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Abstract

Maritime spatial planning (MSP) is envisaged as a tool to apply an ecosystem-based

approach to the marine and coastal realms, aiming at ensuring that the collective pressure

of human activities is kept within acceptable limits. Cumulative impacts (CI) assessment

can support science-based MSP, in order to understand the existing and potential impacts

of human uses on the marine environment. A CI assessment includes several sources of

uncertainty that can hinder the correct interpretation of its results if not explicitly incorporated

in the decision-making process. This study proposes a three-level methodology to perform a

general uncertainty analysis integrated with the CI assessment for MSP, applied to the Adri-

atic and Ionian Region (AIR). We describe the nature and level of uncertainty with the help

of expert judgement and elicitation to include all of the possible sources of uncertainty

related to the CI model with assumptions and gaps related to the case-based MSP process

in the AIR. Next, we use the results to tailor the global uncertainty analysis to spatially

describe the uncertainty distribution and variations of the CI scores dependent on the CI

model factors. The results show the variability of the uncertainty in the AIR, with only limited

portions robustly identified as the most or the least impacted areas under multiple model fac-

tors hypothesis. The results are discussed for the level and type of reliable information and

insights they provide to decision-making. The most significant uncertainty factors are identi-

fied to facilitate the adaptive MSP process and to establish research priorities to fill knowl-

edge gaps for subsequent planning cycles. The method aims to depict the potential CI

effects, as well as the extent and spatial variation of the data and scientific uncertainty;

therefore, this method constitutes a suitable tool to inform the potential establishment of the

precautionary principle in MSP.
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Introduction

Maritime spatial planning (MSP) is defined by the European Framework Directive on MSP

2014/89/EU as “a process by which the relevant Member State’s authorities analyze and orga-

nize human activities in marine areas to achieve ecological, economic and social objectives"

(art. 3 [1]) and considers the spatial allocation of maritime activities as the focus of the deci-

sion-making process [2].

Specifically, elaborating on marine spatial plans should be decided by analyzing “relevant

existing and future activities and uses and their impacts on the environment, as well as to natu-

ral resources” (art. 4, comma 5). Objectives of MSP are declared in article 5, where the aim is

to have sustainable development of maritime sectors (e.g., energy, transport, fishery, aquacul-

ture, tourism and extraction of raw materials) coexisting with the preservation, protection and

improvement of the marine environment, in coherence with the Marine Strategy Framework

Directive 2008/56/EC (MSFD) [3]. The MSP Directive envisages the establishment and imple-

mentation of maritime spatial plans according to the ecosystem-based approach (EBA), in line

with the MSFD provisions, and aims at “ensuring that the collective pressure of all activities is

kept within levels compatible with the achievement of good environmental status” (art. 1(3)).

The MSP Directive considers applying the precautionary principle in Recital 14 when the

following three preliminary conditions, as mentioned by the Commission on the precaution-

ary principle (COM (2000) 1 final), are met: i) potentially adverse effects are identified; ii) the

availability of scientific data is evaluated; and iii) the extent of scientific uncertainty is analyzed

[4]. Cumulative impacts (CI) and uncertainty analyses can inform the application of the pre-

cautionary principle because they evaluate the effects of existing and potential human uses and

pressures, data availability, and scientific uncertainty.

In 2014, the European Commission issued a macro-regional strategy for the Adriatic and

Ionian Region (EUSAIR) (COM(2014)284 final) [5]. The aim is to support sustainable mari-

time economic development known as ‘blue growth’ in the region, focusing on activities such

as aquaculture, fisheries, sustainable tourism, renewable energy sources, infrastructure and

maritime transport. Under the EUSAIR framework, a pilot project called the ADRIPLAN

(ADRiatic Ionian maritime spatial PLANning) was launched in 2014 to test an MSP process in

the Adriatic and Ionian Region (AIR). The authors of the paper, as part of the planning team,

implemented the CI assessment modelling in parallel to the planning process [6] to apply an

ecosystem-based approach to MSP.

The CI assessment proposed by Halpern et al. [7] is the most widely used around the world

[8]. Several approaches for mapping the cumulative impacts were analyzed by Judd et al. [9],

with the aim of defining guidance for practitioners while implementing the CI assessments in

their respective MSP pilots. Including the systematic analysis of limitations in the CI results

is useful to define valuable information for implementing practical management measures

[9,10], as the CI assessment holds great potential for science-based decision-making. A chal-

lenge of the CI assessment includes the “uncertainty in data and their combination" (p. 7) [11].

Several sources and causes of uncertainty are derived from data gaps and/or different data res-

olutions [11] and/or originated from incomplete knowledge and information [12]. Halpern

and Fujita [11] concentrate on solutions to manage the data gaps in their work. However, the

data gaps constitute only a portion of the uncertainty included in CI modeling, which includes

all of the assumptions made in the modelling process [11,13].

As complex reality is imperfectly understood and reduced into models [14,15], uncertainty

is inherent in any modelling approach, as in the application of the CI assessment in real situa-

tions [11,12]. Fundamentally, “uncertainties are communicated clearly, especially when inte-

grating cumulative impact mapping into decision making, to ensure results are interpreted
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correctly” (p. 7) [9]. The effects of the CI model assumptions and the data quality models have

been tested in isolation by previous studies [7,8,16,17]. Stock and Micheli [8] proposed a global

uncertainty analysis to quantify uncertainty and depict what modelling factors (and related

assumptions) mostly contribute to the uncertainty of the CI results. They demonstrated that

model assumptions and data quality influence the results of CI assessment maps. Moreover,

they noted that those influences depend on the case study region and the data describing it [8].

In this paper, we present the uncertainty analysis of a cumulative impact (CI) assessment

for a pilot project in the AIR to inform the MSP effort. Similar to other studies, we compiled

human use and environmental components for our analysis and calculated the CI scores based

on sensitivity analyses from expert judgement. Additionally, as suggested by others [10,18], we

propose a general uncertainty analysis structured in a three-level assessment to integrate prob-

lem identification, context framing and problem structuring (level 1 and 2) to subsequently

tailor uncertainty (UA) and sensitivity (SA) analysis (level 3).

Uncertainty was initially assessed by applying and extending the approach of Walker et al.

[13]. We describe the nature and the level of uncertainties by location and sub-location. We

used expert judgement and elicitation to determine the sources of uncertainty related to the

assumptions and gaps of the case-based MSP process in the AIR. Then, we used the results to

tailor the global uncertainty analysis to spatially describe uncertainty distribution and varia-

tions. In this study, we assume that uncertainty is defined as “any departure from the unachie-

vable ideal of complete determinism” [13].

The results of the CI scores and of the uncertainty analysis for the AIR are discussed for the

level and type of reliable information and insights they provide to the MSP process. Moreover,

we highlight a series of limitations and key issues that need to be considered if claiming adher-

ence to the precautionary principle, as well as to reduce uncertainty in a possible subsequent

planning cycle. The method can be adopted by decision makers to elaborate and negotiate with

stakeholders about the thresholds identifying the acceptable risk of the potential CI. It also con-

stitutes an operative method to guide the revision of available knowledge within the MSP adap-

tive process with new data and information on the greatest contributing uncertainty factors.

Materials and methods

This chapter is divided into two parts and presented in an analytical framework (Fig 1). Part A

describes the methodology for the CI assessment in a case study for the AIR, where the follow-

ing four steps are described: (1) Study area definition, (2) CI model design, (3) dataset collec-

tion and integration of expert knowledge for sensitivity score definition and (4) CI analysis on

the AIR. Part B refers to the general analysis of uncertainty along the CI assessment starting

from the application of the uncertainty matrix as suggested by Walker et al. [13]. For each

uncertainty location, the respective uncertainty quantification methods, divided into three lev-

els–(1) uncertainty description (UD), (2) semi-quantitative methods (SQ) and (3) numerical

uncertainty methods (global uncertainty (UA) and sensitivity (SA) analysis (see section titled

“General analysis of the uncertainty along the CI assessment process”)–are applied.

Case study: Cumulative impacts assessment in the Adriatic-Ionian

region

Step 1: Study area. In this step, the modelers defined the geographical domain and the

temporal frame of the CI assessment of this study, which was derived from the EUSAIR

domain of application within the ADRIPLAN MSP process.

The AIR is located in the eastern Mediterranean Sea and covers the entire Adriatic Sea

(138,600 km2) and the northern portion of the Ionian Sea (199,000 km2) in the south (Fig 2).

Uncertainties in cumulative impacts within maritime spatial planning
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The Adriatic Sea is the largest shelf area of the Mediterranean [19]. The Adriatic and Ionian

Sea communicate through the Otranto Strait, an approximately 72 km inlet that divides the

Italian and Albanian coasts [20] has a maximum depth of 1,200 m [21].

The study area includes unique biological resources including Posidonia oceanica seagrass

[22,23], coralligenous formations [24–26], nursery habitats for commercial species [27], and

hosts marine vertebrates (dolphins, sea turtles, giant devil rays, whales and monk seals). From an

administrative point of view, the study area is divided into seven riparian countries: four Euro-

pean Member States (Croatia, Greece, Italy, Slovenia) and three non-European countries (Alba-

nia, Bosnia-Herzegovina, Montenegro). The intensive anthropogenic activities scattered among

seven countries with a high heterogeneity of geomorphological features and biological resources

are a constant threat for biodiversity and the integrity of marine and coastal landscapes [28].

Step 2: Cumulative impact model design. In this study, we extended the cumulative

impact (CI) model proposed by Halpern et al. [7] and later modified by Andersen et al. [29].

The case study area was divided into a regular square grid of 1 km2 (approximately 300,000

cells) using the EEA’s reference grid for Europe [30,31] extracted for marine areas only.

Andersen et al. [29] estimate the Cumulative Impacts index (CI) for a single grid cell as fol-

lows:

CI ¼
Xl

i¼1

Xm

j¼1

Xn

k¼1

sðUi; Pj; EkÞ i Ui; MðUi; Pj; EkÞ
� �

dðEkÞ

Fig 1. Analytical framework. Part A shows the Cumulative Impact assessment methodology; Part B refers to the

general analysis of uncertainty based on the Walker et al. [13] uncertainty matrix and respective uncertainty

quantification methods applied: UD = uncertainty description (level 1), SQ—Semi-Quantitative analysis (level 2);

numerical uncertainty analysis (UA) and sensitivity analysis (SA) (level 3). In Part C, the contributors in the different

modelling phases are reported.

https://doi.org/10.1371/journal.pone.0180501.g001
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The CI model is based on human uses (Ui), environmental components (Ek) and pressures

(Pj). These sensitivity functions (Ui, Pj, Ek) are the sensitivity of an environmental component

Ek to a pressure Pj caused by an activity Ui. The intensity function i(U,M) is the relative inten-

sity of P caused by U in a grid cell according to spatial model M. Different from Halpern et al.

[7], the pressures were derived by the MSFD (2008/56/EC) [4], considering pressures as factors

causing temporary or permanent disturbances or damage to loss of one or several components

of an ecosystem (S1 Table). The function M(Ui, Pj, Ek) represents the spatial model for Pj

caused by Ui on Ek. For the spatial model (M), we modified the formula from Andersen et al.

[29] as follows: whereas Andersen et al. applies M as a function of U and P (as M(Ui, Pj)), our

model also depends on the environmental component as M(Ui, Pj, Ek). Moreover, the spatial

model M is based on a 2D Gaussian spatial convolution [32] instead of using a linear decay

function as applied by others [12,29,33].

Fig 2. Case study area. The Adriatic and Ionian region.

https://doi.org/10.1371/journal.pone.0180501.g002

Uncertainties in cumulative impacts within maritime spatial planning

PLOS ONE | https://doi.org/10.1371/journal.pone.0180501 July 10, 2017 5 / 30

https://doi.org/10.1371/journal.pone.0180501.g002
https://doi.org/10.1371/journal.pone.0180501


The probability function d(E) is the presence/absence of Ek, which is 1 for a fixed E (seabed

habitats) and varies from 0 to 1 for mobile special features (turtles, marine mammals and

seabirds).

Different from the Andersen et al. [29] formulation, we introduced two additional factors:

i) the response function rf, which represents the response of the ecosystem to stressors that can

vary from a linear to a non-linear behavior [7,34–37]; and ii) the mscf factor, which was intro-

duced for model dominant, additive and mitigative effects of multiple pressures in a grid cell.

Although multiplicative effects have been studied in literature [38], we could not find any stud-

ies suggesting a multiplicative effects model that could be implemented for this study, as also

considered by [8].

Step 3: Dataset collection. In the third step, input data were collected, with a total of 15

human activity datasets (S2 Table) and 31 environmental component datasets (S3 Table). All

of the 46 spatial datasets were rasterized using the regular square cell grid of 1 km2 as described

in Step 2.

The sensitivity scores were calculated through an expert survey using a structured question-

naire. In total, 99 regional experts from academia and research institutes were contacted by the

planning team because of their proven knowledge on specific features included in the analysis.

The experts were asked to evaluate sensitivities associating P from U to E through the following

criteria: impact extent, impact level and recovery time, and buffer area (S4 Table). Moreover,

for each sensitivity score, the experts were asked to express the confidence levels [c(Ui, Pj, Ek)]

as the level of reliability of their judgments based on empirical evidence, literature or personal

knowledge and understanding [17,39,40].

Step 4: AIR cumulative impact analysis. In the fourth step, the CI scores were tested and

mapped on the AIR assuming the following: i) the additive model for impacts are on the same

grid cell (ci) [7]; ii) a linear response function; iii) the sensitivity scores, confidence and spatial

model are derived directly from the expert judgement (described in step 3) [7,29,41]. This

analysis, based on the assumptions from the literature, was used to inform the stakeholder and

expert workshops to develop the general uncertainty analysis, as explained in the next section

“General analysis of the uncertainty along the CI assessment process”. The CI and the subse-

quent analysis were performed using Tools4 MSP [42], an open source geospatial software

package directly integrated in the ADRIPLAN Portal.

General analysis of the uncertainty along the CI assessment process

We developed a three-level analysis of uncertainty to address limitations and model

assumptions for the AIR case study area and to identify the information needs for the MSP

process in the AIR (Fig 3). Level 1 identifies uncertainty in general terms on the entire AIR

and along the CI assessment process. Level 1 considers the description of (i) uncertainty

locations and sub-locations; (ii) sources of uncertainties per location according to 5 descrip-

tors defined by Walker et al. [13] and (iii) the spatial characterization of the inputs’ uncer-

tainty (section “Level 1: Locations and the level and nature of uncertainty with spatial

characterization”).

Level 2 applies a semi-quantitative analysis of uncertainty (SQ) through expert elicitation to

rank model locations and sub-locations based on the uncertainty magnitude (section “Level 2:

Semi-quantitative analysis of uncertainty for the CI assessment”). The analysis is applied to the

entire AIR and for the entire CI assessment.

Level 3 performs the global uncertainty (UA) and sensitivity (SA) analysis, considering the

potential effects from the simultaneous variation of parameters related to the selected locations

sub-set. While UA is performed on the entire AIR, SA is limited to the sub-areas of the AIR,
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and on a sub-set of locations emerging from level 1 of analysis, for which numerically quantify-

ing the uncertainty is possible (section “Level 3: Uncertainty analysis and sensitivity analysis”).

Level 1: Locations and the level and nature of uncertainty with spatial characteriza-

tion. The uncertainty analysis for level 1 applied the uncertainty matrix proposed by Walker

et al. [13,22] for the CI assessment. The matrix provides a systematic approach to identify and

classify uncertainties specific to a particular modelling process, as applied to a study region

and related dataset. In Table 1, the five locations of uncertainty (context, model, input,

parameters and outcomes) are presented, which describe the phases or decision nodes of the

modelling activities where uncertainty manifests itself [13]. Each location is qualified by five

descriptors (Table 2) and grouped by level (statistical uncertainty, scenario uncertainty and

recognized ignorance) and by nature (epistemic and variability nature).

Fig 3. Scheme of the three-level analysis of uncertainty. Modelers initially describe uncertainty in level 1.

Semi-quantitative analysis is performed in level 2, while statistical quantitative analysis in level 3.

https://doi.org/10.1371/journal.pone.0180501.g003
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Initially, the modellers divided the locations of uncertainty into sub-locations, depending

on the assumptions, hypothesis and decision nodes made while building the CI assessment

model. In total, 17 sub-locations were defined (S5 Table), reflecting the potential sources of

uncertainty. In addition, the uncertainty matrix was discussed in the first core expert work-

shop (Venice 12/05/2014) with the ADRIPLAN Project partners and was composed by a panel

of interdisciplinary experts in ecology and environmental sciences and planners and biologists

Table 1. Locations of uncertainty.

Locations of

uncertainty

General definitions

Context conditions and circumstances (and even the stakeholder values and interests) that

underlie the choice of the boundaries of the system, and the framing of the issues

and formulation of the problems to be addressed within the confines of those

boundaries

Model 1. model structure uncertainty: lack of sufficient understanding of the system (past,

present, or future) in current behavior or future evolution, entailing issues related

to system boundary, functional forms, definitions of variables and parameters,

equations, assumptions and mathematical algorithms

2. model technical uncertainty: generated by software or hardware errors

Inputs 1. data that describe the reference (base case) system

2. the external driving forces that have an influence on the system and its

performance

Parameters (exact, fixed, a priori chosen, calibrated)

Outcome Results of the modelling process

Locations of uncertainty represent where the uncertainty manifests itself within the model complex; adapted

from Walker et al. [13].

https://doi.org/10.1371/journal.pone.0180501.t001

Table 2. Descriptors of uncertainty.

Descriptors of

uncertainty

Definitions

1. Level where the uncertainty manifests itself along the spectrum between deterministic

knowledge and total ignorance

1.1 Statistical

uncertainty

any uncertainty that can be described adequately in statistical terms, as sampling

error, or inaccuracy or imprecision

1.2 Scenario

uncertainty

related to the process of making assumptions that in most cases are not

verifiable, so associated with uncertainty at a level beyond statistical uncertainty;

it entails a range of possible outcomes, but the mechanisms leading to these

outcomes are not well understood and it is, therefore, not possible to formulate

the probability of any one particular outcome occurring

1.3 Recognized

ignorance

fundamental uncertainty about the mechanisms and functional relationships

being studied

2. Nature Whether the uncertainty is due to the imperfection of our knowledge or is due to

the inherent variability of the phenomena being described.

2.1 Epistemic

uncertainty

The uncertainty due to the imperfection of our knowledge, which may be reduced

by more research and empirical efforts.

2.2 Variability

uncertainty

The uncertainty due to inherent variability, which is especially applicable in

human and natural systems and concerning social, economic, and technological

developments.

Descriptors of uncertainty qualify the level and nature of uncertainty per each location; adapted from Walker

et al. [13].

https://doi.org/10.1371/journal.pone.0180501.t002

Uncertainties in cumulative impacts within maritime spatial planning

PLOS ONE | https://doi.org/10.1371/journal.pone.0180501 July 10, 2017 8 / 30

https://doi.org/10.1371/journal.pone.0180501.t001
https://doi.org/10.1371/journal.pone.0180501.t002
https://doi.org/10.1371/journal.pone.0180501


who provided the input data for the analysis. The aim was to consolidate the uncertainty

matrix by identifying gaps within a wider expert group.

During the uncertainty elicitation process, the following four methods were applied: i) a

literature review, ii) direct interviews with 11 experts concerning environmental input data

(seabed habitats, marine mammals, seabirds, sea turtles and giant devil rays), iii) surveys that

included 99 experts and iv) six stakeholder meetings (150 participants [6], from which 40

regional experts met in various locations Venice on 29/09/2014 and 10/07/2015, Corfu on 27/

06/2014, Trieste on 07/07/2014, Pola on 04/03/2015, and Lecce on 11/03/2015). During the

stakeholder meetings, the initial results and finding on the CI assessment from the baseline

run and uncertainty analysis were presented during workshop sessions. The participants were

asked to comment on gaps and limitations on both analyses during the sessions or through

personal communications with the modelers along with the meetings. Feedback on the loca-

tions and on the description of uncertainties were collected using the four methods and orga-

nized by the authors in the CI assessment uncertainty matrix, tracked and reported according

to the five uncertainty descriptors.

Once the CI assessment uncertainty matrix was consolidated, we extended the approach of

Walker et al. [13] by introducing the following two spatial-explicit descriptive indicators of the

input uncertainty sub-locations: i) the data availability index (DAI) and ii) a local sensitivity

confidence index (LSCI).

The DAI defines the spatial distribution of the available input datasets (S2 and S3 Tables),

inherent to their geographical coverage of the selected environmental components and human

use dataset. Input information for the DAI was a gazetteer of 22 terms describing the type and

geographical realms of each dataset (S1 File). The 22 terms were organized according to a scale

in the marine regions (Adriatic, Ionian), the national (per country) and sub-national domains

(only for Italy and in administrative Regions), which represent areas under a specific country’s

jurisdiction or portions of a specific country’s jurisdiction. The DAI is calculated as the average

sum of terms related to the spatial distribution of data availability as follows:

DAI ¼
Pl

i¼1
aðUiÞ þ

Pn
k¼1

aðEkÞ

l þ n

where the function a(Ui) is the availability of spatial information of the use Ui, and the function

a(Ek) is the availability of spatial information of the environmental component (Ek).

The LSCI defines the spatial reliability of the CI score per grid cell in relation to the knowledge

level expressed by experts on the sensitivities through the confidence of each E-U-P relationship.

The LSCI is calculated as the weighted average on cumulative impact score ci(Ui, Pj, Ek) on each

grid cell as follows:

LSCI ¼
Pl

i¼1

Pm
j¼1

Pn
k¼1

cðUi; Pj; EkÞ � ci ðUi; Pj; EkÞ
Pl

i¼1

Pm
j¼1

Pn
k¼1

ci ðUi; Pj; EkÞ

where c(Ui, Pj, Ek) represents the confidence in experts’ judgement on sensitivity. The LSCI rep-

resents the distribution of areas where our sensitivities knowledge and understanding is higher,

according to the state of the art synthesized by the expert survey. From the LSCI analysis, we

ranked the sensitivities scores with respect to their contribution in the CI model output.

Level 2: Semi-quantitative analysis of uncertainty for the CI assessment. Semi-quanti-

tative (SQ) analysis is a technique used to generically assess and rank the weight of uncertainty

descriptors (level and nature) per sub-location on models. The SQ methodology was proposed

and used by Stelzenmüller et al. [10] to rank locations of uncertainty in a set of models for

monitoring and assessing marine spatial management plans. We combined level and nature to
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generate 6 different types of uncertainty (Fig 4). Uncertainty magnitude ranges from epistemic

nature, which is reducible, to variability nature, which is irreducible because it is inherent to

system variability [13].

Initially, per sub-location of the CI uncertainty matrix, a score of 1 (presence) or 0

(absence) was associated per descriptor, as modified from Stelzenmüller et al. [10]. When mul-

tiple sources of uncertainty per sub-location were identified, multiples of 1 (presence) were

associated for the specific sub-location and descriptor. Next, the uncertainty descriptors were

scored between 1 and 3 per their level and nature, according to the uncertainty magnitude

they represent [10,13].

The final score of uncertainty per sub-location was obtained from the sum of the different

sources’ scores of uncertainty multiplied by the factors for each descriptor. The results were

visualized to describe and synthesize in semi-quantitative terms the relative weight of the dif-

ferent sub-locations of uncertainties in the CI assessment by considering the following three

factors: i) the distribution of the uncertainty rate in percentage per the location and sub-loca-

tion, ii) the relative weight of the five uncertainty descriptors for the CI assessment, and iii) the

relative weight of uncertainty per sub-location according to the 5 uncertainty descriptors.

Level 3: Uncertainty analysis and sensitivity analysis. In level 3, we performed a global

uncertainty (UA) and sensitivity (SA) analysis to quantify the simultaneous effects of the var-

iation of factors identified in level 1. The UA describes the entire set of possible CI scores of

the CI assessment model together with their associated occurrence probability. The SA deter-

mines the change in the model’s output values as a function of the model input values. The

UA was applied to the entire AIR, while the SA was only applied to the geographical areas

where there were no significant data gaps that emerged from the level 1 analysis results and

DAI (Fig 3).

Fig 4. Uncertainty magnitude. Combinations between level and nature of uncertainty give place to 6

different types of uncertainty magnitudes; elaborated from [10,13].

https://doi.org/10.1371/journal.pone.0180501.g004
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In accordance with Stock and Micheli [8], we used global methods that assess the effects of

all factors simultaneously, including their interactions. Different from Stock and Micheli [8],

we used the “Sobol’ indices” [43] that express the share of variance of the output model that is

due to a given input or input combination. Additionally, we also used the ’total effect’ index

that provides a measure of the total effect of a given factor, including all of the possible syner-

gistic terms between that factor and all the other factors [44]. Table 3 summarizes the four fac-

tor groups, the factors included in the analysis and their respective range in the Monte Carlo

(MC) simulation. The adopted CI model contains a high number of input factors (e.g. a sensi-

tivity score and a model distance for each U, P, and E combination). This was required for var-

iance-based measures such as Sobol’ indices and can be flexibly adjusted to work with groups

of factors, for example, to produce an overall sensitivity measure relative to a group [45].

To estimate Sobol’ indices, a quasi-Monte Carlo sampling strategy was adopted. The quasi-

random sampling method reduces the number of simulations required to attain a given accu-

racy in the sensitivity estimates [46]. For first order (no interaction between factors), second

order (interaction between two factors) and total indices (interactions among all factors), we

applied Saltelli’s [47] methodology. This method yields a more robust sensitivity estimation

than other methods such as analysis of variance or regional sensitivity analysis [48–50]. To

obtain a spatial representation of the input factors’ uncertainty, the Sobol’ indices analysis was

performed for each grid cell. This allows identification of the local variation as influenced by

each factor of the model’s uncertainty [8,50,51].

The UA and SA follow a common workflow that can be summarized in the following six

phases [50]: (1) Defining the target function of the UA and SA as the CI score rescaled to a 0–1

range per grid cell to evaluate the relative variation of the CI of the run simulations; (2) Select-

ing the input factors to be analyzed; (3) Assigning a statistical distribution to the selected input

factors (see Table 3), taking into account the level of confidence expressed by experts introduc-

ing a more suitable probability distribution of the single factor. For factors’ sensitivity score

errors (SC) and pressure distance errors (D), we adopted the beta-distribution (B(s, c)) assum-

ing the modal values from expert judgment on sensitivities (s) and the variance from the

Table 3. Factor groups, factors and factor ranges applied in the Monte Carlo (MC) simulations in this

study.

Factor

group

Factor Range in MC simulations

SCa s(Ui; Pj; Ek): sensitivity

score errors

Errors from beta distribution B(s, c) with s sensitivity score

(modal value) and confidence (variance) from expert judgement

ranging from 0 to 1.

Da M(Ui; Pj; Ek): pressure

distance errors

Errors from beta distribution B(d, c) with d pressure distance

(modal value) and confidence (variance) from expert judgement

ranging from 0 to 50km.

MSCF MSCF: multi-stressor

combination factor

Values from uniform distribution U(0, 1) where multi-stressor

combination varies from MSCF = 0 for additive model, to

MSCF = 1 for dominant model.

RFb NR: nonlinear response

factor

Values from uniform distribution U(0, 1) where the response of

ecosystem components varies from NR = 0 (linear response) to

NR = 1 (threshold response).

SR: skewness response

factor

Values from uniform distribution U(0.3, 0.7) [8]. For low SR

values the impact occurs at low levels of pressure; for high SR

values the impact occurs at high levels of pressure.

a 60 most weighted UiPjEk relationship according to the CI baseline run results.
b Response factor.

https://doi.org/10.1371/journal.pone.0180501.t003
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confidence (c) (S1 Fig); (4) Applying a sampling design for the quasi-Monte Carlo simulation;

(5) Performing 15,000 simulation runs; and (6) Determining the UA and SA of the simulation

results by assessing two factors: (i) the spatial representation of the UA through the coefficient

of variation, and for each grid cell, the greatest (25%) and least (10%) impacted which were

retained and mapped [8,52]; and (ii) the first-order, second-order and total effects sensitivity

measures for each grid cell which were estimated and analyzed.

Results

Cumulative impact score for the AIR

The baseline run of the CI model (Fig 5) identifies the following four areas of high anthropo-

genic impact: 1) the Northern Adriatic area; 2) Italian coastal waters (Marche, Abruzzo, Molise

and Apulia Regions); 3) Croatian internal waters; and 4) Greek coastal waters.

Fig 5. Cumulative impacts scores derived from the baseline run for the AIR. Cumulative impact scores varies from 0.0 (no impact) to 8.5; most

impacted areas are indicated in blue frames.

https://doi.org/10.1371/journal.pone.0180501.g005
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In Fig 6, the human uses (U) with the highest contribution to the CI score are presented.

Trawling covers 33% of the cells, and it impacts approximately 50% of the AIR because of the

distance models at which pressures take place, contributing 43% of the total CI score. Maritime

transport covers approximately 25% of the cells, and it impacts almost 50% of the AIR, contrib-

uting 28% of the total CI score.

In Fig 7, the impact on the environmental components (E) is presented. Seabirds, Mediter-

ranean coralligenous communities (A4.26), and Mediterranean biocenosis of coastal detritic

bottoms (A5.46) were most affected by human pressures in the AIR, each contributing 11%

to the cumulative impact score.. The modelling results show that the following 12 E are fully

impacted across their entire spatial coverage in the AIR: Mediterranean coralligenous commu-

nities (A4.26), Mediterranean biocenosis of coastal detritic bottoms (A5.46), sea turtles, Medi-

terranean biocenosis of coastal terrigenous muds (A5.39), marine mammals, circalittoral

sandy muds (A5.35), circalittoral fine muds (A5.36), infralittoral fine sand (A5.23), circalittoral

muddy sand (A5.26), Posidonia beds (A5.535), circalittoral fine sands (A5.25), and Mediterra-

nean biocenosis of muddy detritic bottoms (A5.38).

General analysis of the uncertainty along the CI assessment process

Locations and the level and nature of uncertainty with spatial characterization (level

1). The CI uncertainty matrix with a detailed description of the level and nature descriptors

per sub-location is reported in S6 Table. For the 17 sub-locations of uncertainty, 31 sources of

uncertainties differing in level and nature were detected and described.

With respect to the context location, the main scenario uncertainties are primarily related

to the geographical domain of the EUSAIR as a spatial domain of the MSP process and in rela-

tion to the consistent implementation of the CI model. Moreover, the analysis does not include

any reference to the seasonal or even the monthly variability of the CI mechanisms mostly

Fig 6. Contribution of human uses (U) to the CI scores for the AIR. “Use presence” represents the percentage of the AIR where the use is located;

“impacted cells” represents the percentage (%) of cells that are impacted by the use, considering the distance model at which the pressure takes place;

“scores” represents the contribution to the total CI score of the use in percentage.

https://doi.org/10.1371/journal.pone.0180501.g006
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related to the special features and their seasonal dynamics (e.g., spawning areas). In contrast,

the values are recorded statically for the reference year (2016).

Uncertainties in the model location include the following 4 factors: i) the lack of proper

oceanographic models representing the impacts dispersion mechanisms in the Adriatic and

Ionian seas, both according to the surface circulation [53], the deep circulation between the

Adriatic and Ionian [54] and with the bordering marine areas [55]; ii) the representativeness

of the spatial models of pressures on E, iii) the fact that the baseline environmental conditions

are not considered; and iv) the representativeness of the response of E to P, which is consid-

ered homogeneous on each E everywhere (as mentioned previously by Korpinen et al. [41]).

Recognized ignorance is reported for the response of E to P, where the variability in the level

of resilience and identification of regime shifts is mentioned in the literature [56–58].

Uncertainties related to model inputs are reported for U, E and E-U-P sensitivities as fol-

lows: i) missing datasets for some U and for land-based pollution; ii) for E, limited dataset

coverage in the Ionian for marine mammals and giant devil rays, dataset proxies for marine

mammals and turtles, and sensitivity analysis on the EMODnet dataset for seabed habitats

[59]; and iii) for the E-U-P sensitivities, the ecological meaning and the method of sensitivities

Fig 7. Ranking of the environmental components (E) that are majorly affected by the CI scores in the AIR. “Presence of environmental

components” represent the percentage of the total cells where E is located, “impacted cells” represents the percentage of cells where E is located that

are impacted by U, “score” represents the contribution to the total CI score deriving from E.

https://doi.org/10.1371/journal.pone.0180501.g007
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assessment including the recognized ignorance for the E-U-P relationship for some E, for

example, the deep sea and seabirds.

The parameters’ uncertainties are related to i) the grid resolution with respect to the dataset

resolution, ii) the number of significant pressures per E-U relationship, and iii) the log-nor-

malization of certain datasets.

Uncertainties of the CI outcomes derive from the combination and dispersion of statistical

uncertainties of the input data but also from the spatial models emerging from the combina-

tion of each E-U-P relationship. Moreover, the recognized ignorance is related to the mecha-

nisms of multiple stressors in combination (e.g., synergistic and multiplicative or reducing

effects), as demonstrated by Halpern et al. [7]) and to the ecological significance of the poten-

tial impacts on E, considering not only the presence of high CI scores, but the effects of low CI

signals at the population or community level for vast areas throughout the long term as emerg-

ing from the CI results.

In Fig 8, results from the Data Availability Index (DAI) are reported. The marine area of

the Italian Adriatic is mostly covered by all of the datasets (DAI = 14).

Dataset distribution varies according to the geographical areas as reported in S7 Table.

With respect to E, the Adriatic sea is covered by all 36 datasets, while for the Ionian Sea, the fol-

lowing 2 datasets are missing: i) marine mammals, and ii) giant devil rays (panel A in S2 Fig).

With respect to U, the geographical domains covered the least include Slovenia and Albania in

the Adriatic and the Ionian Sea in general. Only 5 U datasets cover the entire AIR (cables and

pipelines, LNGs, renewable energy facilities, naval based activities, and trawling) (panel B in

S2 Fig). The least represented U in the model relates to dumping areas for dredging, which is

available only for the Emilia Romagna Region in the Northern Adriatic.

Fig 9 reports the Local Sensitivity Confidence Index (LSCI) distribution in the study area.

High confidence areas (� 0.8) cover 1.20% of the impacted cells. These areas are located in the

territorial waters, mainly in front of the Apulia Region, Albania and Greece. The sensitivity

scores that contribute 90% of the total CI are reported in S4 Fig.

Semi-quantitative analysis of uncertainty (level 2). Considering the 31 sources of uncer-

tainty distributed in the 17 sub-locations, the CI assessment model is affected by uncertainty

mainly in the model input (41.9%) and in the model algorithm (27.5%), while the uncertainty

of context, parameter and output counts for approximately 11.5% (Fig 10A). Uncertainty pri-

marily is a variable of nature (72%) rather than epistemic nature (28%) (Fig 10B). Uncertain-

ties can be reported under a recognized ignorance (49.3%) and as a variable of nature (41.8%).

Statistical uncertainty accounts for only 9.0% (Fig 10B).

The relative rank of uncertainty distribution for the 17 sub-locations is illustrated in Fig 11.

The highest amount of uncertainty is due to the E-U-P sensitivities, characterized by uncer-

tainty of variability nature and recognized ignorance. The next three major sources of uncer-

tainty stem from the cumulative impact scores, environmental component response to

pressures, and literature-reported uncertainty on the CI model. The lowest rank is related to

the EMODnet dataset for seabed habitats, human use data, land-based pollution and datasets

for marine mammals, sea turtles and giant devil rays.

Global uncertainty analysis and sensitivity analysis (level 3). The uncertainty analysis

shows the spatial variation of robustness in the CI assessment results. Fig 12 reports the spatial

distribution of uncertainty for the four input factors considering the estimated coefficient of

variation (CV) over each cell for the CI output. The CV values are generally lower in the Italian

Adriatic and higher in the Ionian and Central East Adriatic (in front of Southern Croatia,

Montenegro and in the Strait of Otranto between Italy and Albania).

Fig 13 compares high- and low-impact areas according to the results of the Monte Carlo

simulations in the Italian Adriatic area, which is covered by complete and homogeneous input
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data according to the level 1 analysis. In these areas, the CI scores are stable around similar val-

ues (high or low), and the uncertainty CV is lower. The area that falls within the most impacted

25% of scores and in at least 50% of simulation runs covers 23% of the Italian Adriatic (approx-

imately 14,800 km2) (S5 Fig). Thus, the 5% of the Italian Adriatic was ranked among of the

most impacted 25% scores in at least 95% of the simulation runs. This percentage drops to

1.9% if we consider the most impacted 10% scores. The areas that fall in the least impacted

25% scores in at least 50% of the simulation runs cover 25% of the Italian Adriatic (approxi-

mately 16,100 km2) (S5 Fig). This percentage drops to 1.7% if we consider the least impacted

10% (S5 Fig).

With respect to the sensitivity analysis, the first-order and total-effect sensitivity measures

for the four input factors are estimated for each grid cell. The results, reported in Table 4, show

that (on average) the most important factor determining uncertainty is the multi-stressor

Fig 8. Data availability index (DAI) for the AIR. Dark blue indicates where all data sets are available.

https://doi.org/10.1371/journal.pone.0180501.g008

Uncertainties in cumulative impacts within maritime spatial planning

PLOS ONE | https://doi.org/10.1371/journal.pone.0180501 July 10, 2017 16 / 30

https://doi.org/10.1371/journal.pone.0180501.g008
https://doi.org/10.1371/journal.pone.0180501


combination factor (mscf), with a mean first-order sensitivity of 53.6%, followed by the non-

linear response factor (rf) of 17.5%. The sensitivity score errors and the pressure distance

errors are the least problematic with a 5.9% and 4.4% individual (on average) contribution to

the output uncertainty, respectively. As shown in Fig 14A, the first-order indices can highly

vary across the cells of the analysis region, especially for the msf and rf input factors, where the

respective histograms have high dispersion and variability.

The sum of the first-order indices (Table 4, S1 mean) is approximately 81.4%, indicating

that, on average, there is some interaction (18.6%) between the inputs (the complete absence

of interaction would produce a sum of 100%). The variability of the first-order’s sum across

the grid cells is shown in Fig 15. With respect to the second-order sensitivity measure, in

Fig 9. Local sensitivity confidence index (LSCI) for the AIR. LSCI = 1.00 (in dark blue) indicates where the LSCI is higher, meaning that the

confidence in sensitivities judgement from experts is high; LSCI = 0.00 (in dark red) indicates where the LSCI is lower, meaning that the confidence in

sensitivities judgement from experts is low.

https://doi.org/10.1371/journal.pone.0180501.g009
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Table 5, the mean value for each pair combination of factors is reported. The rf factor shows a

higher interactions with all of the other factors.

Discussion

Method for general uncertainty analysis

The method for uncertainty analysis divided into three levels enables identification of the

sources of uncertainties that might derive from the peculiarities of regional case studies. This

uncertainty was a limitation mentioned in Stock and Micheli [8], who suggested performing

an uncertainty analysis related to the specific case study areas to detect region-based sources of

uncertainty.

Fig 10. Distribution of the rate of uncertainty in percentage per location (a) and per level and nature

(b).

https://doi.org/10.1371/journal.pone.0180501.g010

Fig 11. Relative weight of uncertainty per sub-location according to the 5 uncertainty descriptors.

Ranking of sub-locations according to the relative weight of uncertainty.

https://doi.org/10.1371/journal.pone.0180501.g011
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The construction of the uncertainty matrix leads to the co-production of knowledge on the

best available science and uncertainty on the case study area. This process is managed by the

modelers with insights and revision from the community of experts and stakeholders who take

part in the MSP process. This assures the positive inclusion of multiple sources of knowledge

from diverse entities, which benefits the MSP process [60–63]. Inclusion of the qualitative and

quantitative methods within the 3-level analysis allows for integrating expert elicitation and

stakeholders’ observations. A limit of this method is that it is performed on a voluntary basis,

especially with regard to the expert survey, and the perception of the experts and stakeholders

is a real limiting factor in the solidity and statistical validity of the results [64,65]. Being aware

of such limits, the uncertainty and sensitivity analysis include the score errors factor to test

the robustness of the output based on the variation of scores. Moreover, we confronted the

Fig 12. Uncertainty analysis of four input factors groups. The spatial distribution of the coefficient of variation expressed (CV)–resulting from the

Monte Carlo simulation of the four input factors groups of i) sensitivity score errors, ii) pressure distance errors, iii) stressor combination factor and iv)

response factor—is reported, from lower (dark green) to higher values (orange).

https://doi.org/10.1371/journal.pone.0180501.g012
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baseline run with the results of the uncertainty and sensitivity analysis to verify the relevance

of the uncertainty derived from the expert survey and stakeholders’ inputs, namely, the sensi-

tivity scores and the distance models.

The three-level method is structured to guide modelers in understanding and recording

uncertainty in its multiple sources. Moreover, the method allows us to transparently identify

the areas where global numerical uncertainty and sensitivity analysis can be applied without

sacrificing inconsistencies or deformations of the results due to data gaps. For example,

extending the analysis to the areas where we have no data regarding uses may underestimate

the influence of scores and distances factors in the global uncertainty. The level 1 and 2 analy-

sis covers the entire case study area (AIR), as well as the uncertainty (UA) in level 3, while the

sensitivity analysis (SA) covers only the Italian Adriatic region because missing input data will

influence the sensitivity ranking connected to the scores’ errors, as suggested by Stock and

Micheli [8]. Integration of the results from the 3 levels of analysis can help identify uncertainty

concerns for the entire case study area.

Considering the quantitative analysis of level 3, advantages of the Sobol (and extensions)

method [43] include, along with other methods based on the decomposition of variance,

ensuring that the entire model input space is explored and that the method is a model-free sen-

sitivity measure, which is independent of assumptions about the model structure (e.g., when

Fig 13. High- and low-impact areas according to the results of 50% to 100% of the Monte Carlo simulations in the Italian Adriatic area. The

maps show the percentage of how often each grid cell was in the most and least impacted 25% (a) and 10% (b) of the Italian Adriatic region. The red

gradient refers to most impacted, the green one to least impacted for the percentage (between 50% to 100%) of simulation runs.

https://doi.org/10.1371/journal.pone.0180501.g013

Table 4. Mean values of the first order index (S1) and total order index (ST).

Factor groups S1 mean ST mean

mscf 53.6 62.3

rf 17.5 32.6

scores 5.9 12.1

distances 4.4 11.7

The values are expressed in percentage.

https://doi.org/10.1371/journal.pone.0180501.t004
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Fig 14. Distribution of first-order index (a) and total-effect index (b) for each grid cell.

https://doi.org/10.1371/journal.pone.0180501.g014

Fig 15. Distribution of sums of first order indexes.

https://doi.org/10.1371/journal.pone.0180501.g015
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the model is non-linear and non-monotonic). Other methods can be of limited use, if not out-

right misleading, when the analysis assesses the relative importance of model inputs [48].

Additionally, this approach distinguishes between the first-order effects and higher-order

effects that account for the interactions. Such information can be useful for model improve-

ment, parameter estimation, or model simplification. Furthermore, as shown by Tang et al.

[49], the method yields more robust sensitivity rankings than other measures such as analysis

of variance or regional sensitivity analysis [50].

General uncertainty analysis for the MSP

This study provides an operative tool to evaluate the uncertainty included in CI assessments in

relation to the MSP general framework and process and applies it to a case study in the AIR.

As MSP is meant to be an adaptive process based on the best available knowledge, the method

depicts the most important sources of uncertainty on which to focus in subsequent planning

cycles.

The method can be used to support decision makers in negotiating the CI risk acceptability

with stakeholders and to identify thresholds of “acceptable uncertainty” when exploring uncer-

tainty ranges of variability. Notably, this study provides a method to support and inform deci-

sion makers while verifying that the three following conditions to claim the precautionary

principle are satisfied: i) the potentially adverse effects are identified, ii) the availability of sci-

entific data is evaluated, and iii) the extent of scientific uncertainty is analyzed [4]. Along with

the 3 conditions, we highlighted some caveats the decision-makers could face while setting the

uncertainty analysis for MSP.

With respect to condition 1 listed above, we identified the areas where potentially adverse

effects might occur with the baseline run of the CI assessment model and the 15,000 simulation

runs (Figs 5 and 13) for impacts higher than 25% according to previous studies [8,52]. With

respect to condition 2, we analyzed scientific data availability considering all of the uncertainty

locations and sub-locations required by the CI model in the level 1 and 2 analysis. With respect

to condition 3, we quantitatively and qualitatively analyzed the extent of scientific uncertainty

in the case study area, considering the spatial variation on the grid cells.

The method depicts the range of uncertainty variability for the level 3 uncertainty analysis,

where the CV varies from 0.0 to 1.6. However, the CI uncertainty threshold, which entails the

related risk in producing impacts, is not pre-determined or identified by law. The level of risk

acceptability connected with the level of CI uncertainty should be the result of “an eminently

political decision” (COM (2000) 1 final, p. 15 [4]) considered by the authorities involved in the

MSP process.

Moreover, with respect to the level of impacts, Halpern et al. [52] considers the greatest

25% of the impacts as the significant warning threshold. With the sensitivity analysis, we

depicted the frequencies of each grid cell to show the impacts above the 25th percentile with

respect to the MC simulation runs (15,000) (S5 Fig). We found that 5% of the Italian Adriatic

Table 5. Mean value of second-order interaction between pair of input factors.

Factor groups mscf rf distances scores

mscf - 3.1 0 0.7

rf 3.1 - 3.8 1.0

distances 0 3.8 - 0

scores 0.7 1.0 0 -

The values are expressed in percentage.

https://doi.org/10.1371/journal.pone.0180501.t005
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was ranked among of the most impacted 25% of the scores in at least 95% of the simulation

runs. This implies that, even varying the model hypothesis, these areas will be highly impacted.

Consequently, we can affirm with 95% confidence that the CI will be high. For these areas, the

MSP should act to reduce and control the CI, without needing to claim the precautionary prin-

ciple. Conversely, a significant number of cells show impacts greater than the 25th percentile

for a lower number of simulation runs (S5 Fig). For example, 40% of the Italian Adriatic is

impacted over 25% in at least 15% of the CI simulation runs. This implies that mechanisms of

multiple stressors need to be further investigated in these areas, where uncertainty is very sig-

nificant and CI scores vary significantly under different hypotheses. Moreover, in all these

other cases, the (political) definition of the acceptable risk will identify the frequency threshold

related to the potential CI probability. According to this threshold, areas where it would be

necessary to claim the precautionary principle can be identified. In Fig 15, we assumed a

threshold of 50% of the simulation runs, considering a probability of 0.5 of the greatest CI

event (CI>25th percentile); but a more conservative approach could have considered probabil-

ities of 30% or 25%. The definition of thresholds should follow the general decision of accept-

able risk as a prominent activity of the MSP process. This methodology allows one to verify

and test the extent of the areas under different risk thresholds hypothesized along with the

decision-making process.

In order to fully define the scientific and data uncertainty, the method allows identification

of all of the different sources of uncertainties, not only the ones that can be quantified statisti-

cally (with consolidated techniques as an uncertainty and sensitivity analysis [8,48,50], which

are basically related to the model algorithm and its capacity to represent the phenomenon of

concern). In the level 1 analysis, the method classifies the sources of uncertainty and relates

them to the assumptions and constraints directly derived from the MSP framework for which

the CI assessment is built. For example, an important source of uncertainty resides in the sub-

location of the spatial context of the analysis that directly influences all of the other sources,

especially for the input uncertainties related to the input data gaps and knowledge gaps. In our

study, the geographical scope of the analysis is policy-driven and not model-driven, meaning

that the geographical scope was established by the MSP process under the EUSAIR, including

areas with significant input data gaps or environmental components with very limited scien-

tific knowledge (as with the deep sea). This is in contrast to the work of Korpinen et al. [16],

who decided to limit the case study area when running the CI model to avoid inconsistencies

and data gaps.

During the real MSP process, the geographical scope is defined by the MSP mandate and is

usually derived from the domain of responsibility of the institutions involved in the plan. This

study demonstrates that during the real decision-making processes, modelers are confronted

and constrained to set their model according to the planning domain, which very rarely corre-

sponds to the optimal domain where to run models (i.e., with complete and harmonized input

data, and with solid knowledge on environmental dynamics). While strategies to cover these

gaps include the use of proxies [8] or surrogates [66,67], performing the general uncertainty

analysis to clearly communicate the limitations of the CI assessment results is important for

decision makers and planners, as well as the sources of those limitations. Our results show a

variety of sources of uncertainty that are related to the MSP framework, and they are men-

tioned in the uncertainty matrix (level 1 of the uncertainty analysis) and play an important

role in the uncertainty ranking per sub-location (level 2 of the uncertainty analysis). In fact,

“the geographical domain of CI analysis” is the most significant in terms of scenario uncer-

tainty—the variability is not statistically determined but is inherent to the MSP process and

the way the countries will implement their marine spatial plans (for example, the geographical

scope and cross-border sources of impacts).
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We propose a Data Availability Index (DAI) to support the spatial characterization of input

uncertainty (level 1 uncertainty analysis) as it detects the data gaps occurring due to the spe-

cific geographical scope of analysis. The DAI is a geospatial screening tool used by modelers

to identify the geographic locations for the preliminary sophisticated uncertainty technique

deployment, performed in level 3. Similarly, the local sensitivity confidence index (LSCI) per-

forms a geospatial analysis on the sensitivity confidence scores at an early stage of the model-

ling process that can be used for effective communication of the results for decision-makers

and planners involved in the MSP process. The LSCI spatial explicit information can be used

to look for the best available knowledge necessary to clarify the potential sources of uncertain-

ties, and in any case, to fill the knowledge gaps occurring along the planning process. There-

fore, the DAI and LSCI are rapid indicators calculated with a simple, analytic design that is

already included in the CI model. The level 2 analysis is meant to synthetically communicate

the importance (i.e., weight) of the various sources of uncertainties to the planners and deci-

sion makers to take due actions with the stakeholders or experts involved in the MSP process

to cover those limitations and gaps where possible.

To explore the scientific uncertainty, the analysis prioritizes identifying sources of uncer-

tainty that mostly influenced the CI assessment in the AIR. Level 2 denotes the sub-location of

sensitivities (as a combination of the uncertainty levels of statistical nature, the scenario, the

recognized ignorance, the variability and the epistemic nature). The level 3 details and quanti-

fies factors related to the sensitivity model uncertainty, which is the most influential of all the

uncertainty locations. Moreover, the integration of level 2 and 3 allows one to characterize the

aspects of the sensitivities that are the most urgent. From level 1 and 2, depicting the environ-

mental components (and where they are) in the AIR that are less known by experts is possible,

which is mostly the sensitivities of seabirds, deep sea habitats and some seabed habitats (A5.39,

A5.46, A5.36). Moreover, in level 1, these knowledge gaps are spatially located (the LSCI red

areas in Fig 9). As determined by the level 3 uncertainty analysis, the robustness in the CI

scores varies significantly between the grid cells, just as the robustness also emerges from

the LSCI variability. The analysis demonstrates the local variability of uncertainty, which is

depicted as a fine scale.

As determined by the level 3 sensitivity analysis performed for the Italian Adriatic, the

multi-stressor combination factor (mscf) and the nonlinear response factor (rf) are the domi-

nant factors in determining the CI scores’ uncertainty compared to the sensitivity scores and

the distance models. Moreover, the factors’ great influence is largely distributed across the cells

(Fig 14), meaning that the uncertainty is a significant concern in the CI model in large areas of

the Italian Adriatic. To gain better knowledge on the mscf and rf mechanisms, improving sci-

entific research on the response of the ecosystems to anthropogenic pressures and the related

sensitivity mechanisms is necessary. The research priority should focus on the sensitivities

with a high contribution to the CI scores and the sensitivities with a high uncertainty level (low

confidence from science). Presently, most of the contributing sensitivities emerging from the

baseline run (reported in S4 Fig) are related to trawling and maritime transport with respect to

the nursery areas, seabed habitat A5.39 and seabirds. Moreover, the specific sensitivity analysis

could be performed to rank the importance of the sensitivities within the factors used in the

level 3 analysis; however; this was not performed in our method due to computational limita-

tions between the number of factors (4) and the number of MC simulation runs (15,000). Basic

research in marine ecology is moving towards a better understanding of the cumulative effects

of multiple pressures, regime shifts and resilience in marine ecosystems [56–58]. The uncer-

tainty deriving from the application of cumulative, dominant or multiplicative models in the

CI assessment, at stake with the mscf factor, is discussed in the literature [7,8], but the uncer-

tainty is inherent to the present state of the art, as demonstrated in the case study.
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Conclusions

This study proposed a framework to incorporate the uncertainty of different sources while set-

ting and implementing a CI assessment model for MSP, integrating expert judgement and elic-

itation to arrive at a complete (qualitative and quantitative) description of uncertainty. The

three-level method can be implemented for other decision-making processes where a spatial

description of uncertainty is required to elaborate informed spatial decisions related to human

uses and potential stressors on the environment, as decision-making should consider the limi-

tations related to the uncertainty aspects instead of hiding them [13, 68].

This paper addresses a major challenge in CI assessment, which is related to understanding

relevant insights derived from the CI assessment considering all of the potential types of limi-

tations and gaps emerging from uncertainty analysis. The proposed methodology contributes

to understanding the response of environmental components on the combination of multiple

threats of human activities, combining the geospatial distribution and intensity of the impacts

to the geospatial distribution of uncertainty.

While this study demonstrates the necessity to strengthen the dialogue between science and

policy to update knowledge to fill the gaps in policy needs, the ultimate decision on applying

the precautionary principle—included in the definition of the acceptable risk—is predomi-

nantly a political decision. The general uncertainty analysis proposed in this study explores

the extent of spatial variation of the acceptable risk of the potential CI, which might be defined

through the thresholds and limits as emerged from the MSP process.
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