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Introduction
Kidney tumors are one of the top 10 most common malignant 
tumors, accounting for 3.7% of newly diagnosed tumors. 
Renal cell carcinoma (RCC) is the most common type, 
accounting for 85% of cases.1 The median age at diagnosis is 
64 years, and it is more commonly seen in men than in women. 
The 5-year survival rate of RCC has been constantly improv-
ing, but the overall prognosis remains poor, especially in 
patients with a later-stage disease.2 In the past 12 years, RCC 
has been targeted by cytokines, targeted therapy and immu-
notherapy, however, therapeutic benefits are limit. The most 
common pathological type of RCC is renal clear cell carci-
noma (KIRC), which has poor prognosis and a high degree of 
malignancy.3

mRNA-processing events which include alternative splic-
ing, m6A methylation and alternative polyadenylation (APA), 
are crucial in the regulation of most human genes in various 

diseases, such as brain cancer, lung cancer, liver cancer and 
COVID-19.4-9 However, there is limited research on the rela-
tionship between alternative polyadenylation (APA) and renal 
clear cell carcinoma. APA is regulated by core polyadenylation 
trans-factors, including cleavage and polyadenylation specific-
ity factor (CPSF), cleavage stimulatory factor or cleavage 
stimulation factor (CSTF), cleavage factor (CFim and CFIIm), 
poly(A) binding protein nuclear 1 (PABPNl), cytoplasmic 
poly(A) binding proteins (PABPC1 and PABPC4), Factor 
Interacting With PAPOLA And CPSF1(FIP1L1), 
Symplekin(SYMPK), and Cleavage and polyadenylation fac-
tor subunit(PCF11).10 Presently, numerous relevant studies 
have found that APA causes abnormal changes in a variety of 
tumors.6,11-15

Cancer development is highly associated with the physio-
logical state of the tumor microenvironment.16 Tumor gene 
mutation burden (TMB) pertains to the number of mutations 
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in the cancer cell genome and TMB score was associated with 
multiple immune components and signatures in tumor micro-
environment.17 APA have been reported to be closely associ-
ated with the tumor microenvironment in breast cancer.18 
However, few studies have focused on the relationship between 
APA and tumor microenvironment in kidney cancer.

In this study, we constructed a (least absolute shrinkage and 
selection operator) lasso regression model using transcriptomic 
and clinical data of APA regulatory factors in The Cancer 
Genome Atlas (TCGA) database and found that 5 APA regu-
latory factors (CPSF1, CPSF2, CSTF2, PABPC1, and 
PABPC4) play more important roles in renal cell carcinoma. 
Lasso is a regression analysis method that combines feature 
selection and regularization to enhance the predictive accuracy 
and interpretability of statistical models. We found above 5 
regulatory factors mainly regulate the mRNA expression of 
immune-related genes. To further analyze the relationship 
between APA regulatory factors and clinical features in KIRC 
and confirm the specific pathway regulating APA regulatory 
factors, we analyzed the dynamic changes between the expres-
sion levels of these APA regulatory factors and clinical features 
by applying multi-omics data from TCGA. At last, we vali-
dated our result in independent datasets of GEO.

Methods
Patient dataset collection

Gene expression data of Kidney Renal Clear Cell Carcinoma 
were downloaded from the TCGA database (https://can-
cergenome.nih.gov/).19 RNA-Seq and clinical data were 
obtained for 538 samples. The downloaded clinical data 
included information on age, pathological stage, sex, chemo-
therapy status, follow-up date, and survival status. Those 
with missing survival data, missing follow-up date, and sur-
vival less than 1 month duration were excluded, and the 
remaining data were further matched with gene expression 
data. Finally, 175 patients with both gene expression and 
clinical data were obtained. To validate our results analyzed 
from TCGA, independent RNA-Seq data for Renal Cell 
Carcinoma from the cancer and normal tissue groups were 
downloaded from the GEO database GSE76207 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76207)20 
and GSE29609 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE29609).21

Immune cell phenotypes analysis

All analyses involved in this study were performed using the R 
software (version 3.5.1). The method flow of the KIRC classifi-
cation model and the prognosis model construction is shown in 
Figure 1. First, the immune cell infiltration levels of KIRC 
tumor tissue and normal tissue were evaluated using TIMER 
(https://cistrome.shinyapps.io/timer/).22 Then, the immune cell 
score composed of 8 immune cells was constructed using lasso 

regression combined with clinical characteristics to construct 
the KIRC model by Cox regression. TIMER can recognize 22 
immune cell phenotypes, including B cells, T-cells, natural killer 
cells, macrophages, dendritic cells, and bone marrow subpopula-
tions, with high sensitivity and specificity.

Gene expression and clinical data analysis
Gene Expression Profiling Interactive Analysis (GEPIA, 
http://gepia.cancer-pku.cn/), developed by Peking University, 
is an interactive web server that integrates and helps analyze 
cancer expression profile data, including RNA sequencing 
expression data of tumor samples and normal samples from 33 
kinds of tumors in the TCGA and GTEx.23,24 In this study, the 
GEPIAs database was used to plot survival curves. Cbioportal 
(https://www.cbioportal.org/study/clinicalData?id=kirc_tcga) 
is a TCGA online data analysis platform that includes data on 
gene mutation, transcriptome, and proteomics. Oncoprints 
were performed using Cbioportal software. Differential gene 
expression analyses were performed by DESeq2 according to 
the read counts, read counts of each gene determined by 
HTSeq. Genes with P ⩽ .05 and mean CPM (Couts per 
Million) > 100 were determined to be significantly differen-
tially expressed genes, as we descripted previously.25

Risk assessment model construction

Lasso regression helps obtain a more concise model by con-
structing a penalty function to compress some regression 

Figure 1. The pipeline of our method.

https://cancergenome.nih.gov/
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coefficients and set some regression coefficients to zero.26 In 
this study, the R-package “glmnet” was used to select the pen-
alty parameter with the minimum error through 10-fold-
change cross-validation λ, to select the most effective prognostic 
marker and its corresponding regression coefficient in the con-
struction of the risk score. According to the risk model, samples 
in TCGA were assigned a score and then divided into high-
risk and low-risk groups with the median risk score as the 
threshold. The survival curves of the patients in the high- and 
low-risk groups were drawn with the R-package “Survival,” 
and the survival times of the 2 groups were compared using 
log-rank test. We developed a computational framework 
through integrating gene expressions and clinical data in 
TCGA and GEO (Figure 1).

Results
Construction of APA regulator signature-based risk 
assessment model in KIRC

Analysis of the gene expression of APA regulatory factors in 
TCGA renal cell carcinoma samples revealed that CPSF1, 
CPSF2, CPSF3, CPSF4, CPSF6, CPSF7, FIP1L1, CSTF1, 
CSTF2, CSTF2T, PCF11, SYMPK, PAPOLG, PABPC1, 
PABPC4, and PABPN1 were significantly different between 
tumor tissues and normal tissues (Figure 2A). CPSF4L, 
CSTF3, PAPOG were not significantly different between 
tumor tissues and normal tissues. Lasso Cox regression analy-
sis was performed on the above significantly differently 
expressed APA regulators. The penalty parameter lambda was 
selected by the cross-validation method to obtain relatively 
independent feature genes for subsequent model analysis 
(Figure 2B and C). The risk score for each patient was calcu-
lated using the following formula: Risk score = 0.01927*EXP(
CPSF1) + (−0.00165)*EXP(CSTF2) + (−0.00927)*EXP(CP
SF4) + (−0.01672)*EXP (PABPC1) + (−0.00255)*EXP 
(PABPC4) (Figure 2B and C). All kidney cancer patients from 
TCGA were classified as high or low risk according to the 
optimum cut-off risk score in the KIRC cohort. Interestingly, 
GO enrichment analysis of differently expressed genes 
between high-risk group and low-risk group indicated that 
APA regulators were associated with immune microenviron-
ment-related genes in KIRC (Figure 2D). We speculated that 
APA regulatory factors might regulate immune microenviron-
ment-related APA to affect the immunotherapy of KIRC.

Hallmarks and survival analysis of APA regulators

To further investigate the relationship of immune microenvi-
ronment and APA regulators, all patients classified as high or 
low risk were used to performed TMB score. TMB score 
partly explains the clinical response to immunotherapy, and 
we found that the high-risk group had low TMB (Figure 3A), 
indicating lower levels of neoantigens that can be recognized 
by the immune system. OS was also compared between the 2 

groups using Kaplan-Meier analysis. The results (Figure 3B) 
showed a different survival curve based on the variables 
selected by the Cox model in the KIRC, suggesting the sig-
nificance of the APA regulators in the separation of the 2 risk 
groups. Furthermore, we downloaded the most frequently 
mutated genes (VHL, PBRM1, SETD2, BAP1, MTOR, 
PTEN, KDM5C, ARID1A, TP53, and SPEN) in KIRC. 
The patients were ranked by the risk score (formula given 
earlier). The mutation status of these genes is shown in Figure 
2C. Interestingly, the mutation rates of VHL, PBRM1, 
MTOR, and SETD2 were low in the high-risk score group. 
However, BAP1 mutations were mutually exclusive with 
PBRM1, MTOR, and SETD2. In addition, we did not find 
an anomalous trend in the mutation status of PTEN, 
KDM5C, ARID1A, TP53, and SPEN. This could be due to 
the low mutation rates of these genes.

APA regulators risk assessment model for predicting 
the immune status of KIRC

Just as we expected, higher expression levels of CPSF1, CPSF2, 
CSTF2, PABPC1, and PABPC4 were significantly associated 
with increased tumor infiltration of CD4+ T-cells and neutro-
phils (Figure 4). CPSF1 was associated with tumor infiltration 
of CD4+ T-cells and neutrophils in the KIRC. CPSF2, 
PABPC1, and PABPC4 were associated with purity, B cells, 
CD8+ T-cells, CD4+ T-cells, macrophages, neutrophils, and 
dendritic cells. However, we found that CSTF2 had no rela-
tionship with the purity of KIRC.

Survival analysis of f ive genes in KIRC

Furthermore, 3 (CPSF1, CPSF2, and CSTF2) of the 5 genes 
were closely correlated with the overall survival (OS) in KIRC. 
The high expression levels of CSTF2 and CPSF2 were associ-
ated with superior OS in KIRC, indicating that CSTF2 and 
CPSF2 are risk factors for KIRC. The low expression level of 
CPSF1 is associated with poor survival time in KIRC, indicat-
ing that CPSF1 is not a risk factor for KIRC. Thus, most key 
APA regulatory factors were significantly correlated with prog-
nosis (Figure 5).

Dynamic APA to APA regulatory factor network 
and risk model for predicting survival in KIRC

In fact, Hu et al have constructed a multi-omic data based 
7-gene model in KIRC previously. To compare with this 
model, we plotted the receiver operating characteristic 
(ROC) curve of the true-positive rate (sensitivity) as a func-
tion of the false-positive rate for 7-gene model and our APA 
model. We found the AUC of their 7-gene model was 0.64 
in our data. Our APA model shows better performance com-
paring with previously published 7-gene model (Figure 6A). 
Therefore, the results show that our risk model has a very 
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Figure 2. Feature selection using the LASSO Cox regression model. (A) Heatmap showing the expression level of APA regulator in cancer and normal 

tissue. (B) The partial likelihood deviance was plotted versus log (lambda). The y-axis indicates the partial likelihood deviance, while the lower x-axis 

indicates the log (lambda) and the upper x-axis represents the average number of predictors. (C) LASSO coefficient profiles. The coefficients (y-axis) 

were plotted against log (lambda) and 5 features with nonzero coefficients were selected to build the radiomics signature. (D) GO-Term analysis of 

differently expressed genes between high-risk group and low-risk group.
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good predictive efficiency in KIRC. To further validate our 
results concluded in TCGA datasets, we analyzed RNA-Seq 
data of other independent RNA-Seq data for Renal Cell 
Carcinoma from the cancer and normal tissue groups and 

observed the same results (Figure 6B),20 suggesting 5 APA 
regulatory factors (CPSF1, CPSF2, CSTF2, PABPC1, and 
PABPC4) were significantly associated with development of 
KIRC.

Figure 3. LASSO Cox regression model predicted TMB and gene alternative status of KIRC. (A) Mutation burden in high-risk score group versus low-risk 

score groups. (B) Survival curves obtained for the genes exclusively selected by the COX method, when analyzed individually. (C) Oncoprint plot showing 

key genes mutated in KIRC. Each column denotes an individual tumor and each row represents a gene. Colors indicate type of gene alternative as 

indicated in the legend below the oncoprint.
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Discussion
APA has been reported to drive oncogenic gene expression in 
many cancers, particularly kidney cancer.27 Therefore, APA 
regulators which regulated APA may be an excellent predictor 
of survival in renal cell carcinoma. The research of APA regula-
tors including CPSF, CFim and CFIIm, PABPC1 and 
PABPC4, CSTF, PABPNl, FIP1L1, PCF11, and SYMPK28-32 
is limit. To date, there has been no research focusing on the role 
of APA regulators in KIRC.

Previous research has found that APA plays an important 
role in renal cancer using bioinformatics analysis.27 There are 
2 potential mechanisms of APA regulation during tumori-
genesis. APA is regulated in cis through genetic aberrations 
or in trans by regulatory proteins.10,33-35 Our research high-
lights the role of regulatory proteins in APA. In this study, 
we constructed a Lasso regression model using transcrip-
tomic data and clinical data of APA regulatory factors in the 
TCGA database and found that 5 APA regulatory factors 

(CPSF1, CPSF2, CSTF2, PABPC1, and PABPC4) play 
more important roles than other APA regulators in renal cell 
carcinoma. These 5 regulatory factors may mainly regulate 
the APA of immune-related genes. Previous research has 
reported that APA is associated with immune-related genes 
in breast cancer,36,37 and this mechanism was confirmed by 
our research in KIRC. Furthermore, our results indicate that 
APA in renal cell carcinoma may be mainly regulated by 
these 5 regulatory factors rather than other APA factors and 
that immune cells of KIRC are associated with APA regula-
tors. Even though, these results may not be further investi-
gated by wet experiments, bioinformatics analysis in 2 
independent databases make our results reliable.

The results of this study will enhance our understanding 
of the underlying roles of APA in KIRC. The conclusions 
might be meaningful to improve the understand of mecha-
nism of KIRC and provide directions for future treatment 
trends.

Figure 4. Expression level of 5 APA regulators CPSF1, CPSF2, CSTF2, PABPC1, and PABPC4 is correlated with the level of immune infiltration in KIRC. 

P value and correlation coefficient are indicated.
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Figure 5. Kaplan-Meier survival plots representing the correlations between the expression level of 5 APA regulators expression levels in KIRC. P value 

is indicated.
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Figure 6. ROC curve and data validation. (A) TCGA and GSE29609 receiver operating characteristic (ROC) curve for APA risk model (red line) and 

7-gene model (blue line) for the prognosis of KIRC. (B) Boxplot of gene expression level of 5 APA regulators CPSF1, CPSF2, CSTF2, PABPC1, and 

PABPC4 in validation datasets. P value of 2-tailed t test is indicated.
Abbreviations: N, normal; T, tumor.
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