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Abstract

We propose a novel attention gate (AG) model for medical image analysis that automatically 

learns to focus on target structures of varying shapes and sizes. Models trained with AGs 

implicitly learn to suppress irrelevant regions in an input image while highlighting salient features 

useful for a specific task. This enables us to eliminate the necessity of using explicit external 

tissue/organ localisation modules when using convolutional neural networks (CNNs). AGs can be 

easily integrated into standard CNN models such as VGG or U-Net architectures with minimal 

computational overhead while increasing the model sensitivity and prediction accuracy. The 

proposed AG models are evaluated on a variety of tasks, including medical image classification 

and segmentation. For classification, we demonstrate the use case of AGs in scan plane detection 

for fetal ultrasound screening. We show that the proposed attention mechanism can provide 

efficient object localisation while improving the overall prediction performance by reducing false 

positives. For segmentation, the proposed architecture is evaluated on two large 3D CT abdominal 

datasets with manual annotations for multiple organs. Experimental results show that AG models 

consistently improve the prediction performance of the base architectures across different datasets 

and training sizes while preserving computational efficiency. Moreover, AGs guide the model 

activations to be focused around salient regions, which provides better insights into how model 

predictions are made. The source code for the proposed AG models is publicly available.
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1 Introduction

Automated medical image analysis has been extensively studied in the medical imaging 

community due to the fact that manual labelling of large amounts of medical images is a 
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tedious and error-prone task. Accurate and reliable solutions are required to increase clinical 

work flow efficiency and support decision making through fast and automatic extraction of 

quantitative measurements.

With the advent of convolutional neural networks (CNNs), near-radiologist level 

performance can be achieved in automated medical image analysis tasks including 

classification of Alzheimer’s disease (Sarraf et al., 2017), skin lesions (Esteva et al., 2017; 

Kawahara and Hamarneh, 2016) and echo-cardiogram views (Madani et al., 2018), lung 

nodule detection in CT/X-ray (Liao et al., 2017; Zhu et al., 2018) and cardiac MR 

segmentation (Bai et al., 2017). An extensive list of applications can be found in (Litjens et 

al., 2017; Zaharchuk et al., 2018). High representation power, fast inference, and weight 

sharing properties have made CNNs the de facto standard for image classification and 

segmentation.

Methods for existing applications rely heavily on multi-stage, cascaded CNNs when the 

target organs show large inter-patient variation in terms of shape and size. Cascaded 

frameworks extract a region of interest (ROI) and make dense predictions on that particular 

ROI. The application areas include cardiac MRI (Khened et al., 2018), cardiac CT (Payer et 

al., 2017), abdominal CT (Roth et al., 2017, 2018) segmentation, and lung CT nodule 

detection (Liao et al., 2017). However, this approach leads to excessive and redundant use of 

computational resources and model parameters; for instance, similar low-level features are 

repeatedly extracted by all models within the cascade.

To address this general problem, we propose a simple and yet effective solution, named 

attention gates (AGs). By incorporating AGs into standard CNN models, model parameters 

and intermediate feature maps are expected to be utilised more efficiently while minimising 

the necessity of cascaded models to solve localisation and classification tasks separately. In 

more detail, AGs automatically learn to focus on target structures without additional 

supervision. At test time, these gates generate soft region proposals implicitly on-the-fly and 

highlight salient features useful for a specific task. In return, the proposed AGs improve 

model sensitivity and accuracy for global and dense label predictions by suppressing feature 

activations in irrelevant regions. In this way, the necessity of using an external organ 

localisation module can be eliminated while maintaining the high prediction accuracy. In 

addition, they do not introduce significant computational overhead and do not require a large 

number of model parameters as in the case of multi-model frameworks. CNN models with 

AGs can be trained from scratch in a standard way similar to the training of fully 

convolutional network (FCN) models. Similar attention mechanisms have been proposed for 

natural image classification (Jetley et al., 2018) and captioning (Anderson et al., 2017) to 

perform adaptive feature pooling, where model predictions are conditioned only on a subset 

of selected image regions. In this paper, we generalise this design and propose image-grid 

based gating that allows attention coefficients to be specific to local regions.

We demonstrate the performance of AG in real-time fetal ultrasound scan plane detection 

and CT pancreas segmentation. The first task is challenging due to low interpretability of the 

images and localising the object of interest is key to successful classification of the plane. To 

this end, we incorporate AGs into a variant of a VGG network, termed AG-Sononet, to 
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demonstrate that attention mechanism can automatically localise the object of interest and 

improve the overall classification performance. The second task of pancreas segmentation is 

challenging due to low tissue contrast and large variability in organ shape and size. 

Moreover, we extend a standard U-Net architecture (Attention U-Net). We choose to 

evaluate our implementation on two commonly used benchmarks: TCIA Pancreas CT-82 

(Roth et al., 2016) and multi-class abdominal CT-150. The results show that AGs 

consistently improve prediction accuracy across different datasets and training sizes while 

achieving state-of-the-art performance without requiring multiple CNN models.

1.1 Related Work

Attention Gates—AGs are commonly used in classification tasks such as in the analysis 

of citation graphs (Veličković et al., 2017) and natural images (Jetley et al., 2018; Wang et 

al., 2017a). Similarly in the context of natural language processing (NLP), such as image 

captioning (Anderson et al., 2017) and machine translation (Bahdanau et al., 2014; Luong et 

al., 2015; Shen et al., 2017; Vaswani et al., 2017), there have been several use cases of soft-

attention models to efficiently use the given context information. In particular, given a 

sequence of text and a current word, a task is to extract a next word in a sentence generation 

or translation. The idea of attention mechanisms is to generate a context vector which 

assigns weights on the input sequence. Thus, the signal highlights the salient feature of the 

sequence conditioned on the current word while suppressing the irrelevant counter-parts, 

making the prediction more contextualised.

Initial work on attention modelling has explored salient image regions by interpreting 

gradient of output class scores with respect to the input image. Trainable attention, on the 

other hand, is enforced by design and categorised as hard- and soft-attention. Hard attention 

(Mnih et al., 2014), e.g. iterative region proposal and cropping, is often non-differentiable 

and relies on reinforcement learning for parameter updates, which makes model training 

more difficult. Ypsilantis and Montana (2017) used recursive hard-attention to detect 

anomalies in chest X-ray scans. Contrarily, soft attention is probabilistic, end-to-end 

differentiable, and utilises standard back-propagation without need for posterior sampling. 

For instance, additive soft attention is used in sentence-to-sentence translation (Bahdanau et 

al., 2014; Shen et al., 2017) and more recently applied to image classification (Jetley et al., 

2018; Wang et al., 2017a).

In computer vision, attention mechanisms are applied to a variety of problems, including 

image classification (Jetley et al., 2018; Wang et al., 2017a; Zhao et al., 2017), segmentation 

(Ren and Zemel, 2016), action recognition (Liu et al., 2017; Pei et al., 2016; Wang et al., 

2017b), image captioning (Lu et al., 2016; Xu et al., 2015), and visual question answering 

(Nam et al., 2016; Yang et al., 2015). Hu et al. (2017) used channel-wise attention to 

highlight important feature dimensions, which was the top-performer in the ILSVRC 2017 

image classification challenge. Similarly, non-local self attention was used by Wang et al. 

(2017b) to capture long range dependencies.

In the context of medical image analysis, attention models have been exploited for medical 

report generation (Zhang et al., 2017a,b) as well as joint image and text classification (Wang 

et al., 2018). However, for standard medical image classification, despite often the 
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information to be classified are extremely localised, only a handful of works use attention 

mechanisms (Guan et al., 2018; Pesce et al., 2017). In these methods, either bounding box 

labels are available to guide the attention, or local context is extracted by a hard-attention 

model (i.e. region proposal followed by hard-cropping).

2D Ultrasound Scan Plane Detection—Fetal ultrasound screening is an important 

diagnostic protocol to detect abnormal fetal development. During screening examination, 

multiple anatomically standardised (NHS Screening Programmes, 2015) scan planes are 

used to obtain biometric measurements as well as identifying abnormalities such as lesions. 

Ultrasound suffers from low signal-to-noise ratio and image artefacts. As such, diagnostic 

accuracy and reproducibility is limited and requires a high level of expert knowledge and 

training. In the past, several approaches were proposed (Chen et al., 2015; Yaqub et al., 

2015), however, they are computationally expensive and cannot be deployed for the real-

time application. More recently, Baumgartner et al. (2016) proposed a CNN architecture 

called Sononet. It achieves very good performance in real-time plane detection, retrospective 

frame retrieval (retrieving the most relevant frame) and weakly supervised object 

localisation. However, it suffers from low recall value in differentiating different planar 

views of the cardiac chambers, which requires the method to be able to exploit the subtle 

differences in the local structure and it makes the problem challenging.

Pancreas Segmentation in 3D-CT Images—Early work on pancreas segmentation 

from abdominal CT used statistical shape models (Cerrolaza et al., 2016; Saito et al., 2016) 

or multi-atlas techniques (Oda et al., 2017; Wolz et al., 2013). In particular, atlas approaches 

benefit from implicit shape constraints enforced by propagation of manual annotations. 

However, in public benchmarks such as the TCIA dataset (Roth et al., 2016), Dice similarity 

coefficients (DSC) for atlas-based frameworks are relatively low, ranging from 69.6% to 

73.9% (Oda et al., 2017; Wolz et al., 2013). A classification based framework was proposed 

by Zografos et al. (2015) to remove the dependency of atlas to image registration. Recently, 

cascaded multi-stage CNN models (Roth et al., 2017, 2018; Zhou et al., 2017) have been 

proposed to address the problem. Here, an initial coarse-level model (e.g. U-Net or 

Regression Forest) is used to obtain a ROI and then a cropped ROI is used for segmentation 

refinement by a second model. Similarly, combinations of 2D-FCN and recurrent neural 

network (RNN) models are utilised by Cai et al. (2017) to exploit dependencies between 

adjacent axial slices. These approaches achieve state-of-the-art performance in the TCIA 

benchmark (81.2% - 82.4% DSC). Without using a cascaded framework, the performance 

drops between 2.0 and 4.4 DSC points. Recently, Yu et al. (2017) proposed an iterative two-

stage model that recursively updates local and global predictions, and both models are 

trained end-to-end. Besides standard FCNs, dense connections (Gibson et al., 2017) and 

sparse convolutions (Heinrich et al., 2018; Heinrich and Oktay, 2017) have been applied to 

the CT pancreas segmentation problem. Dense connections and sparse kernels reduce 

computational complexity by requiring less number of non-zero parameters.

1.2 Contributions

In this paper, we propose a novel soft-attention gating module that can be utilised in CNN 

based standard image analysis models for dense label predictions. Additionally, we explore 
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the benefit of AGs to medical image analysis, in particular, in the context of image 

classification and segmentation. The contributions of this work can be summarised as 

follows:

• We take the attention approach proposed by Jetley et al. (2018) a step further by 

proposing grid-based gating that allows attention gates to be more specific to 

local regions. This improves performance compared to gating based on a global 

feature vector. Moreover, our approach is not only limited to adaptive pooling 

(Jetley et al., 2018) but can be also used for dense predictions as in segmentation 

networks.

• We propose one of the first use cases of soft-attention in a feed-forward CNN 

model applied to a medical imaging task that is end-to-end trainable. The 

proposed attention gates can replace hard-attention approaches used in image 

classification (Ypsilantis and Montana, 2017) and external organ localisation 

models in image segmentation frameworks (Khened et al., 2018; Oda et al., 

2017; Roth et al., 2017, 2018). This also eliminates the need for any bounding 

box labels and backpropagation-based saliency map generation used by 

Baumgartner et al. (2016).

• For classification, we apply the proposed model to real-time fetal ultrasound scan 

plane detection and show its superior classification performance over the 

baseline approach. We show that attention maps can used for fast (weakly-

supervised) object localisation, demonstrating that the attended features indeed 

correlate with the anatomy of interest.

• For segmentation, an extension to the standard U-Net model is proposed that 

provides increased sensitivity without the need of complicated heuristics, while 

not sacrificing specificity. We demonstrate that accuracy improvements when 

using U-Net are consistent across different imaging datasets and training sizes.

• We demonstrate that the proposed attention mechanism provides finescale 

attention maps that can be visualised, with minimal computational overhead, 

which helps with interpretability of predictions.

2 Methodology

2.1 Convolutional Neural Network

CNNs are now the state-of-the-art method for many tasks including classification, 

localisation and segmentation (Bai et al., 2017; Kamnitsas et al., 2017, 2018; Lee et al., 

2015; Litjens et al., 2017; Long et al., 2015; Ronneberger et al., 2015; Roth et al., 2017, 

2018; Xie and Tu, 2015; Zaharchuk et al., 2018). CNNs outperform traditional approaches in 

medical image analysis while being an order of magnitude faster than, e.g., graph-cut and 

multi-atlas segmentation techniques (Wolz et al., 2013). The success of CNNs is attributed 

to the fact that (I) domain specific image features are learnt using stochastic gradient descent 

(SGD) optimisation, (II) learnt kernels are shared across all pixels, and (III) image 

convolution operations exploit the structural information in medical images in an optimal 

fashion. However, it remains difficult to reduce false-positive predictions for small objects 
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that show large shape variability. In such cases, in order to improve the accuracy, current 

frameworks (Guan et al., 2018; Khened et al., 2018; Roth et al., 2017, 2018) rely on 

additional preceding object localisation models to simplify the task into separate localisation 

and subsequent classification/segmentation steps, or guide the localisation using weak labels 

(Pesce et al., 2017). Here, we demonstrate that the same objective can be achieved by 

integrating attention gates (AGs) in a standard CNN model. This does not require the 

training of multiple models and a large number of extra model parameters. In contrast to the 

localisation model in multi-stage CNNs, AGs progressively suppress feature responses in 

irrelevant background regions without the requirement to crop a ROI between networks.

2.2 Attention Gate Module

We now introduce Attention Gate (AG), which is a mechanism which can be incorporated in 

any existing CNN architecture. Let xl = xil i = 1
n

 be the activation map of a chosen layer l ∈ 

{1,…, L}, where each xil represents the pixelwise feature vector of length Fl (i.e. the number 

of channels). For each xil, AG computes coefficients αl = αil = 1
n , where αil ∈ [0,1], in order 

to identify salient image regions and prune feature responses to preserve only the activations 

relevant to the specific task as shown in Figure 1. The output of AG is xl = αilxil i = 1
n

, where 

each feature vector is scaled by the corresponding attention coefficient.

The attention coefficients αil are computed as follows: In standard CNN architectures, to 

capture a sufficiently large receptive field and thus, semantic contextual information, the 

feature-map is gradually downsampled. The features on the coarse spatial grid level identify 

location of the target objects and model their relationship at global scale. Let g ∈ ℝFg be 

such global feature vector and provide information to AGs to disambiguate task-irrelevant 

feature content in xil. The idea is to consider each xil and g jointly to attend the features at 

each scale l that are most relevant to the objective being minimised.

There are two commonly used attention types: multiplicative (Luong et al., 2015) and 

additive attention (Bahdanau et al., 2014). The former is faster to compute and more 

memory-efficient in practice since it can be implemented as a matrix multiplication. 

However, additive attention is experimentally shown to be performing better for large 

dimensional input features (Britz et al., 2017). For this reason, we use the latter to obtain the 

gating coefficient as can be seen in Figure 2, which is formulated as follows:

qatt, il = ψT σ1 W x
Txil + W g

Tg + bxg + bψ (1)

αl = σ2 qattl xl, g; Θatt , (2)

where σ1(x) is an element-wise nonlinearity (e.g. rectified linear-unit) and σ2(x) is a 

normalisation function. For example, one can apply sigmoid to restrict the range to [0,1], or 

one can apply softmax operation αil = eqatt, il /∑ieqatt, il
 such that the attention map sums to 1. 

AG is therefore characterised by a set of parameters Θ att containing: linear transformations 
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Wx ∈ ℝFl×Fint, Wg ∈ ℝFg × Fint, ψ ∈ ℝFint×1 and bias terms by bψ ∈ ℝ, bxg ∈ ℝFint. The 

linear transformations are computed using channel-wise 1 × 1 × 1 convolutions.

We note that AG parameters can be trained with the standard back-propagation updates 

without a need for sampling based optimisation methods as used in hard-attention (Mnih et 

al., 2014). While AG does not require auxiliary loss function to optimise, we found that 

using deep-supervision (Lee et al., 2015) encourages the intermediate feature-maps to be 

semantically discriminative at each image scale. This ensures that attention units, at different 

scales, have an ability to influence the responses to a large range of image foreground 

content. We therefore prevent dense predictions from being reconstructed from small subsets 

of gated feature-maps.

2.2.1 Multi-dimensional Attention—In case of where multiple semantic classes are 

present in the image, one can learn multi-dimensional attention coefficients. This is inspired 

by the approach of Shen et al. (2017), where multi-dimensional attention coefficients are 

used to learn sentence embeddings. Thus, each AG learns to focus on a subset of target 

structures. In case of multi-dimensional AGs, each α1 corresponds to a vector and produce 

xl = α(1)
l ⊙ xl, …, α(m)

l ⊙ xl  where α(k)
l  is k-th sub AG and ⊙ is element-wise multiplication 

operation. In each sub-AG, complementary information is extracted and fused to define the 

output of skip connection.

2.2.2 Gating Signal and Grid Attention—As the gating signal g must encode global 

information from large spatial context, it is usually obtained from the coarsest scale 

activation map. For example in classification, one could use the activation map just before 

the final softmax layer. In the context of medical imaging, however, since most objects of 

interest are highly localised, flattening may have the disadvantage of losing important spatial 

context. In fact, in many cases a few max-pooling operations are sufficient to infer the global 

context without explicitly using the global pooling. Therefore, we propose a grid attention 
mechanism. The idea is to use the coarse scale feature map before any flattening is done. For 

example, given an input tensor size of Fl × Hx × Wx, after r max pooling operations, the 

tensor size is reduced to Fg × Hg × Wg = Fg × Hx/(2r) × Wy/(2r). To generate the attention 

map, we can either downsample or upsample the coarse grid to match the spatial resolution 

of xl. In this way, the attention mechanism has more flexibility in terms of what to focus on a 

regional basis. For upsampling, we chose to use bilinear upsampling. Note that the 

upsampling can be replaced by a learnable weight, however, we did not opt for this for the 

sake of simplicity. For segmentation, one can directly use the coarsest activation map as the 

gating signal.

2.2.3 Backward Pass through Attention Gates—Information extracted from coarse 

scale is used in gating to disambiguate irrelevant and noisy responses in input feature-maps. 

For instance, in the U-Net architecture, gating is performed on skip connections right before 

the concatenation to merge only relevant activations. Additionally, AGs filter the neuron 

activations during the forward pass as well as during the backward pass. Gradients 

originating from background regions are down weighted during the backward pass. This 

allows model parameters in shallower layers to be updated mostly based on spatial regions 
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that are relevant to a given task. The update rule for convolution parameters in layer  — 1 

can be formulated as follows:

∂ xi
l

∂ Φl − 1 =
∂ αilf xil − 1; Φl − 1

∂ Φl − 1 = αil
∂ f xil − 1; Φl − 1

∂ Φl − 1 +
∂ αil

∂ Φl − 1 xil (3)

where the first gradient term on the right-hand side is scaled with αil.

2.3 Attention Gates for Segmentation

In this work, we build our attention-gated segmentation model on top of a standard 3D U-

Net architecture. U-Nets are commonly used for image segmentation tasks because of their 

good performance and efficient use of GPU memory. The latter advantage is mainly linked 

to extraction of image features at multiple image scales. Coarse feature-maps capture 

contextual information and highlight the category and location of foreground objects. 

Feature-maps extracted at multiple scales are later merged through skip connections to 

combine coarse- and fine-level dense predictions as shown in Figure 3. The proposed AGs 

are incorporated into the standard U-Net architecture to highlight salient features that are 

passed through the skip connections. For AGs, we chose sigmoid activation function for 

normalisation: σ2(x) = 1
1 + exp( − x) . While in image captioning (Anderson et al., 2017) and 

classification (Jetley et al., 2018) tasks, the softmax activation function is used to normalise 

the attention coefficients, however, sequential use of softmax yields sparser activations at the 

output. For dense prediction task, we empirically observed that sigmoid resulted in better 

training convergence for the AG parameters.

2.4 Attention Gates for Classification

For attention-gated classification model, we chose Sononet (Baumgartner et al., 2016) to be 

our base architecture, which is a variant of VGG network (Simonyan and Zisserman, 2014). 

The difference is that Sononet can be decoupled into feature extraction module and 

adaptation module. In the adaptation module, the number of channels are first reduced to the 

number of target classes C. Subsequently, the spatial information is flattened via channel-

wise global average pooling. Finally, a softmax operation is applied to the resulting vector 

and the entry with maximum activation is selected as the prediction. As the network is 

constrained to classify based on the reduced vector, the network is forced to extract the most 

salient features for each class.

The proposed attention mechanism is incorporated in the Sononet architecture to better 

exploit local information. In the modified architecture, termed Attention-Gated Sononet 

(AG-Sononet), we remove the adaptation module. The final layer of the feature extraction 

module is used as gridded global feature map g. We apply the proposed attention mechanism 

to layer 11 and 14 just before pooling, We empirically found that attention gates were less 

effective if applied to the earliest layer. We speculate that this is because first few layers only 

represent low-level features, which is not discriminative yet to be attended. The proposed 

architecture is shown in Figure 4. After the attention coefficients αil i = 1
n  are obtained, the 
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weighted average over the spatial axes is computed, yielding a vector of length Fl at scale 

l: xl = ∑i = 1
n αilxil. In addition, we also perform the global average pooling on the coarsest 

scale representation. The prediction is given by fitting a fully connected layer on the 

concatenated feature vector xl1, xl2, xl3  (e.g. l 1 = 11, l 2 = 14, l 3 = 17). We note that for 

AG-sononet, we normalised the attention coefficients as αil = (αil − αminl /∑j(αjl − αminl )), where 

αminl  = minj αjl, as we realised that softmax output was often too sparse, making the 

prediction more challenging.

Given the attended feature vectors at different scales, we highlight that the aggregation 

strategy is flexible and that it can be adjusted depending on the target problem. We 

empirically observed that a combination of deep-supervision (Lee et al., 2015) for each scale 

followed by fine-tuning using a new FC layer fitted on the concatenated vector gave the best 

performance.

3 Experiments and Results

The proposed AG model is modular and independent of application type; as such it can be 

easily adapted for pixel and image level classification tasks. To demonstrate its applicability 

to image classification and segmentation, we evaluate the proposed attention based FCN 

models on challenging abdominal CT multi-label segmentation and 2D ultrasound image 

plane classification problems. In particular, pancreas boundary delineation is a difficult task 

due to shapevariability and poor tissue contrast, similarly image quality and subject 

variability introduce challenges in 2D-US image classification. Our models are compared 

against the standard 3D U-Net and Sononet in terms of model prediction performance, 

model capacity, computation time, and memory requirements.

3.1 Evaluation Datasets

In this section, we present the image datasets used in classification and segmentation 

experiments.

3.1.1 3D-CT Abdominal Image Datasets—For the experiments, two different CT 

abdominal datasets are used: (I) 150 abdominal 3D CT scans acquired from patients 

diagnosed with gastric cancer (CT-150). In all images, the pancreas, liver, and spleen 

boundaries were semi-automatically delineated by three trained researchers and manually 

verified by a clinician. The same dataset is used by Roth et al. (2017) to benchmark the U-

Net model in pancreas segmentation. (II) The second dataset3 (CT-82) consists of 82 

contrast enhanced 3D CT scans with pancreas manual annotations performed slice-by-slice. 

This dataset (NIH-TCIA) (Roth et al., 2016) is publicly available and commonly used to 

benchmark CT pancreas segmentation frameworks. The images from both datasets are 

downsampled to isotropic 2.00 mm resolution due to the large image size and hardware 

memory limitations.

3 https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT 
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3.1.2 2D Fetal Ultrasound Image Dataset—Our dataset consisted of 2694 2D 

ultrasound examinations of volunteers with gestational ages between 18 and 22 weeks. The 

dataset contains 13 types of standard scan planes and background, complying the standard 

specified in the UK National Health Service (NHS) fetal anomaly screening programme 

(FASP) handbook (NHS Screening Programmes, 2015). The standard scan planes are: Brain 

(Cb.), Brain (Tv.), Profile, Lips, Abdominal, Kidneys, Femur, Spine (Cor.), Spine (Sag.), 

4CH, 3VV, RVOT, LVOT. The dataset further includes large portions of frames which 

contains anatomies that are not part of the scan plane, labelled as “background”. The details 

of the image acquisition protocol as well as how scan plane labels are obtained can be found 

in (Baumgartner et al., 2016). The data was cropped to central 208 × 272 to prevent the 

network from learning the surrounding annotations shown in the ultrasound scan screen.

3.2 Model Training and Implementation Details

The datasets used in this manuscript contain large class imbalance issue that needs to be 

addressed. For ultrasound dataset, due to the nature of screening process, the background 

label dominates the dataset. To address this, we used a weighted sampling strategy, where 

we matched the probability of sampling one of the foreground labels to the probability of 

sampling a background label. For the segmentation models, the class imbalance problem is 

tackled using the Sorensen-Dice loss (Drozdzal et al., 2016; Milletari et al., 2016) defined 

over all semantic classes. Dice loss is experimentally shown to be less sensitive to class 

imbalance in segmentation tasks.

For both tasks, batch-normalisation, deep-supervision (Lee et al., 2015), and standard data-

augmentation techniques (affine transformations, axial flips, random crops) are used in 

training attention and baseline networks. Intensity values are linearly scaled to obtain a 

normal distribution N(0,1). For classification models, we empirically found that optimising 

with Stochastic Gradient Descent with Nesterov momentum (ρ = 0.9) worked the best. The 

initial learning rate was set to 0.1, which was subsequently reduced by a factor of 0.1 for 

every 100 epoch. We also used a warm-start learning rate of 0.01 for the first 5 epochs. For 

segmentation models, we used Adam with α = 10–4, β 1 = 0.9, β 2 = 0.999. The batch size 

for the Sononet models was set to 64. However, for the 3D-CT segmentation models, 

gradient updates are computed using small batch sizes of 2 to 4 samples. For larger 

segmentation networks, gradient averaging is used over multiple forward and backward 

passes. This is mainly because we propose a 3D-model to capture sufficient semantic 

context in contrast to the state-of-the-art CNN segmentation frameworks (Cai et al., 2017; 

Roth et al., 2018). Gating parameters are initialised so that attention gates pass through 

feature vectors at all spatial locations. Moreover, we do not require multiple training stages 

as in hard-attention based approaches therefore simplifying the training procedure.

3.2.1 Implementation Details—The architecture for AG-sononet is shown in Fig. 4. 

The parameters for AG-Sononet was initialised using a partially trained Sononet. We 

compare our models with different capacities, with the initial number of features 8, 16 and 

32. For U-net and Attention U-net, the initial number of features is set to F 1 =8, which is 

doubled after every max-pooling operation. Our implementation using PyTorch (Paszke et 

al., 2017) is publicly available4.
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3.3 3D-CT Abdominal Image Segmentation Results

The proposed Attention U-Net model is benchmarked against the standard U-Net 

(Ronneberger et al., 2015) on multi-class abdominal CT segmentation. We use CT-150 

dataset for both training (120) and testing (30). The corresponding Dice scores (DSC) and 

surface distances (S2S) are given in Table 1. The results on pancreas predictions demonstrate 

that attention gates (AGs) increase recall values (p =.005) by improving the model’s 

expression power as it relies on AGs to localise foreground pixels. The difference between 

predictions obtained with these two models are qualitatively compared in Figure 5. In the 

second experiment, the same models are trained with fewer training images (30) to show that 

the performance improvement is consistent and significant for different sizes of training data 

(p = .01). For both approaches, we observe a performance drop on spleen DSC as the 

training size is reduced. The drop is less significant with the proposed framework. For 

kidney segmentation, the models achieve similar accuracy since the tissue contrast is higher.

In Table 1, we also report the number of trainable parameters for both models. We observe 

that by adding 8% extra capacity to the standard U-Net, the performance can be improved by 

2-3% in terms of DSC. For a fair comparison, we also train higher capacity U-Net models 

and compare against the proposed model with smaller network size. The results shown in 

Table 2 demonstrate that the addition of AGs contributes more than simply increasing model 

capacity (uniformly) across all layers of the network (p = .007). Therefore, additional 

capacity should be used for AGs to localise tissues, in cases when AGs are used to reduce 

the redundancy of training multiple, individual models.

3.3.1 Comparison to State-of-the-Art CT Abdominal Segmentation 
Frameworks—The proposed architecture is evaluated on the public TCIA CT Pancreas 

benchmark to compare its performance with state-of-the-art methods. Initially, the models 

trained on CT-150 dataset are directly applied to CT-82 dataset to observe the applicability 

of the two models on different datasets. The corresponding results (BFT) are given in Table 

3. U-Net model outperforms traditional atlas techniques (Wolz et al., 2013) although it was 

trained on a disjoint dataset. Moreover, the attention model performs consistently better in 

pancreas segmentation across different datasets. These models are later fine-tuned (AFT) on 

a subset of TCIA dataset (61 train, 21 test). The output nodes corresponding to spleen and 

kidney are excluded from the output softmax computation, and the gradient updates are 

computed only for the background and pancreas labels. The results in Table 3 and 4 show 

improved performance compared to concatenated multi-model CNN approaches (Cai et al., 

2017; Roth et al., 2018; Zhou et al., 2017) due to additional training data and richer semantic 

information (e.g. spleen labels). Additionally, we trained the two models from scratch (SCR) 

with 61 training images randomly selected from the CT-82 dataset. Similar to the results on 

CT-150 dataset, AGs improve the segmentation accuracy and lower the surface distances (p 
= .03) due to increased recall rate of pancreas pixels (p = .09).

Results from state-of-the-art CT pancreas segmentation models are summarised in Table 4 

for comparison purposes. Since the models are trained on the same training dataset, this 

4 https://github.com/ozan-oktay/Attention-Gated-Networks 
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comparison gives an insight on how the attention model compares to the relevant literature. 

It is important to note that, postprocessing (e.g. using conditional random field) is not 

utilised in our framework as the experiments mainly focus on quantification of performance 

improvement brought by AGs in an isolated setting. Similarly, residual and dense 

connections can be used as in (Gibson et al., 2017) in conjunction with AGs to improve the 

segmentation results. In that regard, our 3D Attention U-Net model performs similar to the 

state-of-the-art, despite the input images are downsampled to lower resolution. More 

importantly, our approach significantly improves the results compared to single-model based 

segmentation frameworks (see Table 4). We do not require multiple CNN models to localise 

and segment object boundaries. Lastly, we performed 5-fold cross-validation on the CT-82 

dataset using the Attention U-Net for a better comparison, which achieved 81.48 ± 6.23 

DSC for pancreas labels.

3.4 2D Fetal Ultrasound Image Classification Results

The dataset was split to training (122,233), validation (30,553) and testing (38, 243) frames 

on subject basis. For evaluation, we used macro-averaged precision, recall, F1, overall 

accuracy, the number of parameters and execution speed, summarised in Table 5.

In general, AG-Sononet improves the results over Sononet at all capacity levels. In 

particular, AG-Sononet achieves higher precision. AG-Sononet reduces false positive 

examples because the gating mechanism suppresses background noise and forces the 

network to make the prediction based on class-specific features. As the capacity of Sononet 

is increased, the gap between the methods are tightened, but we note that the performance of 

AG-Sononet is also close to the one of Sononet with double the capacity. In Table 6, we 

show the class-wise F1, precision and recall values for AG-Sononet-8, where the 

improvement over Sononet is indicated in brackets. We see that the precision increased by 

around 5% for kidney, profie and spines. For the most challenging cardiac views, we see on 

average 3% improvement for 4CH and 3VV (p < 0.05).

3.5 Attention Map Analysis

The attention coefficients of the proposed U-Net model, which are obtained from 3D-CT test 

images, are visualised with respect to training epochs (see Figure 6). We commonly observe 

that AGs initially have a uniform distribution and pass features at all spatial locations. This 

is gradually updated and localised towards the targeted organ boundaries. Additionally, at 

coarser scales AGs provide a rough outline of organs which are gradually refined at finer 

resolutions. Moreover, by training multiple AGs at each image scale, we observe that each 

AG learns to focus on a particular subset of organs.

3.5.1 Object Localisation using Attention Maps—With the proposed architecture, 

the localisation maps can obtained for almost no additional computational cost. In Figure 7, 

we show the attention maps of AG-Sononet across different subjects, together the red 

bounding box annotation generated using the attention maps (see Appendix for the 

heuristics). We see that the network consistently focuses on the object of interest, consistent 

with the blue ground truth annotation. We note, however, attention map outlines the 

discriminant region; in particular, it does not necessarily coincide with the entire object. 
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Nevertheless, as it does not guided backpropagation for localisation (a strategy in 

(Baumgartner et al., 2016)), attention models are advantageous for the real-time 

applications.

4 Discussion

In this work, we considered soft-attention mechanism and discussed how to incorporate this 

idea into segmentation and scan plane detection frameworks to better exploit local structures 

in CT abdominal and fetal ultrasound images. In particular, we highlighted several aspects: 

gridded attention mechanisms, a normalisation strategy for the attention map, and 

aggregation strategies. We empirically observed and reported that using soft-max as the 

activation function tends to generate a map that is sparsely activated and is overly sensitive 

to local intensity changes. The latter is problematic as in ultrasound imaging, image quality 

is often low. In the classification setting, We found that dividing the activations by the sum 

of the activations helped generate attention map with larger contextual support. As 

demonstrated in the segmentation framework, Sigmoid function is a good alternative as it 

only normalises the range and allows more information to flow. However, we found that 

training is non-trivial due to the gradient saturation problem.

We noted that training the attention-mechanism was slightly more complex than the standard 

network architecture. In particular, we observed that the strategy employed to aggregate the 

attention maps at different scales affects both the learning of the attention mechanism itself 

and hence the performance. Having a loss term defined at each scale ensures that the 

network learns to attend at each scale. We observed that first training the network at each 

scale separately, followed by fine-tuning was the most stable approach to get the optimal 

performance.

There is a vast body of literature in machine learning exploring different gating 

architectures. For example, highway networks (Greff et al., 2016) make use of residual 

connections around the gate block to allow better gradient backpropagation and slightly 

softer attention mechanisms. Although our segmentation experiments with residual 

connections have not provided any significant performance improvement, future work will 

focus on this aspect to obtain a better training behaviour.

Lastly, we note that the presented quantitative comparisons between the Attention 3D-Unet 

and state-of-the-art 2D cascaded models might not be sufficient enough to draw a final 

conclusion, as the proposed approach takes advantage of rich contextual information in all 

spatial dimensions. On the other hand, the 2D models utilise the high resolution information 

present in axial CT planes without any downsampling. We think that with the advent of 

improved GPU computation power and memory, larger capacity 3D-CT segmentation 

models can be trained with larger image grids without the need for image downsampling. In 

this regard, future research will focus more and more on deploying 3D models, and the 

performance of Attention U-Net can be further enhanced by utilising fine resolution input 

batches without any additional heuristics.
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5 Conclusion

In this work we proposed a novel and modular attention gate model that can be easily 

incorporated into existing segmentation and classification architectures. Our approach can 

eliminate the necessity of applying an external object localisation model by implicitly 

learning to highlight salient regions in input images. Moreover, in a classification setting, 

AGs leverage the salient information to perform task adaptive feature pooling operation.

We applied the proposed attention model to standard scan plane detection during fetal 

ultrasound screening and showed that it improves overall results, especially precision, with 

much less parameters. This was done by generating the gating signal to pinpoint local as 

well as global information that is useful for the classification. Similarly, experimental results 

on CT segmentation task demonstrate that the proposed AGs are highly beneficial for tissue/

organ identification and localisation. This is particularly true for variable small size organs 

such as the pancreas, and similar behaviour is observed in image classification tasks.

Additionally, AGs allow one to generate fine-grained attention map that can be exploited for 

object localisation. We envisage that the proposed soft-attention module could support 

explainable deep learning, which is a vital research area for medical imaging analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Axial (a) and sagittal (f) views of a 3DCT scan, (b,g) attention coefficients, image feature 

activations before (c,h) and after attention gating (d,e,i,j). Similarly, (k-n) visualise the 

gating on a coarse scale skip connection. The filtered feature activations (d,e,i,j) are 

collected from multiple AGs, where a subset of organs is selected by each gate and 

activations consistently correspond to specific structures across different scans.
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Figure 2. 
Schematic of the proposed additive attention gate (AG). Input features (x l) are scaled with 

attention coefficients (α) computed in AG. Spatial regions are selected by analysing both the 

activations and contextual information provided by the gating signal (g) which is collected 

from a coarser scale. Grid resampling of attention coefficients is performed using trilinear 

interpolation.
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Figure 3. 
A block diagram of the proposed Attention U-Net segmentation model. Input image is 

progressively filtered and downsampled by factor of 2 at each scale in the encoding part of 

the network (e.g. H 4 = H 1/8). Nc denotes the number of classes. Attention gates (AGs) filter 

the features propagated through the skip connections. Schematic of the AGs is shown in 

Figure 2. Feature selectivity in AGs is achieved by use of contextual information (gating) 

extracted in coarser scales.
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Figure 4. 
The schematics of the proposed attention-gated classification model, AG-Sononet. The 

proposed attention units are incorporated in layer 11 and layer 14. The attention maps are 

summed along the spatial axes, resulting in vectors with Fii features. The vectors are 

combined using fully connected layers at aggregation stage to yield final predictions.
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Figure 5. 
(a-b) The ground-truth pancreas segmentation, (c) U-Net and (d) Attention U-Net. The 

missed dense predictions by U-Net are highlighted with red arrows.
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Figure 6. 
The figure shows the attention coefficients (α ls2, α ls3) across different training epochs (3, 

6, 10, 60, 150). The images are extracted from sagittal and axial planes of a 3D abdominal 

CT scan from the testing dataset. The model gradually learns to focus on the pancreas, 

kidney, and spleen.

Schlemper et al. Page 23

Med Image Anal. Author manuscript; available in PMC 2021 May 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 7. 
Examples of the obtained attention map and generated bounding boxes (red) from AG-

Sononet-FT across different subjects. The ground truth annotation is shown in blue. The 

detected region highly agrees with the object of interest.
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Table 1

Multi-class CT abdominal segmentation results obtained on the CT-150 dataset: The results are reported in 

terms of Dice score (DSC) and mesh surface to surface distances (S2S). These distances are reported only for 

the pancreas segmentations. The proposed Attention U-Net model is benchmarked against the standard U-Net 

model for different training and testing splits. Inference time (forward pass) of the models are computed for 

input tensor of size 160 < 160 < 96. Statistically significant results are highlighted in bold font.

Method U-Net Att U-Net U-Net Att U-Net

Train/Test Split 120/30 120/30 30/120 30/120

Pancreas DSC 0.814±0.116 0.840±0.087 0.741±0.137 0.767±0.132

Pancreas Precision 0.848±0.110 0.849±0.098 0.789±0.176 0.794±0.150

Pancreas Recall 0.806±0.126 0.841±0.092 0.743±0.179 0.762±0.145

Pancreas S2S Dist (mm) 2.358±1.464 1.920±1.284 3.765±3.452 3.507±3.814

Spleen DSC 0.962±0.013 0.965±0.013 0.935±0.095 0.943±0.092

Kidney DSC 0.963±0.013 0.964±0.016 0.951±0.019 0.954±0.021

Number of Params 5.88 M 6.40 M 5.88 M 6.40 M

Inference Time 0.167 s 0.179 s 0.167 s 0.179 s
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Table 2

Segmentation experiments on CT-150 dataset are repeated with higher capacity U-Net models to demonstrate 

the efficiency of the attention models with similar or less network capacity. The additional filters in the U-Net 

model are distributed uniformly across all the layers. Segmentation results for the pancreas are reported in 

terms of dice score, precision, recall, surface distances. The models are trained with the same train/test data 

splits (120/30).

Method # of Pars DSC Precision Recall S2S Dist (mm) Run Time

U-Net 6.44 M .821±.119 .849±.111 .814±.125 2.383±1.918 .191 s

U-Net 10.40 M .825±.104 .861±.082 .807±.121 2.202±1.144 .222 s
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Table 3

Pancreas segmentation results obtained on the TCIA Pancreas-CT Dataset (Roth et al., 2016). The dataset 

contains in total 82 scans which are split into training (61) and testing (21) sets. The corresponding results are 

obtained before (BFT) and after fine tuning (AFT) and also training the models from scratch (SCR). 

Statistically significant results are highlighted in bold font.

Method Dice Score Precision Recall S2S Dist (mm)

BFT
U-Net 0.690±0.132 0.680±0.109 0.733±0.190 6.389±3.900

Attention U-Net 0.712±0.110 0.693±0.115 0.751±0.149 5.251±2.551

AFT
U-Net 0.820±0.043 0.824±0.070 0.828±0.064 2.464±0.529

Attention U-Net 0.831±0.038 0.825±0.073 0.840±0.053 2.305±0.568

SCR
U-Net 0.815±0.068 0.815±0.105 0.826±0.062 2.576±1.180

Attention U-Net 0.821±0.057 0.815±0.093 0.835±0.057 2.333±0.856
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Table 4

State-of-the-art CT pancreas segmentation methods that are based on single and multiple CNN models. The 

listed segmentation width="100%" frameworks are evaluated on the same public benchmark (CT-82) using 

different number of training and testing images. Similarly, the FCN approach proposed in (Roth et al., 2017) is 

benchmarked on CT-150 although it is trained on an external dataset (Ext).

Method Dataset Pancreas DSC Train/Test # Folds

Hierarchical 3D FCN (Roth et al., 2017) CT -150 82.2 ± 10.2 Ext/150 -

Dense-Dilated FCN (Gibson et al., 2017) CT ‘-82 & Synapse5 66.0 ± 10.0 63/9 5-CV

2D U-Net (Heinrich et al., 2018) CT-82 75.7 ± 9.0 66/16 5-CV

HN 2D FCN Stage-1(Roth et al., 2018) CT-82 76.8 ± 11.1 62/20 4-CV

HN 2D FCN Stage-2(Roth et al., 2018) CT-82 81.2 ± 7.3 62/20 4-CV

2D FCN (Cai et al., 2017) CT-82 80.3 ± 9.0 62/20 4-CV

2D FCN + RNN (Cai et al., 2017) CT-82 82.3 ± 6.7 62/20 4-CV

Single Model 2D FCN (Zhou et al., 2017) CT-82 75.7 ± 10.5 62/20 4-CV

Multi-Model 2D FCN (Zhou et al., 2017) CT-82 82.2 ± 5.7 62/20 4-CV
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Table 5
Test results for standard scan plane detection. Number of initial filters is denoted by the 
postfix “-n”. Time taken for forward (Fwd) and backward (Bwd) passes were recorded in 
milliseconds.

Method Accuracy F1 Precision Recall Fwd/Bwd (ms) #Param

Sononet-8 0.969 0.899 0.878 0.922 1.36/2.60 0.16M

AG-Sononet-8 0.977 0.922 0.916 0.929 1.92/3.47 0.18M

Sononet-16 0.977 0.923 0.916 0.931 1.45/3.92 0.65M

AG-Sononet-16 0.978 0.929 0.924 0.934 1.94/5.13 0.70M

Sononet-32 0.979 0.931 0.924 0.938 2.40/6.72 2.58M

AG-Sononet-32 0.980 0.933 0.931 0.935 2.92/8.68 2.79M
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Table 6
Class-wise performance for AG-Sononet-8. In bracket shows the improvement over 
Sononet-8. Bold highlights the improvement more than 0.02.

Precision Recall F1

Brain (Cb.) 0.988 (-0.002) 0.982 (-0.002) 0.985 (-0.002)

Brain (Tv.) 0.980 (0.003) 0.990 (0.002) 0.985 (0.003)

Profile 0.953 (0.055) 0.962 (0.009) 0.958 (0.033)

Lips 0.976 (0.029) 0.956 (-0.003) 0.966 (0.013)

Abdominal 0.963 (0.011) 0.961 (0.007) 0.962 (0.009)

Kidneys 0.863 (0.054) 0.902 (0.003) 0.882 (0.030)

Femur 0.975 (0.019) 0.976 (-0.005) 0.975 (0.007)

Spine (Cor.) 0.935 (0.049) 0.979 (0.000) 0.957 (0.026)

Spine (Sag.) 0.936 (0.055) 0.979 (-0.012) 0.957 (0.024)

4CH 0.943 (0.035) 0.970 (0.007) 0.956 (0.022)

3VV 0.694 (0.050) 0.722 (-0.014) 0.708 (0.021)

RVOT 0.691 (0.029) 0.705 (0.044) 0.698 (0.036)

LVOT 0.925 (0.022) 0.933 (0.027) 0.929 (0.024)

Background 0.995 (-0.001) 0.992 (0.007) 0.993 (0.003)
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Table 7
WSL performance for the proposed strategy with AG-Sononet-16. Correctness (Cor.) is 
defined as IOU > 0.5. Relative Correctness (Rel.) is defined as IOU > 0.5 X max(IOUclass).

IOU Mean (Std) Cor. (%) Rel. (%)

Brain (Cb.) 0.69 (0.11) 0.96 0.96

Brain (Tv.) 0.68 (0.12) 0.96 0.96

Profile 0.31 (0.08) 0.00 0.80

Lips 0.42 (0.18) 0.36 0.60

Abdominal 0.71 (0.10) 0.96 0.96

Kidneys 0.73 (0.13) 0.92 0.98

Femur 0.31 (0.11) 0.02 0.58

Spine (Cor.) 0.53 (0.13) 0.56 0.76

Spine (Sag.) 0.53 (0.11) 0.54 0.94

4CH 0.61 (0.14) 0.76 0.86

3VV 0.42 (0.14) 0.34 0.62

RVOT 0.56 (0.15) 0.70 0.76

LVOT 0.54 (0.15) 0.62 0.80
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