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Abstract: Osteoarthritis (OA) is a degenerative joint disease that is characterized by inflammation of
the joints, degradation of cartilage, and the remodeling of other joint tissues. Due to the absence of
disease-modifying drugs for OA, current clinical treatment options are often only effective at slowing
down disease progression and focus mainly on pain management. The field of tissue engineering has
therefore been focusing on developing strategies that could be used not only to alleviate symptoms of
OA but also to regenerate the damaged tissue. Hyaluronic acid (HA), an integral component of both
the synovial fluid and articular cartilage, has gained widespread usage in developing hydrogels that
deliver cells and biomolecules to the OA joint thanks to its biocompatibility and ability to support cell
growth and the chondrogenic differentiation of encapsulated stem cells, providing binding sites for
growth factors. Tissue-engineering strategies have further attempted to improve the role of HA as an
OA therapeutic by developing diverse modified HA delivery platforms for enhanced joint retention
and controlled drug release. This review summarizes recent advances in developing HA-based
hydrogels for OA treatment and provides additional insights into how HA-based therapeutics could
be further improved to maximize their potential as a viable treatment option for OA.

Keywords: proteoglycan; aggrecan; regenerative medicine; arthritis

1. Introduction

Osteoarthritis (OA) is a chronic inflammatory disease that is characterized by the
gradual degradation of the cartilage extracellular matrix (ECM), as well as by pain and
physical challenges associated with the deterioration of joint health. Multiple pathologic
changes of the cartilage and bone are associated with the progression of OA [1–3]. The
articular cartilage undergoes degradation, which is denoted by alterations in the mechanical
properties of the matrix and the development of fibrillation and fissures of the cartilage [2].
Simultaneously, bone turnover is increased, leading to subchondral bone thickening and
osteophytes formation on the joint margins, all of which signify aberrant bony remodeling
in the joint [3]. Recently published data on OA prevalence indicate that as of 2019, there
were more than 500 million OA cases globally [4]. With a lack of reliable treatment options,
patients with OA suffer chronically from pain and loss of mobility, leading to a significant
financial burden on the medical system, as well as on the individuals, due to the disease [5].
Most treatment options for patients suffering from OA focus on symptomatic relief and
palliative care, such as physical therapy with anti-inflammatory medications [6,7].

While extensive research has been conducted to discover treatment options for OA, cur-
rently, the only reliable surgical option for OA is total arthroplasty or joint replacement [8,9].
However, joint replacement surgeries can be costly and require extensive rehabilitation
efforts from the patient. Most importantly, artificial joints are not a permanent solution and
generally require a replacement surgery a decade after the initial surgery, thus making the
joint replacement surgery a non-viable option for young and middle-aged patients with
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severe OA. This void in viable treatment options for OA has primed the field of orthopedics
and tissue engineering to devise novel methods to not only alleviate the pain associated
with OA but also to halt its progression and regenerate the damaged cartilage tissue. Specif-
ically, tissue engineering aims to design constructs out of a specific combination of cells,
drugs, and scaffolds that can then be delivered to the damaged tissue and encourage its
regeneration. For constructs that specifically target OA cartilage, various combinations
of anti-inflammatory drugs, cells, and scaffold/hydrogel materials that mimic the native
cartilage ECM have been investigated [10–12].

Multiple biological polymers such as alginate [13], gelatin [14], and chondroitin sul-
fate [15], as well as synthetic polymers, such as poly(ε-caprolactone) (PCL) [16] and
poly(lactic-co-glycolic) acid [17,18], have been successfully utilized to develop tissue-
engineered constructs for treating OA-affected joints. In particular, one of the materials
that has been gaining increasing attention for developing tissue-engineered constructs
for OA treatment is hyaluronic acid (HA), a non-sulfated glycosaminoglycan composed
of a repeating disaccharide unit of D-glucuronic acid and N-acetyl-D-glucosamine. HA
can be isolated directly from animal tissues or produced by genetically-modified bacteria
and microorganisms [19,20]. HA from different sources vary in their average molecular
weight (MW) and distribution, which in turn determines other physicochemical prop-
erties, such as the degradation profile of HA [21] and the stiffness of the HA-derived
tissue-engineered constructs [22].

HA is present in both the synovial fluid and as a component of the cartilage ECM
in the joints and has demonstrated various therapeutic effects for the treatment of OA,
which are discussed in-depth in multiple review articles [23,24]. One of the most significant
roles played by HA is its physicochemical role in supporting joint lubrication, which
has led to the development of various injectable HA-based therapeutics in an attempt to
restore the degraded viscoelastic properties of the synovial fluid [23–26]. However, the
long-term benefits of HA injections are still debated, as they have been shown to only
provide temporary relief from OA-related pain and do not slow down the progression of
the disease nor treat the damaged tissue [27–29]. Moreover, meta-analyses of randomized
controlled trials that compare HA injections to placebos suggested that HA injections are
not only clinically ineffective compared with placebo but also may carry a greater risk of
adverse events such as inflammatory response following the treatment [30–32].

Compared with other biomacromolecules used to develop tissue-engineered constructs
for OA treatment, HA has the potential biologic advantage of being a major component
of synovial fluid and the cartilage ECM. Extensive research, therefore, has focused on
developing tissue-engineered HA-based therapies that improve upon the biocompatibility
and inherent biological and physicochemical roles played by HA in the joints. While
various publications have summarized the current status of utilizing HA to develop tissue-
engineered constructs for bone and cartilage tissue regeneration [33,34], such efforts have
not recently been made for applications that pertain to OA treatment. This short review
thus aims to summarize recent advances in developing HA-based hydrogels to improve
upon the current injection method for joint lubrication and combining the therapeutic
benefits of HA with those of other components, such as stem cells and drug molecules,
for treating OA-affected joints. For a summary of recent progress in fabricating HA-based
constructs for general tissue-engineering applications, readers are directed to the following
review articles [35–37]. To keep a clear distinction between HA hydrogels developed
for cartilage regeneration versus those for OA-affected joint treatment, reports published
within the last four years that specifically discuss OA-targeted applications were reviewed.
By providing an overview of these recent innovations, this review intends to shed light on
potential future improvements in the treatment of OA.

2. HA Hydrogels for Joint Lubrication

As one of the principal components of articular cartilage ECM, HA functions as a
framework to which aggrecan can covalently bind, thus forming a proteoglycan (PG)
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aggregate that plays an integral role in providing compressive load resistance to articular
cartilage [38]. HA is also found as a component of synovial fluid, where it is the main
regulator of fluid viscoelasticity and provides lubrication to the joint [23]. During the
early progression of OA, the type II collagen network undergoes proteolytic degradation
by members of the matrix metalloproteases (MMPs), which leads to the release of PG
aggregates embedded within the cartilage matrix [23,39]. Further enzymatic degradation
of PG core proteins exposes HA to the inflammatory conditions in the OA joint and results
in its depolymerization into low-MW fragments [40–42]. These characteristics highlight
the potential of replenishing high-MW HA as a potential therapeutic approach for the
management of OA progression.

One of the potential reasons for the reported ineffectiveness of HA injection treatment
is the short retention period of HA within the joint cavity, thus requiring repeated intra-
articular injections to demonstrate its therapeutic efficacy [43,44]. Several research studies
have thus focused on enhancing the retention of HA in the synovial fluid by delivering HA
as a component of a composite hydrogel [45–47]. The fabrication of such hydrogels most
often involves modifying the backbone of HA with a reactive group, such as tyramine [46],
vinyl sulfone [47], and hydrazide [48], and combining it with a second polymeric chain that
will undergo either a non-covalent interaction or covalent crosslinking with the modified
HA chain. The second chain could be a long polymer or biomacromolecule, or a short
crosslinker that enables HA chains to form a tight network. The resulting hydrogel network,
when compared with HA delivered as a solution, will be less susceptible to enzymatic
degradation and thus provide a prolonged HA-release profile. This strategy of fabricating
HA-based composite hydrogel has recently been explored in clinics. RegenoGel is an
injectable, covalently conjugated HA–fibrinogen hydrogel that undergoes gelation within
the joint by the interaction of thrombin on fibrinogen. Preliminary results from clinical
trials have indicated that RegenoGel can significantly improve pain outcomes compared
with placebo controls while having good safety outcomes [49]. While the product is
still undergoing clinical trials, such promising results could propel the development and
approval of more HA-based composite hydrogels for joint lubrication. HA retention
can also be enhanced by functionalizing HA with inhibitors for hyaluronidase and other
proteases. For instance, HA covalently modified with a small-molecule MMP inhibitor
showed better resistance to degradation by hyaluronidase compared with unmodified HA
while demonstrating similar viscoelastic properties to those of human synovial fluid [50].

In addition to its relatively short retention time post-injection, another reason HA
injection into the synovial joint is not considered to be a clinically effective treatment
method is because HA, when simply injected, fails to localize to the joint surface. It has
been demonstrated that while HA supplementation will enhance the viscoelasticity of the
synovial fluid, lubrication of the cartilage surface is not achieved if HA is not localized to
the surface [51] to interact with lubricin (PRG4) to form a lubricating boundary layer [52].
One approach involves conjugating tissue-adhesive groups onto the backbone of HA to
enhance HA retention on the joint surface. One such example is dopamine-conjugated HA,
which has been researched for its bio-adhesive properties and has seen its application as a
tissue adhesive and anti-fouling coating on biological devices [53–55]. The usage of HA–
dopamine as an injectable cartilage lubricant was investigated by using an ex vivo bovine
cartilage model, which showed that compared with non-modified HA, HA–dopamine could
better adsorb onto the cartilage surface and thus provide better boundary lubrication [56].
Another method of improving HA localization involves using an intermediate adhesive
that can guide injected HA to the cartilage surface. For instance, a heterobifunctional
poly(ethylene glycol) (PEG) conjugated with HA-binding and collagen-binding peptide
could act as a glue on the joint surface and assist with retaining injected HA [57].

HA hydrogel can also be used in conjunction with other molecules and particles that
can act as lubricants. Liposomes are one such class of molecules that have been identified
to lower the friction coefficient of a biological surface via boundary lubrication [58–60]. The
combined lubrication effects of liposomes with HA hydrogel have thus been explored as
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a potential treatment option for OA-affected joints [61–63]. This strategy allows encapsu-
lated liposomes to provide enhanced boundary lubrication to HA hydrogel by forming a
hydration shell on the gel surface and preventing the loss of water molecules from the bulk
hydrogel. The synergistic effect of the HA hydrogel-mediated delivery of liposomes was
demonstrated using a tendon explant model, where the co-delivery method significantly
reduced the friction coefficient of the tissue surface compared with HA- or liposome-only
delivery [63]. Boundary lubrication could be further improved by conjugating dopamine
to the backbone of HA to further enhance its localization and adhesion to the tissue sur-
face. Another consideration for liposomes to form an effective hydration shell on the gel
surface is to ensure the proper rearrangement of liposomes from the bulk hydrogel to the
surface. This provides a challenge for hydrogels formed via covalent crosslinking, as the
liposomes in the bulk phase are trapped by the tight hydrogel network and thus cannot
provide boundary lubrication. One approach to tackle this issue involved the formation
of a self-healing, shear-responsive, and covalently crosslinked HA hydrogel by mixing
aldehyde- and hydrazide-modified HA [61]. The dynamic covalent-linked hydrogel could
restructure in response to shear and allow encapsulated liposomes incorporated in the
hydrogel to rearrange to the surface layer and provide lubrication to the joint.

Delivering HA as micro- and nanogels is another approach to enhance HA retention
and joint lubrication [64–67]. For instance, injectable and thermoresponsive HA nanogels
can be fabricated by conjugating poly(N-isopropylacrylamide) (PNIPAM) chains onto
the backbone of HA [64,66]. PNIPAM is a polymer that demonstrates thermoreversible
properties, where it undergoes a phase transition from solution to gel as the temperature is
increased above its lower critical solution temperature (LCST) of around 32 ◦C [68], which
is tunable by modulating the hydrophobicity and hydrophilicity of the copolymer [69,70].
PNIPAM-grafted HA, once injected into the body, spontaneously formed into nanogels,
which demonstrated enhanced retention and resistance to proteolytic degradation, as well
as its better protection against OA-induced GAG loss compared with HA injections [64].
The surface modification of HA microgels can further enhance the natural lubrication
properties of HA [71]. Significant reductions in friction coefficient were observed from
HA microgels grafted with 2-methylacryloyloxyethyl phosphorylcholine (MPC) compared
with unmodified microgels. When injected into the joints of rats with early-stage OA, MPC-
grafted HA microgels enhanced the expression of aggrecan compared with unmodified HA
microgels. The therapeutic effect of MPC-grafted HA microgels could be further enhanced
by loading the microgels with diclofenac sodium, an anti-inflammatory drug [71].

In summary, various strategies have been developed that aim to enhance the role of HA
as a joint lubricant, although their clinical efficacy remains to be shown. These techniques
range from delivering HA as part of a crosslinked composite hydrogel to forming HA in
microgels. Multiple design factors have been incorporated to provide additional properties
to the HA hydrogel, such as incorporating tissue-adhesive moieties onto the backbone
of HA for joint surface localization and loading liposomes for surface hydration and
lubrication. While designing HA hydrogels to enhance their inherent therapeutic properties
of joint lubrication has proven to be beneficial, the next two sections will illustrate the
further possibilities of using HA to design hydrogels for biologics and cell delivery.

3. HA-Based Hydrogels for Biologics Delivery

While the direct intra-articular delivery of drug molecules has shown promising
results with symptomatic relief, such an approach requires a recurring injection due to the
short half-life of the drugs within the joint space [72]. Tissue-engineered drug delivery
platforms are designed to allow for a longer retention and release profile of the drug
molecules, thereby reducing the need for recurring injections while preventing any toxicities
that could arise from the bulk release of drugs. The repeating disaccharide unit of HA
contains carboxylic, hydroxyl, and acetyl groups, which can be modified using various
bioconjugation techniques to covalently tether biological molecules.
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Successful applications of HA-based hydrogels as delivery systems for various anti-
inflammatory compounds, such as epigallocatechin-3-gallate (EGCG) [73], diclofenac potas-
sium [74], and sulforaphane (SFN) [75], have been reported. A controlled delivery of
EGCG, a polyphenolic compound with anti-oxidant and anti-inflammatory properties, was
achieved by covalently conjugating the molecule onto the backbone of HA delivering it as
part of a bulk HA/gelatin hybrid hydrogel. The gel demonstrated enhanced chondropro-
tective properties in a mouse OA model, as demonstrated by significantly thicker cartilage
compared with either direct injection of EGCG or unloaded hydrogel [73]. For a more sus-
tained drug release, drug molecules can also be loaded into particle-based carriers, which
are then encapsulated in HA hydrogel for delivery. For instance, HA hydrogel loaded with
diclofenac- and dexamethasone-encapsulated liposomes demonstrated anti-inflammatory
effects on the knee joints of OA mice over a four-week period [76]. In addition to chemical
compounds, HA-based hydrogels have also been used for the delivery of biological and
cell-derived factors [77,78]. Thiol-modified HA and methacrylate-modified poloxamer
407 were used to fabricate an injectable biosynthetic hydrogel that could be used for the
intra-articular delivery of keratinocyte growth factor 2 (KGF-2), which has been shown to
demonstrate anti-inflammatory effects [77]. Compared with KGF-2 in solution, hydrogel-
loaded KGF-2 delivered to OA-induced rat joints resulted in lower GAG loss and an
enhanced tissue morphology from OA-induced inflammation. A similar strategy was used
to enhance the therapeutic efficacy of mesenchymal stem cell (MSC)-derived extracellular
vesicles (EVs) [78]. Encapsulating EVs in HA/PEG composite hydrogel allowed for a more
controlled release platform for EVs, as well as providing protection against proteases in an
in vivo rat OA model.

Stimuli-responsive HA hydrogels can adjust the drug release profile according to the
joint environment and thus act as an on-demand drug delivery system. For instance, an
injectable, supramolecular hydrogel that consists of a tightly packed nanoparticle was
formed by the physical blending of carboxymethyl hexanoyl chitosan with HA [79]. The
hydrogel demonstrated dynamic changes in porosity with respect to pH, where lower
pH resulted in lower porosity and thus a more sustained release of drugs from the bulk
hydrogel phase. Higher pH led to higher porosity, resulting in a faster degradation profile.
As the joint environment during OA experiences a reduction in pH, this pH-dependent
drug release and degradation profile can be adopted to design stimuli-responsive hydrogels
that provide a sustained release of drugs to an inflamed joint, and which subsequently
undergo rapid degradation once the joint gets recovered.

HA-based microgels have been proven to be excellent candidates for developing drug
delivery strategies for OA treatment, as the delivery platform can combine the inherent bio-
logical properties of HA along with the therapeutic efficacy of encapsulated drug molecules.
This approach also bypasses the issues of biocompatibility and potential cytotoxicity in the
use of synthetic-polymer-based microcarriers. Indeed, the successful encapsulation and
delivery of multiple anti-inflammatory drugs such as curcuminoid [80] and diacerein [81],
as well as growth factors [82], have been reported for OA treatment applications. Using a
microfluidics device, HA- and heparin-methacrylate were covalently crosslinked to fabri-
cate porous microgels, which were then loaded with PDGF-BB and TGF-β3 [82]. PDGF-BB
functioned as a stem-cell-recruiting factor, while TGF-β3 guided the chondrogenic differen-
tiation of recruited stem cells and HA acted as a substrate onto which the recruited stem
cells could adhere to. Rat OA joints treated with growth-factor-loaded microgels showed
better tissue regeneration compared with those treated with either unloaded microgels
or growth factor delivered in a solution. A similar microfluidics-based strategy was used
to fabricate photo-crosslinked HA microgels encapsulated with rapamycin-loaded lipo-
somes [67]. Friction between the joints allowed liposomes to rearrange to the surface of
the microgels and provide joint surface lubrication, which in turn allowed for a sustained
release of rapamycin from the liposomes. Rapamycin has been shown to have a chon-
droprotective effect by activating autophagy via mTOR pathway inhibition [83,84], and its
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therapeutic effects could be improved by allowing for a more sustained, localized delivery
using the liposome-encapsulated HA microgel platform.

The fabrication of HA-based hydrogels that rely on the inherent therapeutic effects
of HA have also been reported. One such system was designed as a composite hydrogel
formed via Michael addition reaction between HA and a synthetic triblock copolymer [85].
HA released from the hydrogel as the gel underwent bulk degradation could not only
downregulate the expression of pro-inflammatory cytokines, but also induce an anabolic
response from bone marrow MSCs in vivo in a mouse OA model. Another HA delivery
system was achieved by modifying 5β-cholanic acid onto the backbone of HA and allowing
the chains to form self-assembled HA nanoparticles via hydrophobic interaction [86]. The
nanoparticles demonstrated high retention within the joint and resistance to proteolytic
degradation, and could directly interact with CD44 clusters on cell membranes. These
interactions inhibited the binding between CD44 and the fragmented, low-MW HA present
in the synovial fluid of OA joints, which has been shown to trigger an increase in the
expression of catabolic genes and pro-inflammatory cytokines [23,87].

In addition to the delivery of biomolecules and growth factors, HA-based hydrogels
for gene delivery have been developed for silencing the expression of enzymes that are
linked with OA progression [88–90]. For example, ADAMTS-4 and ADAMTS-5, members
of the A Disintegrin and Metallo-Proteinase with Thrombospondin Motifs (ADAMTS)
family, have been shown to degrade proteoglycans and contribute to early OA develop-
ment [91–93]. Knocking out either or both enzymes could successfully protect cartilage
from proteoglycan degradation and thus decrease the degree of OA progression, both
in vitro and in vivo [94,95]. A hydrogel-based gene-silencing method was subsequently
developed, where locked nucleic-acid-modified antisense nucleotides designed to arrest
the translation of ADAMTS-5 mRNA were loaded in fibrin-HA hydrogel and used to
transfect hydrogel-loaded chondrocytes in vitro [88]. ADAMTS-5 expression was knocked
down for up to 14 days, which highlights hydrogel-mediated gene silencing as a potential
therapeutic approach for OA treatment. An on-demand gene-silencing method using
gold nanorods and a gapmer antisense oligonucleotide delivery system has also been
reported [90]. This approach first involved fabricating spherical nucleic acids (SNAs) by
modifying the antisense DNA sequence of IL-1βmRNA onto gold nanorods, which were
then conjugated to the backbone of complementary oligonucleotide-grafted HA hydrogel
via DNA hybridization. The release of SNA from the hydrogel could be controlled in vivo
by using near-infrared light to induce photo-thermal DNA dehybridization.

Overall, HA-based hydrogel has proved to be an effective, versatile platform for deliv-
ering various therapeutic compounds, ranging from anti-inflammatory drugs to antisense
nucleotides, to OA-affected joints. These strategies benefited from the biocompatibility of
HA as well as its versatility in being easily modifiable with various functional groups to
develop HA-based hydrogel drug delivery methods with enhanced drug retention and
release profiles. In addition, HA hydrogels that have inherent therapeutic effects have been
developed, which further emphasize the synergistic effect that can be achieved from using
HA hydrogels as a drug delivery platform.

4. HA-Based Hydrogels for Cell Delivery

In addition to its physicochemical roles, HA also provides biological cues to cells by
triggering cell proliferation [96], stimulating anabolic responses [97,98], and controlling
the expression of inflammatory cytokines and proteases [99,100]. HA also has binding
sites for several different cell surface receptors, such as CD44 and ICAM-1 [101,102]. In
particular, CD44-mediated binding between HA and chondrocytes plays an important
role in the retention of aggrecan aggregate to cartilage ECM, thus preventing the loss of
proteoglycan and, eventually, the degradation of cartilage ECM [103]. These properties,
in addition to its inherent biocompatibility, have allowed HA to be successfully used in
developing cell-laden HA hydrogels for various tissue-engineering applications. Their
efficacy in regenerating OA joints has also been recently demonstrated, and in some cases
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cell-laden HA hydrogels have been shown to be superior to HA injection in reducing the
pain levels of patients [104]. Such results highlight the potential of cell delivery as an
effective OA therapy. Efforts have thus been made to develop HA-based hydrogels that
could deliver cells to the OA joint, thereby harnessing the benefits of both components.

One such approach involves the co-delivery of stem cells with therapeutic compounds
in HA-based hydrogels [105,106]. For instance, bone marrow MSCs were encapsulated
in HA–Poloxamer 407 composite hydrogel along with icariin, the main active component
of the herb Epimedium, which has been shown to be chondroprotective in addition to be
able to guide MSC chondrogenesis [107–109]. HA-based composite hydrogels allowed
the solubilization and sustained delivery of icariin due to hydrogen bonding between
HA and the compound. In a destabilization of the medial meniscus (DMM)-induced OA
model, hydrogel loaded with both MSCs and icariin showed significantly lower OARSI and
Mankin scores compared with both cell-only and icariin-only groups, demonstrating the
synergistic effect of co-delivering cells with therapeutic compounds for the treatment of OA.
Another approach involved encapsulating cell spheroids instead of cell suspension [106].
MSC spheroids were formed with kartogenin-loaded short electrospun polylactide–PEG
fibers to aid chondrogenic differentiation, before being loaded into an injectable PEG-HA
hydrogel containing celecoxib-loaded short fibers for anti-inflammatory effects. In a rabbit
OA model, joints treated with spheroid-encapsulated constructs showed better protection
of the cartilage tissue compared with the control group.

While multipotent adult stem cells can be isolated from various tissues, such as adipose
tissue and bone marrow, their numbers are limited, and they have limited expansion ca-
pacity in vitro before losing their multipotency. As pluripotent stem cells (PSCs) have near
unlimited capacity to expand without losing their differentiation capabilities, PSC-derived
progenitors can be a practical alternative to MSCs. The synergistic effects of PSC-derived
progenitors and HA hydrogels were demonstrated recently using a monoiodoacetate-
induced rabbit OA model, where embryonic stem cell (ESC)-derived progenitors encapsu-
lated in HA hydrogels outperformed both the acellular HA hydrogel and the cells delivered
as a cell suspension [110].

Hydrogel-encapsulated cells can also act as a resident producer of disease-modifying
drugs. For this purpose, cells are first genetically modified to produce or overexpress
proteins that can protect cartilage from OA before being encapsulated in a hydrogel and
delivered to the intra-articular region. For instance, HA–collagen hydrogel was successfully
used to deliver genetically modified adipose derived stem cells that overexpress TGF-β1, a
paracrine growth factor with anti-inflammatory effects [111,112]. The cell-laden hydrogel
demonstrated chondroprotective and anti-inflammatory effects in a rat OA model, as
evidenced by reduced TNF-α concentration and a lower synovitis score compared with the
no-treatment group [113].

HA-based hydrogels have also been used as bioinks in conjunction with other poly-
meric bioinks to fabricate 3D-printed cell-laden multiphasic scaffolds [114]. In this ap-
proach, HA bioink is used as a cell carrier and is usually co-printed with a second, stiffer
bioink that can provide structural support for the cell-laden HA bioink. For instance, a
3D-printed composite scaffold designed for cartilage-layer regeneration was fabricated
by printing MSC-encapsulated methacrylated HA (MeHA) bioink with a second PCL ink
loaded with kartogenin, a small molecule that has been shown to stimulate chondrogene-
sis [114]. This layer was combined with a subchondral bone layer printed from β-tricalcium
phosphate (β-TCP)-loaded PCL ink and an anti-inflammatory layer consisting of diclofenac
sodium-loaded MeHA hydrogel to generate a multilayered 3D-printed construct for regen-
erating osteochondral defects in OA joints. Constructs implanted into the osteochondral
defects of rats with medial meniscectomy-induced OA could successfully induce tissue
repair while attenuating a joint inflammatory response. HA-based bioinks can be further
modified to provide additional therapeutic benefits for applications in degenerative joint
diseases while supporting the viability of encapsulated cells [115]. For instance, bioink
that consists of HA modified with phenylboronic acid and gelatin demonstrated inherent
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antioxidant properties by boronate ester bonds [115]. The bioink effectively scavenged
H2O2 and supported the viability of encapsulated chondrocytes.

No HA-based cell delivery platforms have yet been approved by the FDA for the
treatment of knee OA. Their clinical benefits, however, have recently been demonstrated
outside of the U.S. One such example is CARTISTEM, a therapy that combines allogeneic
umbilical-cord-blood-derived MSCs with HA, which are mixed and implanted as a cell-
encapsulated hydrogel at the defect site. The product acquired market approval by the
Ministry of Food and Drug Safety in South Korea in 2012 and has demonstrated clinical
efficacy among patients with knee OA [116,117]. In a two-year follow-up study, 128 patients
with knee OA who were treated with CARTISTEM showed significant improvements in
clinical outcomes compared with their pre-operative conditions. While longer-term clinical
follow-up studies have not been published so far, these results emphasize the potential of
using stem-cell-encapsulated HA hydrogel as a viable treatment option for OA patients.

5. Concluding Remarks

As a chronic degenerative and inflammatory disease, OA affects the lives of hundreds
of millions of people around the globe. HA injection is one of the most widely used methods
to treat OA pain; however, its efficacy in altering disease progression has not been shown.
In this review, we have summarized recent advances in fabricating HA-based hydrogel
therapeutics that are designed to improve the inherent biological effects of HA, as well as
those that rely on its biocompatibility to design novel cell and drug delivery systems for OA
(Figure 1). These hydrogels have demonstrated abilities to not only enhance the retention
and localization of HA on the joint surface for enhanced lubrication but also deliver cells
and biologics to impede the progression of OA and regenerate the damaged tissue. While
the results of these studies point towards a potential therapeutic benefit of HA hydrogels
for the treatment of OA, there are several considerations that need to be addressed for HA
hydrogels to show efficacy in this regard.

While the biological effects of HA are well-documented and have led to the successful
development of non-drug-loaded HA hydrogels with inherent therapeutic effects [85,86],
HA is often considered simply as one of the structural components of the bulk hydrogel and
not necessarily as a bioactive molecule. For instance, while the MW of HA is an important
factor in deciding its therapeutic efficacy once injected into the joint [118–120], it was rarely
selected as an experimental variable in fabricating and validating the therapeutic efficiency
of HA hydrogel [121]. Focusing on developing HA-based hydrogels that capture not only
the therapeutic benefits of the encapsulated drugs and biomolecules but also those of HA
will result in a tissue-engineered construct that captures the benefits of both components.

The backbone modification of HA is oftentimes necessary to form composite hydrogels
that are not only more resistant to proteolytic degradation than HA delivered as a solution
but also able to encapsulate and deliver cells and drug molecules to the joint. However,
conjugating functional groups on HA can negatively impact its inherent biological proper-
ties. For instance, cells interact with HA via their cell surface receptor CD44, and reports
have shown that the interaction between CD44 and HA can suppress the progression of
OA [122]. However, introducing chemical groups on the repeating units of HA reduced not
only the extent of binding between HA and CD44 but also the degree of chondrogenesis
observed from encapsulated MSCs [123]. As the chemical modification of HA is oftentimes
inevitable for fabricating hydrogels with appropriate physical properties for drug/cell
delivery or joint lubrication applications, such drawbacks must be carefully considered to
maximize the therapeutic benefits of HA-based hydrogels.

While MSCs are one of the most widely used cell sources for developing cell-encapsulated
tissue-engineered constructs for bone and cartilage regeneration, their limited availability
and minimal in vitro expansion capacity remain the two largest practical barriers to clinical
applications. In this regard, induced pluripotent stem cells (iPSCs) provide an excellent
alternative to MSCs as a cell source for OA treatment and cartilage regeneration. Indeed,
an efficient protocol for differentiating iPSCs to MSCs has been established following a
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small molecule screening with iPSCs to select for specific combinations that result in cells
with the highest expressions for MSC markers (CD73 and CD105) [110]. The usage of iPSCs
with HA hydrogels has also been successfully demonstrated in other tissue types [124,125],
further highlighting the potential of developing iPSC-encapsulated HA hydrogels for OA.
Nevertheless, safety concerns regarding the usage of iPSCs must be thoroughly evaluated
before their usage can be translated into clinics. One such concern is the complex lineage
differentiation regimen and generation of off-target cells during the differentiation process.
There have thus been ongoing efforts to design optimized differentiation protocols for
obtaining chondrocytes from iPSCs; for instance, by sorting differentiated cells for COL2A1,
which is a widely used marker for chondrocytes [126], or by using a mixture of small
molecules and inhibitors to limit off-target differentiation during chondrogenesis [127].
Further optimization of iPSC differentiation pathways will eventually lead to their more
widespread usage in developing iPSC-based therapies for OA treatment.
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Along with the biological properties of HA and the therapeutic effects of cells and
drugs that are being delivered, the physicochemical properties of the HA hydrogel should
be carefully considered when designing HA-based therapeutic constructs for OA. Specifi-
cally, mechanical properties such as crosslinking density, stiffness, and degradation rates
must be carefully tested and optimized for constructs that require prolonged residency
within the joint space for the sustained delivery of cells and drug molecules or that are
designed for tissue repair/replacement. Various research has thus been conducted to inves-
tigate the relationship between the different crosslinking densities and degradation profiles

BioRender.com
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of HA-based hydrogels [128–130]. These results could be used to guide the development of
the constructs, with the goal of maximizing their therapeutic potential.

In conclusion, HA has proven itself to be a promising biomacromolecule that can
be used to fabricate tissue-engineered hydrogel constructs that target OA-affected joints
thanks to its biocompatibility, versatility in being able to be conjugated to a variety of
other materials, and ability to support cell viability. HA hydrogels demonstrated enhanced
abilities not only to enhance the viscoelastic properties of the synovial fluid but also to
regenerate the degraded cartilage ECM. While these platforms are still far from being used
in clinics, HA hydrogels will continue to be a powerful, versatile tool for discovering new
treatment options for OA.
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