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Abstract

Background

Helminth infections are among the most prevalent neglected tropical diseases, causing an

enormous impact in global health and the socioeconomic growth of developing countries. In

this context, the study of helminth biology, with emphasis on host-parasite interactions,

appears as a promising approach for developing new tools to prevent and control these

infections.

Methods/Principal findings

The role that antibody responses have on helminth infections is still not well understood. To

go in depth into this issue, work on the intestinal helminth Echinostoma caproni (Trema-

toda: Echinostomatidae) has been undertaken. Adult parasites were recovered from

infected mice and cultured in vitro. Double indirect immunofluorescence at increasing cul-

ture times was done to show that in vivo-bound surface antibodies become trapped within a

layer of excretory/secretory products that covers the parasite. Entrapped antibodies are

then degraded by parasite-derived proteases, since protease inhibitors prevent for anti-

body loss in culture. Electron microscopy and immunogold-labelling of secreted proteins

provide evidence that this mechanism is consistent with tegument dynamics and ultrastruc-

ture, hence it is feasible to occur in vivo. Secretory vesicles discharge their content to the

outside and released products are deposited over the parasite surface enabling antibody

trapping.

Conclusion/Significance

At the site of infection, both parasite secretion and antibody binding occur simultaneously

and constantly. The continuous entrapment of bound antibodies with newly secreted prod-

ucts may serve to minimize the deleterious effects of the antibody-mediated attack. This

mechanism of immune evasion may aid to understand the limited effect that antibody
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responses have in helminth infections, and may contribute to the basis for vaccine develop-

ment against these highly prevalent diseases.

Author summary

Helminthiases are highly prevalent neglected tropical diseases, affecting millions of people

worldwide, mainly in the poorest regions. The lack of vaccines against these infections is

one of the major constraints in the current parasitology and massive efforts are being

done in that direction. Herein, we present a potential mechanism for parasite immune

evasion consisting in trapping of surface-bound antibodies within the excretory/secretory

products that are deposited over the parasite. This mechanism is aided by parasite-derived

proteases, well documented virulence factors that degrade the entrapped antibodies. Alto-

gether, this parasite strategy may serve to minimize the antibody-mediated response and

promote the development of chronic infections. The present study has been done using

the model trematode Echinostoma caproni, though is expected to work in other helminths,

even in other groups of extracellular pathogens. This opens new expectative to better

understanding of host-parasite interactions and susceptibility to helminth infections.

Therefore, the results presented in this manuscript may contribute to the basis of anti-hel-

minth vaccine development.

Introduction

Parasites are able to actively evade or manipulate the host immune system for their own bene-

fit, either increasing their transmission or reducing clearance. That is crucial in the evolution

of host-parasite interactions, pathology and virulence. Evasion strategies, such as antigenic

variation, antigen masking, molecular mimicry or protease secretion are common among both

protozoa and helminth parasites [1]. Ultimately, these mechanisms let the parasites disrupt or

manipulate the host immune responses, both innate and adaptive, and/or prevent the forma-

tion of a memory response [1]. It is well known that antibodies can affect the development of

helminth parasites by hindering processes such as attachment, feeding or motility, among oth-

ers [2]. Several studies show that antibodies are able to target parasites, such as Echinostoma
caproni or Nippostrongylus brasiliensis, for other immune effector mechanisms such as granu-

locyte and macrophage binding, or complement system activation [3–5]. Nevertheless, though

antibody responses are commonly needed for controlling helminth infections, generally these

are not sufficient to prevent nor overcome the infection [2].

The tegument of trematodes is a highly active structure with a key role in host-parasite

interactions and the maintenance of tegument integrity is crucial for worm survival [6]. For

these reasons, a number of tegumental proteins have been proposed as promising vaccine can-

didates against these helminthiases. However, though different levels of protection have been

observed, antibody responses per se normally have limited effect and complete protection

against infection has not been reached so far [7–9]. This suggests the existence of intrinsic

mechanisms that limit the susceptibility of the tegument to the immune attack. Herein, we

describe a potential novel mechanism for parasite immune evasion, which consists in the

entrapment of surface-bound antibodies to limit the effects mediated by the humoral

response.
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E. caproni is an intestinal trematode, broadly employed as an experimental model for the

study of the biology of this group of parasitic helminths, with emphasis on the host-parasite

interactions. One of the key features that makes this trematode a suitable model for studying

host-parasite relationships is its different compatibility among laboratory rodents [10]. Low-

compatible hosts, i.e. rats or jirds, are able to rapidly expel the parasites. Conversely, hosts of

high compatibility, such as mice or hamsters, develop chronic infections lasting more than

25 weeks [10–12]. In highly compatible hosts, such as mice, strong, Th1-type inflammatory

responses are developed at the site of infection, together with elevated levels of oxidative stress

and mucosal antibodies [13,14]. This response, however, is not effective in the clearance of the

infection and does not affect worm establishment nor development [10–14]. Worm recovery

rates in mice are high, and adults are larger and more fecund than those recovered from hosts

of low compatibility are [12]. Altogether, these facts suggest that the parasite is well adapted to

this environment and it is capable of avoiding, or minimizing somehow, the deleterious effects

mediated by the immune response, including antibodies, developed in mice. Thereupon, the

experimental model E. caproni-mouse have been used herein to further study the mechanism

through which parasites are able to withstand the immune response and ensure their survival

inside the host.

Materials and methods

Experimental infections

The strain of E. caproni employed and the infection procedures have been described previously

[15]. Briefly, encysted metacercariae were removed from kidneys and periacardial cavities of

experimentally infected Biomphalaria glabrata snails and used for infection. CD1 mice (male,

30–35 g) were infected by gastric gavage with 75 metacercariae of E. caproni. At 4 weeks post-

infection mice were necropsied and the small intestine was longitudinally opened to collect the

adult parasites.

Ethics statement

The animals were maintained under conventional conditions with food and water ad libitum.

This study has been approved by the Ethical Committee of Animal Welfare and Experimenta-

tion of the University of Valencia (Ref#A18348501775). Protocols adhered to Spanish (Real

Decreto 53/2013) and European (2010/63/UE) regulations.

Double indirect immunofluorescence

E. caproni adults were fixed by immersion in 4% paraformaldehyde, either immediately after

isolation (0 min) or after incubation in RPMI 1640 culture medium (Life Technologies), at

37˚C, during increasing time intervals (15, 30, 60 and 120 min). The immunostaining was

performed as follows. Briefly, adults were blocked for unspecific unions in 5% BSA (Sigma-

Aldrich) in PBS for 1 h, and then incubated for 1h 30 min with a mixture of two primary anti-

bodies, which consisted of: 1) rabbit sera against either E. caproni-actin [16, 17] or E. caproni-
enolase [16, 18] and 2) goat anti-mouse IgA or goat anti-mouse IgG, both conjugated with

HRP (Nordic). Antibody solutions were prepared in PBS by mixing one of the antibodies in 1

(rabbit against E. caproni protein) and another one from 2 (goat against mouse immunoglobu-

lin), both diluted 1/50 in the final mixture. Different combinations of these antibodies were

used to confirm that staining patterns do not depend on specific parasite antigens nor immu-

noglobulin isotypes, i.e. that different parasite-secreted proteins and/or different antibody iso-

types share a common pattern regarding the trapping process.

Parasite immune evasion by antibody trapping

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005773 July 17, 2017 3 / 16

https://doi.org/10.1371/journal.pntd.0005773


After carefully washing in PBS (3 times of 10 min each), adults were incubated simulta-

neously with 2 secondary antibodies: 1) goat anti-rabbit IgG conjugated with Alexa Fluor 647,

which tagged rabbit antibodies specifically bound to parasite antigens in the previous step, and

2) goat anti-HRP conjugated with FITC, tagging the HRP-conjugated goat antibodies bound

to mouse immunoglobulins. This incubation was performed for one hour in the dark and par-

asite specimens were washed again in PBS before their examination by confocal microscopy.

Secondary antibodies (both from Jackson ImmunoResearch) were diluted to a final concentra-

tion of 1/250 each. All incubations were performed at room temperature, under gentle agita-

tion. Antibody solutions were prepared in PBS and no detergents were employed to permeate

the samples. Negative controls, employed to set acquisition parameters for confocal micros-

copy, were performed likewise, excepting the incubation with primary antibodies.

Specific anti-actin and anti-enolase antibodies were prepared in our laboratory through

immunization of New Zealand white rabbits with recombinant proteins as described in [18].

Antibody specificity is proved herein by western blot (see below).

Fluorescent staining was visualized by laser scanning confocal microscopy on 10 specimens

at each time point. Adult worms were obtained from 3 experimentally infected mice and ran-

domly allocated in the different experimental groups (i.e. times of in vitro incubation), so that

each group comprised adults from the different hosts. Images were analysed using FV10-ASW

4.2 and Imaris software.

The loss of in vivo bound antibodies on worm surface along time was quantitated using

ImageJ software to calculate the percentage of image area covered by the fluorescent tag

(FITC). Confocal micrographs (x400) were stacked to create Z projections that were converted

into binary (black and white) images. Raw integrated density (RawIntDen), which is the sum

of the values of all the pixels in the image, was measured and used to calculate the percentage

of area covered by the fluorescent tag (% AC) according to the following formula, in which 255

is the density value of a positive (tagged) pixel in the binary image and areas are expressed in

pixels:

% AC ¼
RawIntDen=255

Total area
� 100

Statistical significance in relation to non-incubated worms (0 min) was assessed by

unpaired Student’s t test (p<0.05). Prior to analysis data normality was confirmed by Shapiro-

Wilk test.

To address the role of parasite-derived proteases, adult specimens were incubated for 2 h in

RPMI in the presence or absence of a cocktail of protease inhibitors (cOmplete, Mini, EDTA-

free, Roche) added at proper concentrations from a 7x stock solution, following the manufac-

turer’s instructions. The worms were processed as described above and the immunostaining

compared between the two groups. To see if E. caproni adults are susceptible of being recog-

nized by specific antibodies after in vitro incubation, the parasites were incubated for 4 h in

RPMI to totally eliminate in vivo-bound antibodies. After blocking, the worms were incubated

for 1 h with the serum of E. caproni-infected mice, before to proceed with the general protocol

for double indirect immunofluorescence using anti-mouse IgG as primary antibody. Pre-

immune mouse serum was employed for negative controls.

Sample preparation for scanning electron microscopy

For SEM, E. caproni adults were fixed in Karnovsky’s fixative (0.5 M glutaraldehyde, 2.5 M

formaldehyde), washed in buffer solution and post-fixed in 2% osmium tetroxide in 0.1 M

sodium phosphate buffer, pH 7.2, for 2 h before dehydration by critical point. Mounted

Parasite immune evasion by antibody trapping
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specimens were sputter-coated with gold-palladium and examined in a Hitachi S4100 scan-

ning electron microscope at 5 kV.

Sample preparation for transmission electron microscopy and

immunogold staining

Inclusion in LR-white resin for TEM was performed by fixing the adult parasites in glutaralde-

hyde 2.5% overnight, washing them in phosphate buffer 0.1 M pH 7.2, and then post-fixing in

2% osmium tetroxide in phosphate buffer for 2 h. After several washes in water, parasites were

sequentially dehydrated in 30%, 50%, 70% and 96% ethanol, 5 min each. Finally, the worms

were sequentially incubated for 2 h in 33% LR-white resin in 96% ethanol, 66% LR-white resin

in 96% ethanol, 66% LR-white resin in 100% ethanol and 100% LR-white resin in 100% etha-

nol. Samples were filtered in resin and polymerized at 60 uC for 48 h. Ultra-thin slices (60 nm)

were stained with 2% uranyl acetate prior to visualization by TEM at 70 kV in a microscope

Jeol JEM1010. Images were acquired using a digital camera MegaView III with Olympus

Image Analysis software.

For the immunogold assay, E. caproni adults were fixed in Karnovsky’s fixative and

included in LR-resin as described above. Grids were washed 5 times, 1 min each, in 20 mM

Tris-HCl buffer, pH 8.2, (TB) containing 0.1% BSA and 0.05% Tween-20 and blocked for

unspecific unions using goat serum, diluted 1:20 in TB, for 30 min. After washing, free alde-

hyde groups were blocked for 5 min in TB containing 0.02 M glycine, and washed again. Rab-

bit sera against E. caproni actin or E. caproni excretory/secretory products (ESPs) [17], diluted

1/10 in TB-0.1% BSA, was applied as primary antibody at 4˚C overnight. Grids were washed as

previously described and incubated for 1 h with gold-labelled secondary antibody, donkey

anti-rabbit IgG coupled to 12 nm gold particles (Jackson ImmunoResearch), diluted 1/20 in

TB. For double immunogold, samples were processed likewise, using rabbit sera against E.

caproni ESPs as a primary antibody and a mixture of 2 secondary antibodies, which consisted

of the same donkey anti-rabbit IgG described above plus a donkey anti-mouse IgG conjugated

with 18 nm colloidal gold (Jackson ImmunoResearch), both diluted 1/20 in TB. Negative con-

trols were performed using grids incubated with pre-immune rabbit sera as primary antibody.

Western-blot confirmation of antibody specificity

The specificity of the primary antibodies employed herein was confirmed by protein electro-

phoresis in SDS-PAGE and western blot (S1 Fig). A total of 30 μg of ESPs, obtained as previ-

ously described [16], were loaded onto 4% stacking and 12% resolving polyacrylamide gels

and electrophoresed in Tris-glycine SDS buffer. Proteins were elctrotransferred onto nitrocel-

lulose membranes (0.45 μm) in 20 mM Tris, 192 mM glycine and 20% methanol buffer, pH

8.3, for 90 min at 200 mA. After 1 h blocking in 5% skimmed milk in PBS containing 0.05% of

Tween-20 (PBS-T) at room temperature, blots were incubated overnight at 4˚C in PBS-T con-

taining each antiserum: rabbit polyclonal anti-E. caproni actin (1/2,000) [16, 17]; rabbit poly-

clonal anti-E. caproni enolase (1/2,000) [16, 18]; and rabbit polyclonal anti-E. caproni ESPs

(1/4,000). Membranes were washed and probed with peroxidase-conjugated secondary anti-

body, goat anti-rabbit IgG in PBS-T (diluted 1/10,000 for actin and enolase, and 1/20,000 for

complete ESPs) for 2 h at room temperature. Negative control was performed likewise, by

incubating ESPs against serum of pre-immune rabbit (1/2,000) and secondary antibody

(1/10,000). Blots were developed with Amersham ECL Advance Western Blotting Detection

Kit (GE Healthcare) following the manufacturer’s instructions and images were taken with

ChemiDoc Imaging System (Bio-Rad). The results of this trial are shown in S1 Fig.
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Results and discussion

High levels of mucosal antibodies are characteristic of E. caproni infections in mice [13]. With

the aim to confirm the in vivo binding of luminal antibodies over the parasite surface, double

indirect immunofluorescence was performed on E. caproni adults. Specific mouse IgA and

IgG were detected on worms at 0 min, indicating that they are susceptible of being affected by

antibody-mediated responses (Fig 1, S1 Movie, S2 and S3 Figs). At this time point, an intense

staining with the different tags used (i.e. anti-E. caproni-actin, anti-E. caproni-enolase and

anti-mouse IgA/G) was observed (Fig 1, S1 Movie, S2 and S3 Figs), indicating that the host

immune response effectively targets E. caproni adults for antibody-mediated attack. Actin and

enolase are immunogenic proteins, commonly found in ESPs of E. caproni and other trema-

todes, so that antibodies against both molecules were used as general markers to tag the para-

site surface and the deposit of ESPs. Considering that distal tegument consists of a syncytial

cytoplasm, externally limited by a plasma membrane, and that no detergents were employed

for immunofluorescence, the ESP molecules detected on the parasite surface are outside the

tegument itself. These results are in agreement with those from Simonsen and co-authors [3,

19], indicating that mouse antibodies bind to secreted antigens and form an external layer of

immune complexes that covers the parasite. Moreover, Sotillo et al. [18] found that both mole-

cules (actin and enolase) were among the most antigenic proteins in the ESPs of E. caproni.
The decrease in the fluorescent signal for in vivo bound antibodies on worm surface during

in vitro incubation is shown in S4 Fig. Loss of surface-bound antibodies during in vitro culture

has been previously described in E. caproni and other trematodes [1,3]. It was suggested that

the shedding of surface antigens and, consequently, the antigen-bound antibodies, might be

an adaptation of this group of parasites to withstand the host immune attack [20]. However,

the approach we have followed herein, based on monitoring in vitro the dynamics of bound

antibodies by double immunofluorescence, reveals a different mechanism of immune evasion.

This new mechanism consists in entrapping the surface-bound antibodies within newly

secreted products. Fig 1, S1 Movie and S3 Fig show how, as the time culture increases, an

external layer of ESPs, stained in red (anti-E. caproni actin), appears over the in vivo-bound

antibodies (seen in green/yellow). This new layer is almost continuous after 30 min of incuba-

tion in RPMI. Andresen et al. [20] found that antigen-antibody complexes were released from

the parasite surface into the culture medium during no longer than 20–25 min, suggesting that

surface turnover was completed by this time. Our results, however, yield a novel interpretation

of this finding. It seems that the loss of surface-bound antibodies in vitro is not due to the turn-

over of surface antigens, but instead to the trapping of the antibodies underneath a layer of

excreted/secreted molecules. Results were displayed for anti-IgA (Fig 1, S1 Movie, S2 and S3

Figs).

A 3D reconstruction of antibody trapping and degradation process was created at two time

points of in vitro culture using Imaris software (Fig 2A). After 1 h incubation, it can be appreci-

ated how the layer of in vivo-bound antibodies is beneath a continuous and relatively thick

layer of secreted material, tagged either with anti-actin or anti-enolase antibody. This indicates

that antibodies are not lost from the surface of the parasite, as previously suggested [3, 20] but,

in contrast, they become hidden beneath a layer of ESPs. After 2 h in RPMI, in vivo-bound

antibodies are scarcely detected on the parasite surface, suggesting that trapped antigen-anti-

body complexes were removed or degraded somehow. Indeed, antibody degradation by para-

site-secreted proteases is well recognized as a mechanism to evade the host immune response

[21].

The in vitro study has let us elucidate the dynamics of bound-antibodies through the incu-

bation of worms in an antibody-free medium. However, antibody trapping is expected to

Parasite immune evasion by antibody trapping
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Fig 1. Staining of Echinostoma caproni surface at increasing time of in vitro incubation. 2D-images from

laser confocal microscopy on the surface of E. caproni adults stained with anti-E. caproni actin (red) and anti-

mouse IgA (green). Merge is shown in yellow. For each time point, representative images of XY and YZ axes are

shown (left and right, respectively). Zero minutes incubation refers to worms that were fixed immediately after

being removed from the intestine of the mouse.

https://doi.org/10.1371/journal.pntd.0005773.g001
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function also within the host. In that case, both antibody binding and trapping must occur

simultaneously, and the continuous entrapment of surface-bound antibodies may serve to dis-

able their harmful impact over the parasite. To confirm our hypothesis that this is a dynamic

process and to examine the role that secreted proteases may have in the context of this mecha-

nism of immune evasion, two different experiments were carried out.

Firstly, adult worms were incubated for 2 h in culture media in the presence and absence of

a cocktail of protease inhibitors. As it was expected, only a slight reduction in the anti-IgA

Fig 2. Degradation of trapped antibodies by parasite-derived proteases. (A) 3D surface modelling of the

staining of Echinostoma caproni adults cultured in vitro for 1 and 2 h, respectively. Note that the green dye (in

vivo-bound antibodies), which is under the red-dye layer (anti-E. caproni actin), has almost disappeared after

2 h in culture medium. (B) Z projection of the stained surface of E. caproni adults at 0 and 2 h of incubation in

the presence and absence of protease inhibitors (PI).

https://doi.org/10.1371/journal.pntd.0005773.g002
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staining was observed after 2 h when protease inhibitors were added to the culture media (Fig

2B and S5 Fig). This result indicates that antibody trapping not only hampers the accessibility

of other immune molecules and cells to the bound antibodies, but also facilitates antibody deg-

radation by parasite-derived proteases. Furthermore, this proves that the loss of green staining

(in vivo-bound mouse antibodies) in vitro is not an artifactual result. The fact that in vivo-

bound antibodies are still detected over the surface after culture in the presence of protease

inhibitors demonstrates that the reduction in anti-mouse antibody staining (green) during

incubation in not-supplemented medium is not consequence of a passive release of antibodies

due to low-affinity bindings (Fig 2B and S5 Fig). A variety of proteases have been previously

detected in the ESPs of E. caproni [16, 22] and, using protease inhibitors, herein we have also

shown that ESPs of E. caproni have protease activity. Future studies will show which proteases

are involved in the degradation of entrapped antibodies on the parasite surface.

Secondarily, to verify that the ESPs deposited over the surface of the parasite can be recog-

nized by new antibodies, adult specimens were incubated for 1 h with the serum of E. caproni-
infected mice and a HRP-conjugated anti-mouse IgG as a secondary antibody. Previously,

these worms had been kept for more than 2 h in RPMI to ensure the elimination of in vivo-

bound antibodies. Immune mouse sera effectively tagged the surface of worms, whereas

unspecific antibody binding was not observed over those incubated with pre-immune serum,

indicating that ESPs accumulated on the surface can be the target for new antibodies (Fig 3).

Furthermore, this confirms that antibody binding to parasite antigens is specific and that non-

specific unions, e.g. through Fc, do not occur. Altogether, these findings suggest a constant

and reciprocal interplay between parasite- and host-released molecules at the site of infection.

Antibody responses have been proven to have little effect on worm survival and development

in E. caproni primary infections, with the highest rates of establishment and longevity being

Fig 3. Binding of serum antibodies to Echinostoma caproni surface. Binding of specific, mouse serum

antibodies (green) to the external layer of secreted products (red) that is formed over the surface of E. caproni

adults during in vitro incubation. Scale bar = 50 μm.

https://doi.org/10.1371/journal.pntd.0005773.g003
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associated with high levels of mucosal antibodies [12, 13]. The evasion mechanism described

herein may serve to explain the lack of effectiveness of these responses.

To examine if the proposed mechanism is compatible with the tegument dynamics and

ultrastructure, the surface of E. caproni was studied by transmission and scanning electron

microscopy (TEM and SEM, respectively). Moreover, immunogold labelling using anti-actin

and anti-ESPs polyclonal antibodies was performed. Secretory vesicles of different morphology

are highly abundant in the tegumental syncytium, indicating a very active secreting surface.

Elongate and circular vesicles [20] accumulate manly at the apex, where they fuse with the

external plasma membrane and empty their content to the outside (Fig 4 and S6 Fig). Immu-

nogold labelling with anti-E. caproni ESPs showed a widespread staining of both the tegumen-

tal syncytium and the parasite surroundings, i.e. external surface, secretions and extracellular

vesicles (Fig 4A). Gold particles inside membrane-bound vesicles, either elongated or circular,

are seen profusely thorough the syncytium (Fig 4A). Similar results were observed with anti-E.

caproni actin, though specific staining was much less extensive as could be expected when

detecting a discrete molecule (Fig 4B and 4C). Unstained negative control is shown in S6 Fig.

This demonstrates that secreted proteins are incorporated in tegumentary vesicles that fuse

with the plasma membrane in the apex and discharge their content to the extracellular milieu.

In Fig 4B, specific anti-actin staining is seen inside an elongated vesicle opened in the apex and

in the vicinity of an opened vesicle. Packing of actin molecules within apical circular vesicles is

shown in Fig 4C. According to these results, antibody trapping by newly secreted products is

mechanistically feasible and it may occur in vivo. This was further confirmed by double immu-

nogold for ESPs and mouse antibodies, showing that host antibodies are trapped by ESPs both

on the parasite surface (Fig 5A) and within the extracellular secretions in the tegument vicinity

(Fig 5B and 5C). High-resolution SEM reveals that a layer of extracellular material is deposited

on the parasite surface, both on the ventral and dorsal sides (Fig 6). Highly likely, this layer

consists of a mixture of parasite secreted proteins and host-derived molecules (i.e. trapped

antibodies) and corresponds to what is detected by double indirect immunofluorescence.

Although we cannot discard that antibody shedding effectively operates to evade the host

immune response, our results indicate that it is less relevant than the mechanism proposed

herein. Antibody shedding was suggested as a mechanism of immune evasion based on the

facts that adult worms lost surface-bound antibodies during in vitro culture [3] and they

rapidly released antigen-antibody complexes into the culture medium [20]. Hence, it was

hypothesized that bound antibodies were removed from the surface due to antigen turnover.

Our results of confocal microscopy show that, in culture, most of antibodies are not shed, as

suggested by Andresen et al. [20], but they remain bound to the surface beneath a layer of

ESPs. Loss of antibodies from the parasite surface is mainly related to an initial trapping by

ESPs, which masks surface-bound antibodies, and the subsequent degradation of trapped

antibodies by parasite-derived proteases. The fact that surface-bound antibodies became

entrapped within a layer of ESPs may explain the interpretation of Andresen and co-workers

[20], since this layer prevents antigen-antibody shedding, thus antibodies were non-detect-

able by the modified ELISA method used by those authors. The question that raises, how-

ever, is how newly secreted antigens get to cover the layer of surface-bound antibodies. In

view of our results, it is tempting to hypothesize that discrete antigens are able to diffuse

through the layer of antigen-antibody complexes, generating a gradient of ESPs from the

parasite to the outside that gets to cover the antibody layer. As secreted antigens are not

anchored, the most external molecules are progressively released into the medium, thus the

covering of antibodies is maintained due to the continuous secretion of ESPs. In contrast to

discrete molecules, antigen-antibody complexes are not expected to diffuse due to their
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greater size, becoming entrapped within this mesh of antigens, which further facilitates their

retention.

In vivo, antibody binding and trapping by ESPs is a continuous process in which antibodies

and ESPs are overlapping. In this context, parasite-derived proteases may play a critical role by

Fig 4. Immunogold labelling of Echinostoma caproni tegument. Transmission electron micrographs of

the tegument stained with rabbit sera against E. caproni excretory/secretory products (A) and E. caproni actin

(B and C). (B) arrow pointed to an elongated vesicle containing actin molecules, which is opened in the

tegument apex. Asterisk indicates secreted actin molecules in the vicinity of an opened secreting vesicle. (C)

anti-actin staining inside circular vesicles (arrows) and over the surface, in the vicinity of an opened vesicle

(asterisk). T: tegument; ExV: extracellular vesicle; S: secretions; EV: elongated vesicles: CV: circular

vesicles.

https://doi.org/10.1371/journal.pntd.0005773.g004
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Fig 5. Confirmation of antibody trapping by double immunogold. Transmission electron micrographs of the

Echinostoma caproni tegument, double stained with rabbit sera against E. caproni excretory/secretory products (detected

by a secondary antibody coupled to 12 nm colloidal gold) and an anti-mouse IgG conjugated with 18 nm colloidal gold.

Images show antibody trapping by secreted products on the worm surface (A) and within the extracellular secretions in the

tegument proximity (B and C). Arrows point to 18 nm colloidal gold particles. Scale bars = 100 nm.

https://doi.org/10.1371/journal.pntd.0005773.g005
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degrading the layers of molecules that are continuously formed on the parasite surface. Despite

the complexity of this process, our experimental design has allowed to determine how it occurs

and its potential consequences on parasite survival within a hostile environment.

In conclusion, the results presented in this paper lead to a new interpretation of classic stud-

ies on tegument dynamics in parasitic trematodes. As with other common evasion mecha-

nisms (i.e. antigen shedding or protease cleavage), antibody trapping and degradation is

expected to function in other helminth parasites in addition to E. caproni, alleviating the dele-

terious effects of antibodies and promoting parasite survival. Our current results suggest that

antibody trapping may occur through the covering of surface-bound antibodies with secreted

antigens. Nevertheless, future studies with E. caproni and other helminths are needed to eluci-

date how the trapping process happens in vivo and which proteases are specifically involved in

antibody degradation. Helminth infections affect millions of people worldwide, mainly in the

poorest regions, and have a tremendous economic impact in the livestock sector. In the con-

text of host-parasite relationships, the immune evasion mechanism described herein may help

to understand the limited effectiveness that the antibody responses, per se, have against this

group of parasites.

Fig 6. Scanning electron microscopy (SEM) of ventral and dorsal Echinostoma caproni surfaces. SEM micrographs showing

extracellular material (EM) adhered to the outer tegumental membrane. SP: spine; MV: microvilli. (A) ventral side and (B) dorsal side. The

dots in the scale bars delimitate 1/10 of the length indicated in the figure.

https://doi.org/10.1371/journal.pntd.0005773.g006
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Supporting information

S1 Fig. Confirmation of antibody specificity. The specificity of the antibodies employed for

double indirect immunofluorescence and/or immunogold labeling was tested by western blot.

Excretory/secretory products (ESPs) were electrophoresed, blotted on nitrocellulose mem-

brane and incubated against anti-Echinostoma caproni (Ec)-actin (lane 1), anti-Ec-enolase

(lane 2) and anti-Ec ESPs (lane 3), all three performed in rabbit. Pre-immune rabbit serum

was used as negative control (lane 4).

(TIF)

S2 Fig. Targeting of Echinostoma caproni surface with anti-enolase antibody at increasing

time of in vitro incubation. 2D-images from laser confocal microscopy on the surface of E.

caproni adults stained with anti-E. caproni enolase (red) and anti-mouse IgA (green). Merge is

shown in yellow. For each time point, representative images of XY and YZ axes are shown (left

and right, respectively). Zero minutes incubation refers to worms that were fixed immediately

after being removed from the intestine of the mouse.

(TIF)

S3 Fig. Double immunofluorescent staining of Echinostoma caproni surface at increasing

time of in vitro incubation. 2D-images from laser confocal microscopy on the surface of E.

caproni adults stained with anti-E. caproni actin (red) and anti-mouse IgG (green). Merge is

shown in yellow. For each time point, representative images of XY and YZ axes are shown (left

and right, respectively). Zero minutes incubation refers to worms that were fixed immediately

after being removed from the intestine of the mouse.

(TIF)

S4 Fig. Quantitation of anti-IgA staining. Loss of anti-IgA staining on worm surface along

time is shown as the decrease in the percentage of image area covered by anti-HRP, FITC-con-

jugated, antibody (% AC). Vertical bars show standard deviation and asterisks indicate statisti-

cal differences for each incubation time in relation to non-incubated worms (0 min)

(p<0.0001).

(TIF)

S5 Fig. Quantitation of anti-IgA staining after incubation with protease inhibitors. Anti-

IgA staining on worm surface was calculated as the percentage of image area covered by anti-

HRP, FITC-conjugated, antibody (% AC) in worms incubated for 120 min in the presence and

absence of protease inhibitors (PI). Vertical bars show standard deviation and asterisks indi-

cate statistical differences in relation to non-incubated worms (0 min) (p<0.0001).

(TIF)

S6 Fig. Transmission electron micrograph of a negative control for immunogold labelling.

Negative controls were processed as samples but incubating the grids with pre-immune rabbit

sera as primary antibody. T: tegument; ExV: extracellular vesicle; S: secretions.

(TIF)

S1 Movie. Laser confocal microscopy on the surface of Echinostoma caproni adults. Double

indirect immunofluorescence with anti-actin (red) and anti-mouse IgA (green). Merge is

shown in yellow. For each time point, staining through the Z-axis is shown. Zero minutes

incubation refers to worms that were fixed immediately after being removed from the intestine

of the mouse.

(MP4)
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