible due to poor image quality (average IQ = 0.5) and incorrect slice

location (in 54 cases), as exemplified in Fig 1C and 1D. In other 4 scans, only PDA was not vis-

ible due to very poor image quality (average IQ = 0). In total, AA was not visible in 1.8% and

PDA in 0.6% of the 5100 scans. In all the other scans, the validated locations and radii of AA

and PDA were used to generate binary masks representing the GT data.

Algorithm training: Optimization

The most important parameters of the RF model were optimized using the OOB observations

of the training dataset (Fig 4). Mean OOB error and 95% confidence intervals (CI) were
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calculated from bootstrapped repetitions of the RF training. Increasing the training set size

reduced the mean OOB classification error and CIs up to 1200 scans, where the error stabilized

around 0.4% for 1000 trees (Fig 4A). Minimum error = 0.42% (CI = 0.39–0.45%) was achieved

for 5 to 7 features per decision split (Fig 4B), while adding more trees produced lower error

and tighter CIs, as expected (Fig 4C). We thus decided to use the first 1200 of the 5100 scans

available to train a RF model with 6 features per decision split and 1000 trees.

In the training dataset, AA was not visible in 30 scans and PDA in 13 (negatives). CHT

detected the location and radius of 15757 candidate ROIs (median number of ROIs per

scan = 13, IQR = 11–15, range = 5–34), including concentric and overlapping ROIs. The

binary masks of the circular ROIs scoring DSC > 0.75 with the GT data were labelled as AA

(or PDA), while the others were labelled as NA. In total, the training dataset had 15757 obser-

vations, with 12851 ROIs labelled as NA, 1195 as PDA and 1711 as AA. The number of ROIs

was higher than the number of AA (or PDA) positives because multiple ROIs could satisfy the

criterion DSC > 0.75 with slightly different location and radius.

Algorithm training: Image features

The probability distributions for the 18 features extracted from the candidate ROIs in the

training dataset are shown in Fig 5 for visual assessment. Feature values for ROIs labelled as

NA were more heterogeneous (spread-out and multimodal) compared to AA and PDA distri-

butions, which tended to be tighter and unimodal. Some features produced NA, PDA and AA

distributions that were similar and overlapping (e.g. imageEntropy), hence they were not very

informative. For other features, the NA distribution was different from AA and PDA (e.g.

MSEReccentricity), indicating a good ability to distinguish the aorta from other anatomical

structures. Finally, another group of features captured differences between AA and PDA and

their distributions were clearly separated (e.g. SIFTorientation). The absolute correlation

between pairs of features was |R|� 0.7, indicating that they described different local properties

and could all potentially contribute to the correct ROI classification (Fig 6A). As expected,

maximum correlation was achieved for features belonging to the same group, e.g. intensity-
Mean vs. imageEntropy for histogram features and MSERmaskDSC vs. CHTmetric, MSERec-
centricity or roiCorrelation for shape features.

Relative feature importance was estimated by permuting OOB observations (Fig 6B). Over-

all, shape and spatial features were more discriminant than histogram features for the

Fig 4. Optimization of the random forest (RF) parameters. Out-of-bag (OOB) mean classification error and CI were calculated from RF training

repetitions. A) Training set size for RF with 50 and 1000 trees. B) Number of features per decision split for RF with 50 and 1000 trees. C) Number of

trees for RF with 6 features per split. Total number of scans in the training dataset = 1200.

https://doi.org/10.1371/journal.pone.0212272.g004
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classification of candidate ROIs. The 2 most important features were CHTradius, which

showed 3 distinct class distributions, and MSERmaskDSC, which was good at differentiating

AA and PDA from NA (Fig 5). Other 2 strong shape features were SIFTorientation and

MPmaskDSC. The importance of MSEReccentricity and CHTmetric could have been reduced

by their correlation with MSERmaskDSC, which was better at capturing and characterizing the

anatomy. The X and Y coordinates of the ROI centre in the reference frame of the body (diag-
BodyRFcentreX-Y) were better predictors than the normalized distance (normDistMask).

Finally, the most discriminant among histogram features was the ROI variance (intensityVar),
whereas imageEntropy and intensityMean did not provide much information. In fact, exclud-

ing the 5 least important features in Fig 6B from the RF model had just a small effect on the

OOB error, which increased from 0.42% (CI = 0.39–0.45%) to 0.46% (CI = 0.43–0.48%).

Fig 5. Histograms of image features. ROIs classified as Ascending Aorta (AA), Proximal Descending Aorta (PDA) or Not Aorta (NA). Total

number of scans in the training dataset = 1200.

https://doi.org/10.1371/journal.pone.0212272.g005

Fig 6. Absolute correlation between pairs of image features (A) and relative importance (B). Calculated from out-of-bag (OOB)

observations in the training dataset (1200 scans in total).

https://doi.org/10.1371/journal.pone.0212272.g006
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Algorithm testing: Automated aorta localization

The test dataset included 3900 cine scans with GT location and radius for AA and PDA. AA

was not visible in 59 scans and PDA in 17 (negatives). A total of 51482 candidate ROIs were

detected by CHT (median number per scan = 13, IQR = 11–15, range = 4–31). By replicating

the general rule-based approach used in previous studies [4–6], i.e. searching local maxima in

the CHT accumulation array subject to constraints, the classification test error was 8.6%. The

proposed RF algorithm reduced the error to 0.44% by estimating the ROI probability to belong

to class NA, PDA, or AA, based on its features, and assigning it to the most probable class.

Table 1 shows the confusion matrix of the RF predictions vs. the actual classes, with mean clas-

sification error = 0.44% (CI = 0.41% - 0.45%) estimated from bootstrapped repetitions of the

RF training. Notably, most misclassifications were False Negatives for AA and PDA.

The algorithm performance for AA and PDA detection in 3900 scans was illustrated by the

Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves in Fig 7A–7C,

where Precision = TP/(TP+FP), with TP = True Positives and FP = False Positives, and

Recall = Sensitivity. Area under the curve (AUC) for AA and PDA was close to 100% in both

ROC and PR plots, indicating excellent performance (near-perfect for PDA). Optimal proba-

bility threshold was 0.18 for AA (sensitivity = 99.6%, specificity = 83%, precision = 99.7%,

Youden’s J = 0.826, F1 score = 0.997) and 0.09 for PDA (sensitivity = 99.8%, specificity = 100%,

precision = 100%, Youden’s J = 0.998, F1 score = 0.999). Fig 8 shows examples for each of the

possible AA outcomes in the confusion matrix. Mean error for AA detection was 0.64%

(CI = 0.54% - 0.74%). The AA ROI was correctly localized in 3826 scans (TP) and the number

of True Negatives (TN) was 49. We found 10 FP (typically due to incorrect slice location, as in

the example image) and 15 False Negatives (FN; typically, due to blurring, as in the example

image). Fig 9 shows examples for each of the possible PDA outcomes in the confusion matrix.

Table 1. Confusion matrix for predicted and actual ROI classes. Mean classification error = 0.44% (CI = 0.41–

0.45%) estimated from RF training repetitions on the test dataset (51482 ROIs).

Actual Class

NA PDA AA

Predicted Class NA 41892 87 98

PDA 1 3850 0

AA 37 1 5516

https://doi.org/10.1371/journal.pone.0212272.t001

Fig 7. A) Receiver Operating Characteristic (ROC) and C) Precision-Recall (PR) analysis for AA and PDA detection-localization. Mean curves and

95% CIs were obtained from bootstrap replicas. Precision baseline was 98.5% for AA and 99.6% for PDA. B) Dice Similarity Coefficient (DSC) for AA

and PDA True Positives was� 0.9 in 94.8% and 99.5% of cases, respectively. Total number of scans in the test dataset = 3900.

https://doi.org/10.1371/journal.pone.0212272.g007
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Mean error for PDA detection was 0.18% (CI = 0.15% - 0.26%). The PDA ROI was correctly

localized in 3876 scans (TP) and the number of TN was 17. We found no False Positives and 7

FN (typically due to artefacts, as in the example image).

The DSC distribution showed excellent agreement between automatically detected ROIs

and GT (Fig 7B). DSC was 0.97 ± 0.04 for AA (3826 TP cases) and 0.98 ± 0.03 for PDA (3876

TP cases). In 94.8% of AA and 99.5% of PDA cases DSC was� 0.9. PDA was detected and

localized more accurately than AA, as it was typically less affected by motion artefacts and

incorrect slice location. Running on a standard desktop computer (Intel i7 3.4 GHz) without

any speed optimization, total computation time per scan for AA and PDA detection was

around 5–7 s, with image processing and feature extraction taking 3–5 s (depending on the

number of candidate ROIs) and RF prediction taking about 2 s.

Algorithm testing: Automated quality control

In the test dataset (3900 scans), the difference in AA×PDA detection probabilities between

groups with high IQ� 2 was not significant, and the same was true for the 2 groups with the

lowest IQ, whereas groups with mid-range IQ were significantly different (p< 0.05 using

Kruskal-Wallis test with Bonferroni correction) from each other (Fig 10). This showed that

detection probabilities were associated with the IQ scores of cine scans and could potentially

detect low-quality scans but did not have enough sensitivity to resolve small IQ differences.

Hence, to test if detection probabilities could be used to classify low- vs. high-quality scans, we

partitioned the scans using 2 possible IQ cut-offs:

A. high-quality scans defined by IQ� 1 vs. low-quality scans (IQ< 1), which included only

those severely corrupted by artefacts (4% of test data);

Fig 8. Confusion matrix for AA detection (with example images). Mean error = 0.64% (CI = 0.54–0.74%) estimated

from RF training repetitions. Green circles represent the ground truth and red circles the automatically detected ROIs.

Total number of scans in the test dataset = 3900.

https://doi.org/10.1371/journal.pone.0212272.g008
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B. high-quality scans defined by IQ > 1 vs. low-quality scans (IQ� 1), which included also

those with major issues (13% of test data).

Fig 9. Confusion matrix for PDA detection (with example images). Mean error = 0.18% (CI = 0.15–0.26%)

estimated from RF training repetitions. Green circles represent the ground truth and red circles the automatically

detected ROIs. Total number of scans in the test dataset = 3900.

https://doi.org/10.1371/journal.pone.0212272.g009

Fig 10. Automated AA×PDA detection probability grouped by CINE image quality (IQ). Total number of scans in

the test dataset = 3900. The difference among the highest IQ groups and between the 2 lowest IQ groups is not

significant (ns).

https://doi.org/10.1371/journal.pone.0212272.g010
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The median AA×PDA probabilities of the low- and high-quality groups were significantly

different for both IQ cut-offs (p< 0.001 using Mann-Whitney-Wilcoxon test). ROC

AUC = 90.6% and PR AUC = 98.9% for partition A (IQ� 1) were both higher than for parti-

tion B (Fig 11), indicating that detection probabilities performed better when they were used

to discriminate the lowest IQ scans from all the others. ROC and PR curves for partition A

showed 2 possible optimal probability thresholds, at 0.75 (sensitivity = 93.8%, specificity = 73%,

precision = 98.8%, Youden’s J = 0.67, F1 score = 0.96) and 0.95 (sensitivity = 80.7%, specific-

ity = 86%, precision = 99.3%, Youden’s J = 0.67, F1 score = 0.89), to identify scans not affected

by severe artefacts (IQ� 1).

Using the threshold with the highest F1 score (i.e. detection probability < 0.75), 350 out of

3900 scans were identified as low-quality and excluded from the analysis (9% of test dataset).

In the remaining 3550 scans the automated detection algorithm was able to correctly localize

all the AA and PDA ROIs (100% TP, 100% accuracy). AA×PDA detection probabilities thus

offered a method to automatically identify scans that have sufficient IQ, i.e. high probability,

and select those below the threshold to be reviewed by human observers.

Discussion

We developed an automated method to localize the ROIs of AA and PDA and provide a mech-

anism to detect low quality scans. Using the largest aortic cine CMR dataset to date (5100

scans from UK Biobank), our algorithms were trained on 1200 and tested on 3900 scans,

resulting in 99.4% accuracy for AA and 99.8% for PDA. Detection probabilities of images with

low- and high-IQ were significantly different and were used as a quality control (QC) method

to identify scans severely corrupted by artefacts. In fact, by accepting only the scans with detec-

tion probability� 0.75, we obtained 100% accuracy for both AA and PDA detection. These

results indicated that in the UK Biobank cohort (100,000 scans when completed) we can expect

that less than 10% of scans will have low AA×PDA detection probability and require user

interaction, whereas over 90% will have sufficient quality for reliably accurate AA and PDA

detection and localization using our automated algorithm.

Previous studies have tried to automate the process of vessel ROI localization by using

small datasets (e.g. 8 [5], 10 [7] and 20 subjects [6]) to determine a range of values for the

parameters of interest and a set of rules for identifying the vessel ROI, such as 1) limiting the

Fig 11. A) ROC and B) PR analysis for quality control. Mean curves and CIs (from bootstrap replicas) for 2 possible

data partitions (using cut-off at IQ� 1 or at IQ> 1). Precision baseline was 96% for IQ� 1 and 87% for IQ> 1.

https://doi.org/10.1371/journal.pone.0212272.g011
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radius range for the vessel search, 2) constraining their relative size, 3) location and 4) mini-

mum distance between them (and additional constraints specific to the image modality). Hard

constraints and heuristics determined on a handful of examples are not effective or efficient in

real-world situations, as they lack the flexibility to deal with pathologies, different anatomies

or sub-optimal image quality. These studies used small datasets to measure detection accuracy.

Using multi-slice black-blood images from 20 patients, Biasiolli et al. estimated a detection

error = 10.5% for carotid arteries [5]. In a subset of 50 phase-contrast scans, Goel et al.

reported an average absolute distance between automatically and manually detected ROIs, i.e.

the localization error, of 1.7 ± 1.0 mm for the AA and 0.6 ± 0.7 mm for PDA [6]. Additionally,

they reported detection errors� 2% based on an estimate from the outlier analysis. Using

multi-slice black-blood images from 10 healthy volunteers, Gao et al. measured localization

errors (centre position and radius differences) from 0 to 0.7 mm for the distal descending

aorta [7]. Finally, Adame et al. did not report any detection error for the descending aorta in

28 healthy subjects [4]. By replicating the general approach used in previous studies on our test

dataset (3900 scans), the detection error was 8.6%. With the help of the feature extraction and

RF algorithms presented in this study, the detection error dropped to 0.4% and localization

was very accurate for both AA and PDA.

Recently, with the availability of UK Biobank data, there has been an increasing interest on

automated IQ assessment and QC for cardiac cine scans, from the analysis of free-text annota-

tions [14], to the detection of missing (apical and basal) slices [15] and of segmentation failure

[16]. In this study, we have proposed a different approach that is specific to the aorta and

focused on the quality of the ROI, to identify scans corrupted by severe artefacts using the

detection probability as QC metric (determined by the set of feature values for AA and PDA).

Given the rapid processing, it appears feasible that IQ algorithms can be deployed at the time

of acquisition at UK Biobank centres to improve the image quality at source by alerting the

radiographers early enough to allow reacquisition, e.g. with improved planning.

A limitation of this study was the different level of experience of the 13 observers, as identified

by the inter-observer ICC that indicated the presence of small systematic differences between

observers. To mitigate this problem, the final IQ scores were calculated as the average between

observers weighted by their individual intra-observer ICC. Additionally, to correct major discrep-

ancies between observers, IQ scores were reviewed by a panel in less than 7% of the scans. The

sensitivity and specificity of the automated QC could be further improved and refined by adding

features that can measure different aspects of the local image quality, e.g. vessel edge sharpness

[17], and by re-training the RF model to classify IQ using these additional features.

This study used aortic cine data acquired in a single UK Biobank centre (in Cheadle). To

move faster towards the goal of imaging 100,000 subjects, other 2 sites (in Newcastle and Read-

ing) have been recently opened. The new centres use the same scanner (Siemens Aera) and

CMR protocol to guarantee homogeneity of acquisition methods across the 3 centres, so we

are confident that our automated method can be successfully applied to the entire UK Biobank

dataset. Additionally, we have verified that it works on data acquired at 3 Tesla using different

parameters (e.g. in-plane resolution) and, in principle, it should be applicable to any aortic

cine acquired using the standard technique (i.e. ECG-gated bSSFP sequence). However, it

should be further tested before performing automated analysis on aortic cine data from other

centres using different sequences, scanner manufacturers and field strengths.

Finally, this study was concerned with the development and validation of automated meth-

ods for 1) aorta localization and 2) quality control. Measuring aortic distensibility requires the

development and validation of additional automated algorithms to perform 3) frame-by-frame

aortic lumen segmentation and 4) max-systolic and min-diastolic lumen area estimation. Part

3 and 4 constitute further planned work that will be addressed in a separate article.
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Conclusion

The proposed method for automated AA and PDA localization was extremely accurate and

the automatically derived detection probabilities provided a robust mechanism to detect low

quality scans for further human review. Applying the proposed localization and quality control

techniques promises at least a ten-fold reduction in human involvement without sacrificing

any accuracy. The proposed image quality control could also be used to streamline the image

acquisition by alerting to the necessity of repeating acquisitions while patients are still in the

scanner.
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