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Circular RNA (circRNA) plays an important role in the development of diseases, and it provides a novel
idea for drug development. Accurate identification of circRNAs is important for a deeper understanding
of their functions. In this study, we developed a new classifier, CirRNAPL, which extracts the features of
nucleic acid composition and structure of the circRNA sequence and optimizes the extreme learning
machine based on the particle swarm optimization algorithm. We compared CirRNAPL with existing
methods, including blast, on three datasets and found CirRNAPL significantly improved the identification
accuracy for the three datasets, with accuracies of 0.815, 0.802, and 0.782, respectively. Additionally, we
performed sequence alignment on 564 sequences of the independent detection set of the third data set
and analyzed the expression level of circRNAs. Results showed the expression level of the sequence is
positively correlated with the abundance. A user-friendly CirRNAPL web server is freely available at
http://server.malab.cn/CirRNAPL/.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Circular RNA (circRNA) is a newly identified RNA type that dif-
fers from conventional linear RNA in humans. It is a noncoding
RNA molecule without having a 5-end cap or a 3-end tail, instead,
forming a circular structure [1,2] (Fig. 1). CircRNA was first discov-
ered in 1969 by Diener, while researching potato spindle tuber dis-
ease [3]. Electron microscopy revealed the formation of such
closed-loop RNA, also known as a viroid. The subsequent emer-
gence of high-throughput sequencing techniques (RNA-seq)
enabled improved sequencing of circRNAs of various species, and
many circRNAs have now been identified [4,5]. To date, more than
10,000 different circRNAs have been successfully identified from
fruit flies and worms to mice and humans [6,7].

Against background researches and applications of circRNA, a
series of databases have been built, such as circBase [8], circNet
[9], circ2Traits [10], TSCD [11], circRNADb [12], and CircInterac-
tome [13]. Studying the structure and function of circRNAs,
researchers have revealed their importance in the pathogenesis
of arteriosclerosis, nervous system disorders, diabetes, and tumors
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Fig. 1. CircRNA splicing structure. CircRNA is a new class of RNA that differs from
traditional linear RNA. It does not have a 50 cap or a 30 tail and is not easily degraded
by exonuclease. In humans, it is more stable than linear RNA. Most circRNAs are
formed by exons, while a few are derived from intron fragments.
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[14–16]. The unique endogenous characteristics of circRNAs enable
their value as biomarkers, providing a new approach for drug
development [6,17,18] and a new direction for the evolution of life.
Xu used Qualcomm sequencing to detect the expression profiles of
three wheat samples (LH9, XN979, and YN29) and identified 33 dif-
ferentially expressed circRNA [19]. Ye used published RNA-Seq
data to perform genome-wide identification of circRNA in rice
and Arabidopsis. Based on this, they compared the characteristics
of plant and animal circRNA [20]. Moreover, Memczak analyzed
circRNA from humans, mice, and nematodes, and detected thou-
sands of well-represented, stable circRNAs, demonstrating their
regulatory capabilities [21]. Given this landscape, accurate detec-
tion and quantification of circRNAs are essential for a deeper
understanding of their function.

In addition to the abundance of RNA-seq data, a variety of algo-
rithms for calculating and visualizing circRNA have recently been
developed [2,17,22]. Li Chen developed the CIRCexplorer software
based on RNA-seq data of Arabidopsis and rice, providing a more
comprehensive and sensitive circRNA prediction method for plants
[23]. Song et al. developed a computational pipeline, called URO-
BORUS, to detect circRNA in RNA-seq data. They successfully veri-
fied 24 circRNA from 27 randomly selected circRNA [6].
Additionally, based on RNA-seq, Danan developed a circRNA-seq
method for reading circRNA in an unbiased, genome-wide manner.
Moreover, they mapped the transcriptome of solfataricus [24]. In
another study, Jeck et al. used high-throughput sequencing of
ribosomal-deficient RNA and identified more than 25,000 loops
in human fibroblasts containing non-collinear exons (‘‘reverse
splicing”) [25]. Gao et al. proposed a new algorithm, CIRI, based
on cross-shear signal, which uses a variety of filtering strategies
to accurately detect circRNA from transcriptome data [26]. Zhang
et al. used non-polyadenylation and rnaser-treated RNA-seq data
from H9 human embryonic stem cells to predict reverse splicing
junctions, and they systematically characterized circRNA using
the newly developed pipeline CIRCexplorer [27]. Furthermore, Vo
et al. used the exome capture RNA sequencing protocol to detect
and characterize circRNA across >2000 cancer samples, establish-
ing the most comprehensive catalog of circRNA species to date
(MiOncoCirc) [28]. You et al. proposed the method, Acfs, allowing
for the redefinition and accurate and rapid identification of cir-
cRNA from single-ended and double-ended RNA-seq data, as well
as their abundance [29]. Furthermore, Zhang et al. sequenced Bran-
chiostoma belcheri circRNA and identified 1859 circRNAs using the
find_circ and CIRI algorithms [30]. At present, many available
recognition methods are based on RNA-Seq data, and it is very
important to use bioinformatics with direct circRNA sequence
training to achieve more accurate recognition. In contrast to the
tools that use RNA-seq data as input, Pan et al. extracted the char-
acteristics of the sequence and used the random forest (RF) algo-
rithm to identify circRNAs, subsequently building the online
identification server WebCircRNA [31]. PredcircRNA classified cir-
cRNA and lncRNA based on a computational method of a multi-
core learning framework with multiple functional training [32].
H-ELM used a hierarchical extreme learning machine algorithm
with feature selection to extract the same features from other
lncrna and classify circular RNAs [33]. Mohamed Chaabane pro-
posed an end-to-end deep learning framework circDeep, which
integrates shared representations across different modes and
improves circularRNA for classification [34].

Many studies for protein recognition [35] and site detection
[36] have been performed based on machine learning, such as RF
[37] and Artificial Neural Network [38]. By contrast, few studies
focus on the identification of circRNAs. Therefore, there is a need
for studies on how to use sequence information to achieve more
accurate identification by using the characteristics of RNA
sequences. We propose a new method that mainly uses the struc-
tural features of RNA and nucleotide composition to optimize the
extreme learning machine (ELM) based on the particle swarm opti-
mization algorithm (PSO). Based on these, a classification system
was built to optimize the effect of circRNA identification.
2. Material and methods

In this study, we used the ELM method to identify circRNA. The
flowchart of the identification framework is shown in Fig. 2.

2.1. Datasets

circRNAs are evolutionarily conserved among different species,
and the detection of circular RNAs is important for further under-
standing the biological origin and purpose of circular RNAs [39,40].
The datasets that we used were presented in the literature of Pan
et al. [31] (Table 1). The literature downloaded 92,375 circRNA
transcripts from circBase. After deleting transcripts of less than
200nt in length and the overlapping circular RNA transcripts,
14,084 circRNA data were obtained. The database source of the
9533 PCGs and 19,723 lncRNAs dataset is GENCODv19, in which
overlapping circRNA sequences were removed from the PCG data.
The third dataset includes 2082 circRNAs from stem cells
expressed in H1hsec and the same number of identically derived
circRNAs from other cells that were not expressed in H1hsec.
And the circRNA vs lncRNA dataset also applied to the literature
of Mohamed et al. [34], Pan et al. [32] and Chen et al. [33].

The construction of the classifier used in this study involved
ten-fold cross-validation. To verify the classifier, independent
training and test set verification was also performed. For the data-
set of 14,084 circRNAs, the number used for the training set was
10,000, and that for the test set was 4084. For the lncRNA dataset
of 19,722, the number for the training set was 10,000, and that for
the test set was 9722. For the PCG training set of 9533, the number
for the training set was 8000, and that for the test set was 1533.
Finally, for the two datasets of 2082 circRNAs of each of stem cells
and other cells, the training set consisted of 1800 circRNAs, and the
test set consisted of the remaining 282 circRNAs.

2.2. Feature representation methods

To identify circRNAs, four features of the sequence data were
extracted, including Ribonucleic acid composition, Autocorrelation,
Pseudo-ribonucleic acid composition, and Predicted structure com-
position [41]. These four features comprised a total of 15 modes,
wherein Ribonucleic acid composition included k-mer (the param-



Table 1
The details of the datasets.

Datasets Positive Data Negative Data

circRNA vs PCG 14,084 circRNAs 9533 PCGs
circRNA vs lncRNA 14,084 circRNAs 19,722 lncRNAs
Stem cell vs not 2082 circRNAs 2082 circRNAs

Fig. 3. Feature expression method and feature dimension histogram.

Fig. 2. Flowchart of CirRNAPL. CirRNAPL identifies circRNA in four main steps: data, feature, classifier, and circRNA identification Data: This involves dataset construction.
According to the bed data file and the hg38 human genome, we write Python script files to extract the corresponding sequence data. Features: This involves the extraction of
features. In this work, information such as the structural characteristics of the RNA sequence is used as the feature to be extracted, including four parts, with a total of 14
calculation models. Classification: This involves the construction of the classifier. Here, the extreme learning machine based on particle swarm optimization is used as the
classification algorithm. The classifier CirRNAPL is constructed by a tenfold cross-validation method, and the final classification model is output. CircRNA identification: The
RNA sequence to be labeled is identified using the classifier CirRNAPL.
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eter k is 2 and 3), Mismatch, and Subsequence; Autocorrelation
included DAC, DCC, DACC, MAC, GAC, and NMBAC; Pseudo-
nucleotide composition included General parallel correlation
pseudo-dinucleotide composition (PC-PseDNC-General) and Gen-
eral series correlation pseudo-dinucleotide composition (SC-
PseDNC-General); and Predicted structure composition included
Local structure-sequence triplet element (Triplet), PseSSC
Pseudo-structure status, and PseDPC. A total of 520-dimensional
features were obtained through these 15 modes(Fig. 3).

2.2.1. Ribonucleic acid composition
For the nucleic acid composition feature of RNA sequences,

three features, including Basic k-mer, Mismatch, and Subsequence,
were used, of which k-mer [42] is the simplest method for express-
ing RNA. Basic k-mer can then be used to calculate the frequency of
occurrence of k adjacent nucleic acids. Mismatch [43,44] can calcu-
late the frequency of k-length adjacent nucleic acids, which differ
by up to m mismatches (m < k); Subsequence is a method that
allows discontinuous matching [45].

Suppose an RNA sequence R is as follows:

R ¼ R1R2R3 � � �Rn ð1Þ
wherein R1 represents the first nucleic acid in R, R2 represents the
second nucleic acid in R, and so on.
Then, the sequence feature vector obtained by using Mismatch
is:

L ¼
Xm
i¼0

d1;i;
Xm
i¼0

d2;i; � � � ;
Xm
i¼0

d4k ; i

 !
ð2Þ

where dj;i represents the number of occurrences of the j-th k-mer

type in RNA sequence R,j ¼ 1;2; � � � ;4k; i ¼ 0;1; � � � ;m.
Lastly, the sequence feature vector obtained by using Subse-

quence is:
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L ¼
X
a1

us a1ð Þ;
X
a2

us a2ð Þ; � � � ;
X
aj

us ajð Þ
0
@

1
A ð3Þ

When aj is exact matching, s aj
� � ¼ 0; when aj is non-contiguous

matching, s aj
� � ¼ aij j. Here, u represents the attenuation coeffi-

cient, u� 0;1½ �,j ¼ 1;2; � � � ;4k.
2.2.2. Autocorrelation
For the autocorrelation feature of RNA sequences, Dinucleotide-

based auto-covariance (DAC) [46], Dinucleotide-based cross-
covariance (DCC), Dinucleotide-based auto-cross-covariance
(DACC) [47], Moran autocorrelation (MAC), Geary autocorrelation
(GAC), and Normalized Moreau–Broto autocorrelation (NMBAC)
are used [48]. DAC measures the correlation of the same physico-
chemical index between two dinucleotides along the sequence
interval l. DCC measures the correlation of two different physico-
chemical indicators between two dinucleotides separated by l
nucleic acids. MAC measures the correlation of the same property
between two residues along with sequence interval l. GAC mea-
sures the correlation of the same properties between two residues
of distance l. NMBAC measures the correlation of the same proper-
ties between two residues at a distance l.
2.2.3. Pseudo-ribonucleic acid composition
For the Pseudo-ribonucleic acid composition feature of RNA

sequences, PC-PseDNC-General and SC-PseDNC-General are used.
In the PC-PNC-General method, the user can select not only 22
built-in physical and chemical indicators, but also upload their
own indicators to generate PC-PNC-General feature vectors. SC-
PseDNC-General is a variant of PC-PseDNC-General [49].
2.2.4. Predicted structure composition
For the Predicted structure composition feature of RNA

sequences, Triplet, Pseudo-structure status composition (PseSSC),
and Pseudo-distance structure status pair composition (PseDPC)
are used. Triplet (24) is an early method based on RNA sequence-
structure information, and it shows better circRNA identification
performance than other sequence-based methods [50].
2.3. Extreme machine learning

To identify circRNAs, the ELM is used here as the basic classifi-
cation algorithm. It has also been applied to biometric identifica-
tion [40,51–55].

ELM is a generalized single hidden layer feedforward network.
This algorithm randomly assigns input weights and hidden layer
thresholds and directly calculates output layer weights by least
squares. The entire learning process is completed once, and no iter-
ation is required. Therefore, the algorithm learns rapidly.
2.4. Particle swarm optimization algorithm

Particle swarm optimization (PSO) is often used to neural net-
work optimization due to its simple rules, rapid convergence, less
parameter adjustability, and strong ability for search [56,57]. PSO
is based on the behavior of group foraging, where the particles
are the solution to be optimized [58]. PSO is used to optimize the
input weight and hidden layer deviation of ELMs, which can
improve the generalizability of the methods. The particle swarm
ELM algorithm relies on fewer hidden layer nodes to achieve
higher precision.
2.5. ELM of PSO optimization

The kernel function of the extreme learning machine has a sig-
nificant influence on the performance of the algorithm. The kernel
parameter r and penalty coefficient C in the kernel function have
an important impact on the performance of the ELM. r affects the
scope of the kernel function, and C affects the stability of the
model. The paper used PSO to optimize the parameters r and C.
The search space of the PSO corresponds to the parameters of the
ELM. The position of the particles represents the parameter value,
and the accuracy is used as the fitness function of PSO. The steps of
the PSO optimization ELM are as follows.

(1) Initialization. The number of iterations and the overall size
were set to 50 and 50, respectively. A particle population
was randomly generated. Each particle in the population
consists of a set of r and C.

(2) Calculation of fitness function value. The fitness function
value of the PSO algorithm is the accuracy of the ELM.

(3) Updating the best position and particle position of the pop-
ulation, as well as the speed and position of the particles
according to the formula (4) and (5) [58].

v i t þ 1ð Þ ¼ x � v i tð Þ þ c1Ri Pbest;i � pi tð Þ� �þ c2R2½Gbest � piðtÞ� ð4Þ

pi t þ 1ð Þ ¼ pi tð Þ þ v iðt þ 1Þ ð5Þ
wherepi tð Þ and v i tð Þ are the position and velocity of the t-th itera-
tion of particle, respectively; Pbest;i is the optimal solution for parti-
cle I; Gbest is the optimal solution for the population; x is the
weight; c1 and c2 are the acceleration factors; R1 and R2 are ran-
dom numbers between 0 and 1; t is the number of iterations.

(4) Checking termination conditions. If the maximum fitness
value or the maximum number of iterations is reached, go
to step (5). Otherwise, return to step (2).

(5) Obtaining the optimal ELM parameter with the largest fit-
ness value. In this way, the parameters of the ELM model
can be obtained, and the circRNA is identified using the opti-
mized ELM.

2.6. Performance measurement

To evaluate the identification effect of the constructed classifier,
four commonly used indicators were selected here: SE (Sensitiv-
ity), SP (Specifity), ACC (Accuracy), andMCC (Matthews Correlation
Coefficient). SE indicates the rate of correct prediction of positive
sequences. SP indicates the rate of correct prediction of the coun-
terexample. ACC indicates the correct rate of classification. MCC
indicates the reliability of the classifier, which can reflect the pre-
diction ability more fairly. A larger MCC reflects better reliability.

SE ¼ TP
TP þ FN

ð6Þ

SP ¼ TN
TN þ FP

ð7Þ

ACC ¼ TN þ TP
TN þ FP þ TP þ FN

ð8Þ

MCC ¼ TP � TNð Þ � FP � FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FP � TP þ FN � TN þ FP � TN þ FNð Þp ð9Þ

Here, TP indicates the number of circRNAs predicted correctly; FP
indicates the number of non-circRNAs predicted correctly; TN indi-
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cates the number of incorrectly predicted circRNAs; FN indicates
the number of incorrectly predicted non-circRNAs.

3. Results

3.1. Feature importance analysis

Taking into account the efficiency of the classifier operation,
MRMD (Maximum-Relevance-Maximum-Distance) was used for
feature selection and the output of feature score sorting results
[59]. We analyzed the top 20 features based on the output feature
scores (Fig. 4(A)), and get the 20-dimensional feature set obtained
by feature extraction. On the circRNA vs PCG dataset, the first
dimension is F496, and the 17-dimensional distribution is around
F200. On the CircRNA vs IncRNA dataset, the first dimension fea-
ture is F404, and most are located between F200 and F300-F450.
For the last dataset, the first dimension is characterized by F98
and F404 is the second dimension. Most of the feature distributions
are the same as the second one. Moreover, we can get the common
points of the 20-dimensional feature distribution on the three data
sets. That is, most of the features are around F200 and F356.
Finally, we analyzed which features are important for the identifi-
cation of circRNA based on feature extraction.

To analyse the distribution of local features, we divided the 520
features into four intervals ([1,148), [148,318), [318,364), and
[364,520]) according to the order and results of using the feature
expression method. The distribution of the top 20 features in each
interval is given in Fig. 4(B). According to the top 20 features of the
score and the interval map of the distribution, four falls into the
interval [148,318), seven into [318,364), and nine into [364,520],
in which the scores in the intervals [318,364) and [364,520] were
also ranked higher. This shows that the structural features of RNA
and Pseudo-ribonucleic acid composition are most important, and
the proportions of Autocorrelation and Ribonucleic acid composi-
tion are relatively less important. Therefore, we concluded that the
structural features and Pseudo-ribonucleic acid composition con-
tain more feature information than the other two feature regions.

3.2. Optimization of kernel function of ELM

For ELM with excellent classification performance, it is impor-
tant to choose an appropriate and stable hidden layer activation
Fig. 4. Feature importance analysis. A) Top 20-dimensional feature distribution on three
features were obtained by feature selection. The 520-dimensional feature distribution w
function. This section presents a discussion of the different classi-
fication performances of different activation functions and how to
find the optimal activation function. For optimization of the kernel
function, five common activation functions are selected here: sig-
moid, sine, hardlim, tribas, and radial basis function (RBF) [60].

Five activation functions were used to the three datasets,
respectively. The classification results are evaluated based on four
indicators: ACC, SE, SP, and MCC. The recognition results were
obtained under tenfold cross-validation (Fig. 5(A)). We found that
the values of MCC, SP, and SE of RBF are not the best for the dataset
of circRNAs expressed and not expressed in stem cells. However,
the effect is better than the other four functions for the other
two datasets. The results for the three datasets are as follows:
accuracy of 0.784, 0.794, and 0.749; SE of 0.762, 0.679, and
0.749; and SP of 0.75, 0.839, and 0.739, respectively. In general,
the RBF function achieves the best recognition of the overall effect
and proves the validity of RBF for recognizing circRNA. Therefore,
RBF was selected as the activation function of ELM.

To further prove the stability of the classification effect, the acti-
vation function was verified on an independent test set. The results
are shown in Fig. 5(B). According to the trend of the fold line, the
RBF function is at a higher position for the three datasets in terms
of accuracy, and the accuracy of the independent test set is higher
than the ten-fold cross-validation effect. This also proves that the
recognition effect of RBF has certain stability and effectiveness.
Therefore, in the following experiments, RBF is used as an activa-
tion function of the hidden layer.

3.3. Optimization of ELM using PSO algorithm

The traditional ELM lacks effective training methods, and it has
the disadvantage of poor prediction accuracy [61]. In contrast, PSO,
as an intelligent optimization algorithm, can improve the perfor-
mance of ELM. Here, the PSO algorithm was used to optimize
ELM and it was compared with basic ELM results and the optimiza-
tion effect of genetic algorithm [62]. The results of experiments of
tenfold cross-validation show that, compared with the recognition
results of the optimized ELM and the basic ELM algorithm, GA-ELM
and CirRNAPL improved to some extent (Fig. 5(C)). In terms of the
classification effect, ELM and CirRNAPL achieved better results
than GA-ELM. On the three datasets, CirRNAPL achieved accurate
ACC values of 0.815, 0.822, and 0.782. Experiments showed that
data sets. B) Feature Importance Analysis: On the three data sets, 520-dimensional
as organized.



Fig. 5. Classifier validity verification. A) Identification results of five activation functions under tenfold cross-validation. B) Validation of the kernel function on the
independent test set. C) Optimization of the experimental results of the extreme learning machine. D) Results of comparison with other classifiers under ten-fold cross-
validation. E) Validation of classifiers on independent test sets. F) Comparison of identification results compared with traditional blast sequences.
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the PSO effectively improved the prediction accuracy and general-
izability of the ELM network. Therefore, the improved ELM was
used as a classification algorithm to identify circRNA.
3.4. Comparison with other classifiers

To verify the validity of the CirRNAPL, the classifier was com-
pared to other classification algorithms. Based on Section 3.2 and
Section 3.3, RBF is the selected activation function and the ELM
was improved using the PSO algorithm. Next, the classification
effect of the improved ELM algorithm was compared with those
commonly used algorithms, such as CNN (Convolutional Neural
Networks) [63], RF, support vector machine (SVM), J48 [64], and
ZeroR [65]. The comparison results are shown in Fig. 5(D).

As shown in Fig. 5(D), from the comparison of the results of ACC,
SE, SP, and MCC, compared with the CNN, RF, SVM, J48, and ZeroR
algorithms, the classifier CirRNAPL constructed here achieved good
results. For the three datasets, CirRNAPL achieves recognition accu-
racy of 0.815, 0.822, and 0.782, and also demonstrates the effec-
tiveness of PSO-ELM for identifying circRNA.

After verifying the classifier CirRNAPL under ten fold cross-
validation, to further explain the effect, CirRNAPL was further val-
idated here on an independent test set. The results of the indepen-
dent test set verification are shown in Fig. 5(E). According to the
accuracy values of the five algorithms on the three datasets, the
classifier CirRNAPL constructed in this study achieved a high accu-
racy rate. The accuracy rates for the three datasets are 0.887, 0.906,
and 0.841, and the accuracy of the independent test set is higher
than the accuracy of the tenfold cross-validation. The findings also
prove that the classification accuracy of the tenfold cross-validated
classifier is reliable and stable.
3.5. Comparison of the results with the traditional blast method

This section mainly describes a comparison of the recognition
effects of the constructed classifier CirRNAPL and the traditional
blast sequence alignment. In biological research, if a previously
unknown gene is found, then a standard method, such as the base
alignment search tool blast, is applied to obtain useful information
through comparative analysis. With the development of machine
learning algorithms and information technology, an increasing
abundance of methods is becoming available for applying machine
learning algorithms to identify unknown genes. To combine the
effect of the traditional blast and the identification effect of the
machine learning method, we compared the identification effect
between CirRNAPL and blast. When performing blast, all sequence
files are database files queried by blast, and each sequence is used
as a query file in turn. Each sequence can get a blast result file, and
the results are arranged in descending order of identity/length.
Then, the prediction category of the query sequence is the category
corresponding to the sequence with the largest identity/length
value. The final result is shown in Fig. 5(F). We found that the clas-
sification accuracy of blast is clearly lower than that of CirRNAPL.
The recognition accuracy of blast is 0.439, 0.605, and 0.611, while
the classification accuracy of CirRNAPL is 0.815, 0.802, and 0.782,
respectively. Given that BLAST only compares certain keywords
that are more or less important in the sequence, it is not surprising
that the accuracy is slightly lower. Thus, there is no doubt that the
sequence data-based CirRNAPL classification methods will have
increasingly broad validity and usability in research.

3.6. Comparison with state-of-the-art methods

To test the effectiveness of the identification of the proposed
classifier CirRNAPL, we compared its identification performance



Fig. 6. A) Comparison with state-of-the-art methods. B) Analysis of the importance of violin diagram features.
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with that of existing classifiers: WebCircRNA, PredcircRNA, H-ELM,
circDeep (Fig. 6(A)). Among these models, the literature [31] only
used SE and SP indicators among the four commonly used evalua-
tion indicators. PredcircRNA, H-ELM, and circDeep only used the
circRNAA vs lncRNA dataset.

Firstly, we compared the results of CirRNAPL with WebCircRNA.
From Fig. 6(A), we found that cirRNAPL achieved better perfor-
mance on the ‘‘stem cell vs not” and ‘‘circRNA vs PCG” datasets
Fig. 7. A) Relationship between sequence alignment and E value under stem and non-stem
sequence. C) Sequence alignment partial conservative region display and Consensus log
than WebCircRNA, and in contrast, the performance on ‘‘circRNA
vs lncRNA” was slightly worse. We analyzed the causes of the per-
formance on the ‘‘circRNA vs lncRNA” data set from the perspective
of features. According to the score generated after feature selec-
tion, the paper selected the two-dimensional features that effect
is better in the results of each feature expression method and used
violin plots to show the data distribution on the positive and neg-
ative example data sets (Fig. 6(B)). From the Fig. 6(B), we can see
. B) Analysis of the relationship between the expression level and abundance of the
.
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that the difference of feature distribution is relatively small
between positive and negative examples, showing that the feature
representation method we used cannot represent the characteris-
tics of circRNA and lncRNA well. This result indicates that the fea-
ture representation method, which can make a significant
difference in the distribution of positive and negative samples,
would greatly contribute to the final classification result. It brings
new challenges on how to use more efficient features and improve
the performance of the classifier.

Secondly, we compared the results of CirRNAPL with Pred-
circRNA, H-ELM, and circDeep, respectively. From Fig. 6(A), we
can know that the performance of cirRNAPL is better than Pred-
circRNA and H-ELM in the three indicators of ACC, SE, and MCC,
while lower than the latest circDeep. The ACC value of the circDeep
method is higher than cirRNAPL. By comparison, we can know that
although cirRNAPL has achieved some progress, more advanced
techniques are required for better identification results in future
research.

3.7. Blast sequence alignment expression analysis based on RNA-seq
data

After the prediction of circular RNA, we further consider
whether it is possible to analyze the expression of circular RNA
based on the available dataset. We explore the relationship
between the level of sequence expression and the abundance of
the sequence (the number of reads on the alignment). So, we
downloaded the RNA-seq data from the GEO database (https://
www.ncbi.nlm.nih.gov/geo), which is used for similarity detection.
The independent test set of the third dataset in the paper was used
as a query sequence and included 282 positive samples that were
expressed as H1hsec in the stem cell and 282 negative samples
that were not in the stem cell and were not expressed as H1hesc.

Similarity sequence alignment was then performed by local
blast, with different E values, including 1.0, 0.1, 0.01, 1e�3, and
1e�4, respectively. For the two groups of 282 query sequences,
we recorded the values of different sequence alignments under dif-
ferent E-values (Fig. 7(A)). When the E-value was at least 1e�3, the
numbers of sequence alignments on the two datasets were 64 and
69. In the case of the stem and no stem, the changing trend of e
value and expression level is the same. It can be seen that the influ-
ence. Then we calculated the abundance of each circRNA and then
obtained a scatter plot of the relationship between expression and
abundance (Fig. 7(B)). The scatter plot implicates that the abun-
dance of the sequence is high when the expression level of the
sequence is high. Then, the polynomial fitting of the obtained data
points was carried out, and two fitting curves were obtained.
According to the trend analysis of the fitted curve of Fig. 7(B),
the relationship between the expression level of circRNA and the
sequence abundance is the same in both cases: the expression level
increases with the increase of abundance. The correlation coeffi-
cients in the two cases were 0.840 and 0.899, respectively, and
the correlation of not stem was higher. We can also see that there
are more sequence abundances on the not stem data. When the
expression reaches a certain level, it does not change even though
the sequence abundance increases. It shows that the expression
level and abundance of the sequence are positively correlated.

After analyzing the expression level, we randomly selected 8
sequences for multiple sequence alignment. The multi-sequence
alignment of the circRNA was obtained by the Clustal Omega
online alignment tool, and some of the conserved regions were dis-
played (Fig. 7(C)). The results showed there are different col-
orations of nucleic acids in conserved regions while the
consensus logo in the conservative region [66]. The nucleic acid
distribution characteristics of the conserved regions of the circRNA
were revealed by the displayed logo map.
4. Conclusion

We constructed a new classifier for the accuracy of identifica-
tion of circRNA, and the effectiveness of the identification of cir-
cRNA has been demonstrated based on three publicly available
datasets. Through the analysis of feature importance, we found
that the structural features and Pseudo-ribonucleic acid composi-
tion feature showed better performance. However, the perfor-
mance to distinguish circRNA and lncRNA is not very good, and it
is still a widespread problem to distinguish them. More effective
features and data are urgently required. Additionally, sequence
alignments of circRNAs were preferably analyzed based on RNA-
seq data. The comparison with the circDeep method also prompted
us to use more efficient and updated techniques to improve the
performance of our model.

Planned future work includes not only finding more useful fea-
tures but also using advanced parallel technology to identify the
growing number of circRNA sequences. Both of them will improve
the efficiency of identification. Meanwhile, given that the functions
of most circRNAs are still unknown, and little work has been per-
formed on the large-scale discovery of disease-related circRNAs,
future studies should focus on the biological significance of
circRNAs.

5. Data accession numbers

The RNA-seq data is from the GEO database (https://www.ncbi.
nlm.nih.gov/geo). The GEO number is GSE63823.
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