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Increased intracranial pressure and ventriculomegaly in childrenwith hydrocephalus are known to have adverse
effects onwhitematter structure. This study seeks to investigate the impact of hydrocephalus on topological fea-
tures of brain networks in children. The goal was to investigate structural network connectivity, at both global
and regional levels, in the brains in childrenwith hydrocephalus using graph theory analysis and diffusion tensor
tractography. Three groups of children were included in the study (29 normally developing controls, 9 preoper-
ative hydrocephalus patients, and 17 postoperative hydrocephalus patients). Graph theory analysis was applied
to calculate the global networkmeasures including small-worldness, normalized clustering coefficients, normal-
ized characteristic path length, global efficiency, and modularity. Abnormalities in regional network parameters,
including nodal degree, local efficiency, clustering coefficient, and betweenness centrality, were also compared
between the two patients groups (separately) and the controls using two tailed t-test at significance level of
p b 0.05 (corrected for multiple comparison). Children with hydrocephalus in both the preoperative and postop-
erative groups were found to have significantly lower small-worldness and lower normalized clustering coeffi-
cient than controls. Children with hydrocephalus in the postoperative group were also found to have
significantly lower normalized characteristic path length and lower modularity. At regional level, significant
group differences (or differences at trend level) in regional network measures were found between hydroceph-
alus patients and the controls in a series of brain regions including the medial occipital gyrus, medial frontal
gyrus, thalamus, cingulate gyrus, lingual gyrus, rectal gyrus, caudate, cuneus, and insular. Our data showed
that structural connectivity analysis using graph theory and diffusion tensor tractography is sensitive to detect
abnormalities of brain network connectivity associated with hydrocephalus at both global and regional levels,
thus providing a new avenue for potential diagnosis and prognosis tool for children with hydrocephalus.

© 2015 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Normal brain function requires the integrity of neuronal function
and connectivity, globally and regionally. In HCP, data from both
human research and experimental research have suggested that a
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wide range ofWMnetworks connecting various functionally important
cortical and subcortical regions are primary targets for disruption due to
enlarged ventricles and/or increased intracranial pressure (Assaf et al.,
2006; Hassan et al., 2008; Yuan et al., 2009; Yuan et al., 2010; Scheel
et al., 2012; Ginat et al., 2013; Yuan et al., 2013). Although surgery can
significantly reduce the mortality and morbidity, HCP remains as an in-
curable lifelong disorder (Mataro et al., 2001). The damage to neuro-
anatomy sustained prior to the surgical treatment may remain or
continue to progress after the surgery, leading to long term behavioral
and neuropsychological deficits in visuospatial skills, visuomotor skills,
and a series of other important neurocognitive domains (Erickson
et al., 2001; Mataro et al., 2001; Frank et al., 2003; Bakar et al., 2009).
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DTI is an advanced neuroimaging technique that canmeasure in vivo
WM structural integrity (Basser and Jones, 2002; Beaulieu, 2002). A
growing body of literature has shown the success of DTI in investigating
WM structural abnormality in pediatric HCP (Assaf et al., 2006; Hassan
et al., 2008; Yuan et al., 2009, 2013; Air et al., 2010; Jang and Kim, 2011;
Sheel et al., 2012; Jiang et al., 2013; Rajigopal et al., 2013). A series of re-
gions, e.g., corpus callosum and posterior internal capsule, have been re-
ported to show different degrees and patterns of abnormality in the
directionality as well as the magnitude of water diffusion parameters.
In these studies, in order to extract DTI parameters, a predefined list of
ROIs needs to be delineated based on the hypotheses of the study. How-
ever, this approach does not provide a global quantification for the in-
tegrity of the entire brain network, nor does it allow for detecting any
abnormalities outside the hypothesized brain regions. Hydrocephalus,
a neurological disorder with heterogeneous etiologies, often presents
with regionally specific damage, and this damage is also expected to ex-
tend to wider areas throughout the brain. ROI-based DTI analysis alone
is clearly not sufficient tomeet all the challenges in studying this patient
population.

In recent years, graph theory analysis has emerged as a promising
tool that provides information on brain connectivity, structural and
functional, at both global and regional levels (Rubinov and Sporns,
2010). The brain is modeled as a network composed of a number of
nodes and edges connecting these nodes. The nodes and edges respec-
tively represent individual gray matter regions responsible for various
brain functions and white matter fibers responsible for transferring in-
formation among these regions. This method of graph theory analysis
has been applied in characterizing the developmental trajectory of
network connectivity as well as for investigating the disruption of net-
work connectivity in various neurological disorders (Liu et al., 2008;
Bernhardt et al., 2011; Kim et al., 2011; Shi et al., 2012; Ottet, 2013).
So far, however, no study has used graph theory approach in the analy-
sis of white matter integrity in hydrocephalus brain networks.

In the present study, graph theory is applied to analyze the structural
connectivity based on DTI tractography in childrenwith hydrocephalus.
The hypothesis of the present study is that the brain network integrity is
affected in hydrocephalus patients as reflected in the aberrant topolog-
ical features at both the global and regional levels. More specifically, we
aim to investigate whether brain networks in children with hydroceph-
alus exhibit small-world properties and to evaluate whether small-
worldness, a parameter derived from the graph theoretical analysis, is
a sensitive measure for detecting global network alteration in this
patient population. Specifically, we hypothesize that the small-
worldness, and other global network measures, including normal-
ized clustering coefficient, normalized characteristic path length,
global efficiency, and modularity, are abnormal in both hydrocepha-
lus patient groups. In addition, we aim to assess abnormalities of re-
gional network measures, including nodal degree, local efficiency,
clustering coefficient, and betweenness centrality, in hydrocephalus
patients at both pre-surgery and post-surgery in comparison to nor-
mal controls.

2. Materials and methods

2.1. Patients

This was a retrospective analysis with all the data selected from an
ongoing prospective neuroimaging project of childrenwith hydroceph-
alus before andwithin 1 year after CSF diversionary surgery. At the time
of data analysis, 61normal children and 58 childrenwith hydrocephalus
were recruited into the study. It was decided that we would need to
(1) exclude datasets from children younger than 11 months because
the image normalization did not generate consistent results due to the
poor image contrast in very young children; and (2) exclude datasets
that presented image artifact because of the programmable valves in
the shunts. In addition, five participants (3 controls and two HCP
patients) were initially eligible for the study but were also needed to
be excluded due to excessive head motion (n = 4) or image distortion
(n= 1). Combining these factors, three groups of childrenwere includ-
ed in the study: Group 1 were controls, n = 29, age range: 13.1–
197.8 months, median age 48.7 months; Group 2 were preoperative
(PreOp) HCP patients, n = 9, age range: 11.0–194.5 months, median
age 38.5 months; and Group 3 were postoperative (PostOp) HCP pa-
tients, n= 17, age range: 12.0–207.2 months, median age 41.4 months.
No statistically significant difference was found in age between the con-
trol group and either one of the two patient groups (p N 0.1). The demo-
graphic information for patients is included in Table 1.

All the participants were recruited from two hospitals, Cincinnati
Children3s Hospital (CCHMC) and St. Louis Children3s Hospital (SLCH).
The study was approved by the Institutional Review Board at both
CCHMC and SLCH (Washington University). Families of participants
gave written informed consent when enrolled into the study, and chil-
dren older than 11 years of age provided written assent.

2.2. MRI/DTI data acquisition

DTI datawere acquired on 1.5 Tesla scannerswith a single-shot echo
planner imaging sequence at either CCHMC (GE, Signa, GE Healthcare,
Milwaukee, Wisconsin) or SLCH (Siemens Avanto, Erlangen,
Germany). The sequence specifications were: TR/TE = 9400/93.2 ms;
in-plan resolution = 2.5 × 2.5 mm; slice thickness = 2.5 mm; 15 non-
colinear diffusion-weighted directions (b = 1000 s/mm2); 1 vol of im-
ages with no diffusion sensitization; ASSET or IPAT factor = 2; number
of average = 2. Site compatibility was established before the study
started and the quality assurance procedures involving both MR phan-
tom and traveling human subject “phantom” were followed rigorously
as reported elsewhere (Yuan et al., 2011; Rajagopal et al., 2013; Yuan
et al., 2013).

2.3. DTI data preprocessing and brain parcellation

The DTI data were corrected for head motion and eddy current arti-
fact using Automated Image Registration, an affine transformation
method as described byWoods et al. (1998a,b). The B-matrixwas rotat-
edwhen correcting for subjectmotion (Leeman and Jones, 2009). To ad-
dress the recent concerns in the literature about the potential
confounding effect of head motion on fiber tracking (Yendiki et al.,
2013) and graph theory based connectivity analysis (Power et al.,
2012; Satterthwaite et al., 2012; Van Dijk et al., 2012), any datasets
that had translational motion that exceeded 1.5 mm and/or rotational
motion that exceeded 1 degree were discarded from further analysis.
The translation motion in a scan was defined as the median of the
frame-by-frame translation values determined by the translation mo-
tion in the x, y and z directions. The rotation in a scan was defined as
themedian of the frame-by-frame rotation values determined as the av-
erage of three Euler angles. As described earlier, data of four participants
(3 controls, 1 HCP patient) who were initially eligible were discarded
because the head motion exceeded 1.5 mm of translation and/or 1 de-
gree of rotation (average of the three Euler angles). In the three groups
of participants that were included in the final analysis, no statistically
significant difference was found in head motion between the controls
and either of the two HCP patient groups.

The DTI metrics maps were calculated with standard technique
(Basser and Pierpaoli, 1998). Large deformation diffeomorphic metric
mapping, a non-linear transformation (Miller, 2005), was used to nor-
malize the images to MNI space to register with the JHU-DTI-WMPM
II atlas (Oishi et al., 2008; Oishi et al., 2009; Djamanakova et al., 2013).
DTI maps with multiple contrasts (FA and b0) were used to provide
complementary contrast in the normalization. Mask of ventricles in b0
maps was used for HCP patients to improve registration. All the results
of the normalization were visually reviewed (W.Y) to confirm accuracy
of the procedure (see example in Fig. 1). The parcellation of gray and



Table 1
Study population demographics.

Subject Gender Gestational
age (wks)

Birth
weight (g)

Etiology of HCP Additional MRI findings Additional pathologies;
neurological/psychological disorder

Subj_01 M 36 4040 Congenital HCP; AS Tectal dysplasia;
cerebellar tonsillar herniation;
periventricular leukomalacia;
Chiari malformation

Developmentally delayed

Subj_02 M 34 1400 Congenital HCP None Global developmental delay;
spastic quadriplegic cerebral palsy

Subj_03 M 40 3200 Congenital HCP; AS CC thinning, WM injury Developmentally delayed
Subj_04 M 35 Unknown Communicating HCP None None
Subj_05 F 40 2500 Congenital HCP None Developmentally delayed
Subj_06 F 34 2000 Congenital HCP None None
Subj_07 F 40 2800 Congenital HCP None None
Subj_08 M 41 3300 AS None Developmentally delayed
Subj_09 M 40 Unknown IVH; AS Hemorrhagic venous infarction;

cerebral palsy
Developmentally delayed

Subj_10 M 37 2690 Posterior fossa arachnoid cyst None Gross motor delays
Subj_11 M 40 2890 Communicating HCP Chiari 1 (developed after shunt

surgery; surgically treated
45 mon after initial shunt
surgery)

Transient tic disorder;
expressive language disorder

Subj_12 M 39 4000 Obstructive HCP-third ventricular
arachnoid cyst

Cystic lesion Static motor deficits

Subj_13 M 40 Unknown Communicating HCP None Developmentally delayed;
language/speech delay

Subj_14 F 38 3800 Congenital HCP None None
Subj_15 M 35 2300 Obstructive HCP-tectal lesion Cystic lesion;

cerebral aqueduct lesion
None

Subj_16 F 36 3500 AS None None
Subj_17 M 40 3600 AS None None
Subj_18 F Unknown Unknown Tectal plate glioma None Vitamin D deficiency
Subj_19 M 40 3200 AS None None
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white matter from the atlas was then inversely transformed back to the
subject space and used for parcellating brain into 130 brain regions.
From these regions, the 62 cortical and subcortical regions (31 for
each hemisphere) were retained for the later fiber counting procedure
(Table 2).

In subjects3 native space, whole brain fiber tracking was conducted
using Diffusion Toolkit/TrackVis (Wang et al., 2007; http://trackvis.
org/dtk/) with the entire brain selected as the seed ROI. Tractography
was performed based on a deterministic tracking algorithm (FACT:
fiber assignment by continuous tracking). An angular threshold of 70°
and a FA threshold of 0.15 were applied for the tractography.
Fig. 1. Examples of normalization and parcellation to JH
2.4. Construction of connectivity matrix based on anatomical network

TheUCLAMultimodal Connectivity Package (Basset et al., 2011)was
used to construct connectivity matrices for graph analysis. As described
above, for each subject, brain regions initially parcellated in MNI (Mon-
treal Neurological Institute) space were inversely warped back to
subjects3 native space. The 62 graymatter regionswere included in con-
nectivity analysis and the number of streamlines between each pair of
the regions was counted based on the results generated from the
whole brain WM fiber tracking. A connectivity matrix (the graph G),
was thus constructed, which was a 62 × 62 square matrix with the
U-DTI-WMPM atlas. (A) Control; (B) HCP patient.

http://trackvis.org/dtk/
http://trackvis.org/dtk/


Table 2
Cortical and subcortical brain regions defined in the JHU atlas. 31 regions for each
hemisphere.

Region name Abbreviation Region name Abbreviation

Superior parietal gyrus SPG Entorhinal area ENT
Cingulate gyrus CingG Superior temporal gyrus STG
Superior frontal gyrus SFG Inferior temporal gyrus ITG
Middle frontal gyrus MFG Middle temporal gyrus MTG
Inferior frontal gyrus IFG Lateral frontoorbital gyrus LFOG
Precentral gyrus PrCG Middle frontoorbital gyrus MFOG
Postcentral gyrus PoCG Supramarginal gyrus SMG
Angular gyrus AG Gyrus rectus RG
Precuneus PrCu Insular Ins
Cuneus Cu Amygdala Amyg
Lingual gyrus LG Hippocampus Hippo
Fusiform gyrus Fu Caudate nucleus Caud
Parahippocampal gyrus PHG Putamen Put
Superior occipital gyrus SOG Thalamus Thal
Inferior occipital gyrus IOG Globus pallidus GP
Middle occipital gyrus MOG
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value in each entry equal to the number of streamlines connecting the
corresponding pair of brain regions (Matrix x- and y-indices). The con-
nectivity matrix represents a network that has 62 nodes and undirected
edges between the nodes. Fig. 2 shows the schematic diagram for the
major steps used to generate the connectivity matrix.

The original connectivity matrix was binarized based on whether
brain regions are connected with WM fibers. If the number of WM
streamlineswas equal to or greater than 1, the two regionswere consid-
ered connected and the corresponding entry in thematrix was assigned
a value of 1. If noWMstreamlinewas generated in the fiber tracking be-
tween two regions, these two regionswere considered as not connected
and the corresponding entry was assigned a value of 0. In order to en-
sure that the network topological featuresweremathematically compa-
rable, a commonpractice is to compare network features across subjects
Fig. 2. Flowchart for constructing a structural connectivity matrix. For each subject, DTI data we
were used to construction of tensors. Whole brain tractography was then performed to genera
used for registration to the JHU-DTI-WMPM II atlas with the large deformation diffeomorphicm
brain regions in the subject3s native space. The number ofWM streamlines was calculated for ea
nodes and the number of streamlines as edges. Thefinal stepwas binarizing the initialmatrix int
network wire cost (a.k.a. density) of 0.21.
at afixed network density level. In this study, thefinal binarized connec-
tivity matrix was generated with a network density level of 0.21 for all
the subjects before the matrix was used for graph analysis. This was
the cost level at which all the 62 nodes in the network remained fully
connected for all the subjects. Some networks began to have isolated
nodes when the density level was set to be under 0.21.

2.5. Graph theoretical analysis

Graph theoretical analysis (or Graph Analysis) was performed using
the Brain Connectivity Toolbox (Rubinov and Sporns, 2010). Additional
in-house Matlab scripts were used to calculate different variables for
network connectivity measures. Standard methods were used in the
present study, and all the formulas for calculating the network mea-
sures can be found in the literature (Rubinov and Sporns, 2010). Only
general descriptions are provided here.

We first analyzed small world network properties proposed origi-
nally by Watts and Strogatz (1998) using characteristic path length
(Lp), network clustering coefficient (C), and small-worldness (σ). Two
additional global network properties: global efficiency (Eglob) andmod-
ularity (MOD), were also examined.

A structural network G is defined by a set of nodes N and the connec-
tions (edges) that link these nodes. For each node, the number of con-
nections linking the node with others is defined as the nodal degree.
The distance between two different nodes is defined by the number of
edges along the path, the smallest of which is called the shortest path
length between these two nodes. The average of all the shortest path
length is named the characteristic path length (Lp), a global property
that quantifies the level of integration in the network. The network clus-
tering coefficient (C) is the average of nodal clustering coefficient,
which is calculated as the ratio between the existing number of edges
among the neighbors of a node and the maximum possible number of
connections among these neighbors. Contrary to the characteristic
re first preprocessed to minimize effect of headmotion and eddy current artifact and then
te WM streamlines. The b0 map and FA map (and ventricle masks for HCP patients) were
etricmapping algorithm. The inverse transformationmatrix was used to determine the 62
ch pair of 62 brain regions. The brain networkwas then built using the 62 brain regions as
o thefinal connectivitymatrixwith certain threshold. In the present study, the threshold is



Fig. 3. Comparison of global network topology. (A) Small-worldness; (B) normalized clus-
tering coefficient; (C) modularity.
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path length, network clustering coefficient is considered as ameasure to
quantify the level of segregation in the entire system. Small worldness
(σ) is calculated as the ratio between the normalized clustering coeffi-
cient (γ) and the normalized characteristic path length (λ). In order to
normalize the two variables, a null random network is constructed in
such a way so that both the degree and degree distribution are pre-
served as compared to the real brain network under investigation. In
the present study, the rewiring was repeated 1000 times and the aver-
age value of the null randomnetwork (Crand and Lprand) was used as the
bases to normalize C and Lp (γ = C/Crand; λ = Lp/Lprand). The small-
worldness was therefore calculated as the ratio between these two nor-
malized variable (σ = γ/λ = (C/Crand)/(Lp/Lprand)). In theory, the
small-worldness variable quantifies the balance between the segrega-
tion and integration for the information processing and communication
in the system. Typically a network is considered to have smallworld fea-
ture if it satisfies the following conditions: γ ≫ 1, λ ≈ 1, and σ ≫ 1
(Watts and Strogatz, 1998; Achard et al., 2006; Humphries et al., 2006).

The second part of the analysis was centered on the regional net-
workmeasures in the patient network in comparison to that in the nor-
mal controls. Group difference was tested for each node in the network
in four nodal network properties: degree, local efficiency, betweenness
centrality, and clustering coefficient. The nodal degree is the most basic
and fundamental variable in network study. It is the number of connec-
tions linking the node with others. For a certain node, the fraction of
shortest path between all other pairs of nodes in the network that actu-
ally pass through the node is called nodal betweenness centrality,
which is a variable that reflects the importance of thenode in information
transferwith other nodes. Local efficiency for a certain node is the inverse
of the average of the shortest path length in the subgraph defined as the
set of nodes that are the neighbors of the node of interest. It is often used
to reflect system efficiency, redundancy and tolerance to attack.

2.6. Statistical analysis

Our initial testing showed that some network measures (global and
regional) had age dependence in children in the control group, which
was in line with the developmental changes in children reported in
the literature (Hagmann et al., 2010; Dennis et al., 2013). To account
for the age effect, a linear regression analysis was applied for all global
and regional measures and the residual values (the difference between
the data and the fitted curve) were used for all the comparisons in the
present study. Group differences in all network connectivity variables
were tested with two tailed t-test at significance level of p b 0.05 with
multiple comparison corrected using false discovery rate (FDR)method.
At global level, the FDRmethodwas applied for each patient group sep-
arately to correct for potential false positive findings in the five global
network measures. At regional level, the FDR correction was also ap-
plied for each patient group separately but across all four regional net-
work measures and the 62 network nodes. In addition to the FDR
method, we also performed permutation test (Good, 2005) to compare
the PreOp group to the Control group in order to minimize potential
spurious findings due to the large difference in sample size in these
two groups (n = 9 vs. n = 29). This is a method that gives a simple
way to compute the sampling distribution for any test statistics, under
the null hypothesis that there is no difference between groups in the
measured outcome. To conduct this test, we randomly shuffled the
groups and generated one million permutations (a random sample
from all possible permutation). The ranking of the t statistic from the
original data gives a p-value for the group difference. The findings
based on the permutation approach (see Supplemental Tables S1 and
S2) are consistent with the findings based on the FDR method, mostly
with lower p-value from the permutation method. Therefore, the over-
all results will still be based on the FDR approach to keep the statistical
approach consistent throughout the study and to remain conservative
in reporting our findings considering the small sample size in the pa-
tient group.
Six children with HCP in the PreOp group had both pre- and postop
imaging and thus were also included in the PostOp group. Initial longi-
tudinal analysis using paired t-test did not show any significant pre- vs.
post-op change, and thus the results were not included in the final anal-
ysis. All the group differences presented in the present study were test-
ed cross-sectionally between the control group and the two patient
groups separately. Although some of the data for the two patient groups
were summarized together because the results were largely similar (in
comparison to controls), no intention was made to infer or imply any
longitudinal conclusion based on the data presented in this study.
3. Results

3.1. Abnormal global network measures in children with HCP

As shown in Fig. 3, childrenwith HCP in the PreOp groupwere found
to have significantly lower small-worldness (p = 0.005) and normal-
ized clustering coefficient (p = 0.030) when compared to the controls
(Table 3). No statistically significant differencewas found in normalized
characteristic path length, global efficiency, or modularity in children
with HCP in the PreOp group when compared to the control group. It
was found that all the significant group differences based on the



Table 3
Global network measures (all network values are residuals based on linear regression to account for age factor; all p values are FDR corrected).

Global network measures CTL
n = 29

Preop HCP
n = 9

Postop HCP
n = 17

(Residual value) Mean ± std Mean ± std df t p Mean ± std df t P

γ 0.0008 ± 0.1159 −0.1539 ± 0.1139 36 −3.51 0.030* −0.1975 ± 0.2073 44 −4.17 0.001*

λ 0.0027 ± 0.0230 −0.0107 ± 0.0192 36 −1.58 ns −0.0194 ± 0.0362 44 −2.56 0.018*

σ −0.0021 ± 0.0774 −0.1200 ± 0.1090 36 −3.62 0.005* −0.1498 ± 0.1379 44 −4.67 0.001*

Eglob 0.0000 ± 0.0059 0.0042 ± 0.0059 36 1.90 ns 0.0012 ± 0.0240 44 0.33 ns
MOD 0.0003 ± 0.0208 −0.0107 ± 0.0191 36 −1.41 ns −0.0206 ± 0.0248 44 −3.05 0.006*

Note: γ = normalized clustering coefficient; λ = normalized characteristic path length; σ = small-worldness; Eglob = global efficiency; MOD = modularity. ns = not significant.

488 W. Yuan et al. / NeuroImage: Clinical 8 (2015) 483–492
corrected p-values using FDR approach remained statistically significant
based on the permutation approach, as shown in Table S1.

Children with HCP in the PostOp group were also found to have sig-
nificantly lower small-worldness (p = 0.001) and lower normalized
clustering coefficients (p = 0.001). In addition, children with HCP in
the PostOp group were found to have significantly lower normalized
characteristic path length (p = 0.018) and lower modularity (p =
0.007) when compared to the control group (Fig. 3, Table 3).

3.2. Abnormal regional network measures in children with HCP

Among the 62 nodes included in the network, a series of nodes were
found to have different regional connectivity measures with statistical
significance (p b 0.05), or at least at trend level (0.05 b p b 0.1) between
the controls and childrenwith HCP in PreOp group and/or childrenwith
HCP in the PostOp group (Tables 4 and 5). Similar to the global network
measurement comparisons, all the significant group differences of
regional network measures between the PreOp group and the con-
trols based on the corrected p-values using FDR approach remained
statistically significant using the permutation approach, as shown
in Table S2.

In the PreOp HCP group, when compared to the controls, lower
nodal degree, lower betweenness centrality, higher clustering efficient,
and higher local efficiency were found in the medial occipital gyrus and
medial frontal gyrus bilaterally with statistical significance (p b 0.05) or
at least at trend (0.05 b p b 0.1). The thalamus was also found to have
lower degree and betweenness centrality bilaterally but with lower
local efficiency. Higher degree and/or higher betweenness centrality
were found in the cingulate gyrus, lingual gyrus, superior temporal
gyrus, rectal gyrus, caudate and insular, either bilaterally or unilaterally
in children in the PreOpHCP groupwhen compared to the control group
(Table 4). Among these nodes, lower clustering coefficient and/or lower
local efficiency were found in the cingulate gyrus, superior temporal
gyrus, and caudate in the PreOp HCP group with statistical significance
or at least at trend level.

In the PostOpHCP group, lower degree and lower betweenness cen-
trality were found in the bilateral medial occipital gyrus, bilateral medi-
al frontal gyrus, and left thalamus. Higher local efficiency and higher
clustering coefficient were found in the bilateral medial occipital
gyrus and medial frontal gyrus. In addition, higher degree and higher
between centrality were found in the left cingulate gyrus. Lower local
efficiency and lower clustering coefficient were found in the right
caudate.

4. Discussion

4.1. Summary

In the present study graph theory analysis was applied in the assess-
ment of structural connectivity abnormality derived from DTI network
topological features in children with HCP. As compared to the controls,
both HCP groups under investigation, one pre-operatively and the
second post-operatively, showed significantly decreased small-
worldness driven mainly by the decrease of normalized clustering
coefficients. Further analysis revealed significant changes in a num-
ber of nodes in various regional network features in both groups of
children with HCP.
4.2. Global network analysis

Human brain organization can be considered as a series of anatomi-
cally segregated regions, with all the regions connected by WM fibers
that transfer information among them (Sporn, 2009). As described by
Guye et al. (2010), there are many different types of networks based
on their distinct topological network features. A regular network is a
system that has all nodes connected only to their nearest neighbors
with many short distance connections and without long distance con-
nections. A random network is a system that has all its nodes connected
randomly with the same probability of short and long distance connec-
tions. A “small-world” network is a system at an intermediate state be-
tween the regular network and the random network. It has many short
distance connection and some long distance connections, the balance of
which is quantified by the small-worldness measure. The human brain,
aswell asmany other biological systems, has been found to possess this
small-worldness feature that strikes a compromised balance between
its wiring cost and resilience to pathological disturbance with the sys-
tem demand for speed and synchronization.

Mathematically, the small-worldness (sigma, σ) is a ratio between
two other network parameters, normalized clustering coefficient
(gamma, γ) and normalized characteristic path length (lambda, λ). In
theory, a decrease of small-worldness can be driven by either a decrease
of normalized clustering coefficient or an increase of normalized charac-
teristic path length, or both. Our data showed that, while the brain net-
works in both HCP groups preserved small-world characteristics (γ≫ 1,
λ≈ 1, andσ≫ 1; see γ, λ, andσ values in Table 3), the normalized clus-
tering coefficient was significantly lower in both HCP groups, while the
normalized characteristic path length was normal in the PreOp HCP
group but was significantly lower in the PostOp HCP group. Although
both HCP groups were found to have significantly lower small-
worldness, the observations in the PreOp HCP group may suggest the
beginning of brain WM injury in which the local connections have
been affected as the results of the enlarged ventricles and increased
ICP while the overall network level of integration has not been changed
due to the redundancy at regional level. In comparison, the abnormally
lower level in both normalized clustering coefficient and normalized
characteristic path length in the PostOp HCP group may suggest that
the integration aspect of the network has started to be affected after
the surgery regardless of the diversion of CSF. However, caution should
be taken in the interpretation of the differences seen in the two patient
groups even if they sometimes progress in the direction that is in line
with the expected recovery in response to the treatment. The results
presented in this study are based on two separate cross-sectional com-
parisons. The different patterns in the network abnormality, e.g., the
larger variance seen in the PostOp group (Fig. 3) may suggest the tem-
poral change over time in response to surgery, but it can also be attrib-
uted to inter-subject variance at baseline. Therefore, any conclusions
regarding the longitudinal change of structural connectivity over time



Table 4
Group comparison of regional networkmeasures (nodal degree, betweenness centrality, clustering coefficient, and local efficiency). Between preop HCP patients and controls (all network values are residuals based on linear regression to account for
age factor; all p values are FDR corrected to account for multiple comparisons across the four network measures and 62 nodes in the network; only those nodes that showed significant group difference in one or more measures are included).

Region Degree Betweenness centrality Clustering coefficient Local efficiency

CTL
n = 29

Preop
n = 9

CTL
n = 29

Preop
n = 9

CTL
n = 29

Preop
n = 9

CTL
n = 29

Preop
n = 9

Mean ± std Mean ± std t (corrected p) Mean ± std Mean ± std t (corrected p) Mean ± std Mean ± std t (corrected p) Mean ± std Mean ± std t (corrected p)

MOG_L 0.00 ± 2.73 −5.98 ± 3.59 −5.32 (0.0002) 0.00 ± 0.03 −0.04 ± 0.01 −4.81 (0.0007) 0.00 ± 0.07 0.17 ± 0.08 6.10 (0.0001) 0.00 ± 0.05 0.11 ± 0.04 5.97 (0.0001)
MOG_R 0.00 ± 2.72 −4.32 ± 2.05 −4.38 (0.0016) 0.00 ± 0.02 −0.03 ± 0.01 −4.20 (0.0023) 0.00 ± 0.08 0.16 ± 0.12 4.61 (0.0010) 0.00 ± 0.05 0.09 ± 0.06 4.37 (0.0016)
MFG_L 0.00 ± 2.85 −5.49 ± 3.07 −4.97 (0.0005) 0.00 ± 0.01 −0.01 ± 0.01 −3.04 (0.0280) 0.00 ± 0.12 0.14 ± 0.15 3.08 (0.0273) 0.00 ± 0.06 0.07 ± 0.08 2.99 (0.0302)
MFG_R 0.00 ± 3.65 −4.05 ± 2.42 −3.11 (0.0267) 0.00 ± 0.01 −0.01 ± 0.00 −2.41 (0.0899) 0.00 ± 0.14 0.13 ± 0.17 2.31 (0.1060) 0.00 ± 0.08 0.07 ± 0.09 2.39 (0.0902)
THAL_L 0.00 ± 3.03 −8.76 ± 4.25 −6.86 (0.0001) 0.00 ± 0.02 −0.03 ± 0.02 −3.76 (0.0064) 0.00 ± 0.07 −0.04 ± 0.21 −0.88(ns) 0.00 ± 0.06 −0.16 ± 0.27 −3.09 (0.0273)
THAL_R 0.00 ± 3.60 −6.06 ± 2.65 −4.66 (0.0010) 0.00 ± 0.03 −0.03 ± 0.01 −2.81 (0.0437) 0.00 ± 0.05 0.03 ± 0.12 0.97(ns) 0.00 ± 0.06 −0.10 ± 0.19 −2.48 (0.0801)
CingG_L 0.00 ± 2.42 7.71 ± 6.44 5.44 (0.0002) 0.00 ± 0.02 0.06 ± 0.06 5.30 (0.0002) 0.00 ± 0.04 −0.09 ± 0.05 −5.08 (0.0004) 0.00 ± 0.03 −0.05 ± 0.04 −4.49 (0.0014)
CingG_R 0.00 ± 2.25 7.30 ± 4.57 6.53 (0.0001) 0.00 ± 0.02 0.05 ± 0.04 4.46 (0.0014) 0.00 ± 0.06 −0.09 ± 0.03 −4.10 (0.0028) 0.00 ± 0.04 −0.04 ± 0.02 −3.06 (0.0270)
LG_L 0.00 ± 2.02 3.90 ± 3.70 4.01 (0.0030) 0.00 ± 0.02 0.03 ± 0.03 3.53 (0.0109) 0.00 ± 0.05 −0.02 ± 0.07 −1.00(ns) 0.00 ± 0.04 −0.01 ± 0.04 −0.69(ns)
LG_R 0.00 ± 1.86 2.75 ± 3.09 3.29 (0.0193) 0.00 ± 0.02 0.01 ± 0.02 1.49 (0.3143) 0.00 ± 0.04 −0.00 ± 0.04 −0.19(ns) 0.00 ± 0.03 0.00 ± 0.03 0.33(ns)
STG_L 0.00 ± 2.55 2.50 ± 3.26 2.41 (0.0891) 0.00 ± 0.01 0.02 ± 0.02 3.01 (0.0295) 0.00 ± 0.08 −0.08 ± 0.07 −2.71 (0.0534) 0.00 ± 0.05 −0.04 ± 0.05 −2.49 (0.0810)
STG_R 0.00 ± 2.50 3.29 ± 3.38 3.16 (0.0238) 0.00 ± 0.02 0.02 ± 0.03 1.66 (0.2616) 0.00 ± 0.0 −0.04 ± 0.07 −1.77(ns) 0.00 ± 0.05 −0.02 ± 0.05 −0.88(ns)
Caud_L 0.00 ± 3.00 1.79 ± 4.68 1.36(ns) 0.00 ± 0.00 0.01 ± 0.08 2.88 (0.0380) 0.00 ± 0.19 −0.30 ± 0.21 −4.06 (0.0030) 0.00 ± 0.14 −0.21 ± 0.29 −3.08 (0.0275)
Caud_R 0.00 ± 2.20 3.50 ± 4.49 3.19 (0.0234) 0.00 ± 0.00 0.01 ± 0.01 3.95 (0.0040) 0.00 ± 0.27 −0.28 ± 0.25 −2.75 (0.0494) 0.00 ± 0.25 −0.22 ± 0.30 −2.16(ns)
Cu_L 0.00 ± 1.95 3.89 ± 3.51 4.27 (0.0020) 0.00 ± 0.01 0.02 ± 0.02 3.62 (0.0088) 0.00 ± 0.09 −0.11 ± 0.08 −3.33 (0.0177) 0.00 ± 0.05 −0.06 ± 0.04 −3.22 (0.0222)
Ins_R 0.00 ± 2.43 2.63 ± 2.13 2.90 (0.0371) 0.00 ± 0.01 0.01 ± 0.01 1.19(ns) 0.00 ± 0.11 −0.08 ± 0.10 −1.91(ns) 0.00 ± 0.07 −0.03 ± 0.06 −1.12(ns)
RG_L 0.00 ± 1.23 1.77 ± 3.28 2.43 (0.0879) 0.00 ± 0.00 0.01 ± 0.01 3.17 (0.0240) 0.00 ± 0.10 0.09 ± 0.16 1.94(ns) 0.00 ± 0.07 −0.05 ± 0.11 −1.65(ns)

Table 5
Group comparison of regional networkmeasures (nodal degree, betweenness centrality, clustering coefficient, and local efficiency) between postop HCP patients and controls. All network values are residuals based on linear regression to account for
age factor; all p values are FDR corrected to account for multiple comparisons across the four networkmeasures and 62 nodes in the network; some nodes did not show any significant group difference but are included to be consistent with Table 4.

Region Degree Betweenness centrality Clustering coefficient Local efficiency

CTL
n = 29

Postop
n = 17

CTL
n = 29

Postop
n = 17

CTL
n = 29

Postop
n = 17

CTL
n = 29

Postop
n = 17

Mean ± std Mean ± std t (corrected p) Mean ± std Mean ± std t (corrected p) Mean ± std Mean ± std t (corrected p) Mean ± std Mean ± std t (corrected p)

MOG_L 0.00 ± 2.73 −4.06 ± 4.71 −3.71 (0.0158) 0.00 ± 0.03 −0.03 ± 0.02 −4.01 (0.0114) 0.00 ± 0.07 0.13 ± 0.13 4.42 (0.0040) 0.00 ± 0.05 0.08 ± 0.07 4.61 (0.0029)
MOG_R 0.00 ± 2.72 −2.98 ± 4.42 −2.84 (0.0543) 0.00 ± 0.02 −0.02 ± 0.02 −3.06 (0.0421) 0.00 ± 0.08 0.07 ± 0.08 2.95 (0.0482) 0.00 ± 0.05 0.04 ± 0.04 2.89 (0.0514)
MFG_L 0.00 ± 2.85 −3.76 ± 4.03 −3.71 (0.0144) 0.00 ± 0.01 −0.01 ± 0.01 −3.35 (0.0292) 0.00 ± 0.12 0.10 ± 0.13 2.60 (0.0785) 0.00 ± 0.06 0.05 ± 0.07 2.41 (0.1048)
MFG_R 0.00 ± 3.65 −2.98 ± 4.33 −2.49 (0.0906) 0.00 ± 0.01 −0.02 ± 0.02 −2.95 (0.0468) 0.00 ± 0.14 0.16 ± 0.17 3.44 (0.0247) 0.00 ± 0.08 0.08 ± 0.09 3.31 (0.0306)
THAL_L 0.00 ± 3.03 −6.74 ± 5.58 −5.32 (0.0008) 0.00 ± 0.02 −0.03 ± 0.01 −5.10 (0.0009) 0.00 ± 0.07 −0.00 ± 0.20 −0.06(ns) 0.00 ± 0.06 −0.06 ± 0.26 −1.21(ns)
THAL_R 0.00 ± 3.60 −3.16 ± 7.29 −1.97 (ns) 0.00 ± 0.03 −0.02 ± 0.02 −2.91 (0.0461) 0.00 ± 0.05 0.03 ± 0.20 0.74(ns) 0.00 ± 0.06 −0.05 ± 0.24 −0.98(ns)
CingG_L 0.00 ± 2.42 4.72 ± 7.99 2.99 (0.0475) 0.00 ± 0.02 0.03 ± 0.05 2.72 (0.0672) 0.00 ± 0.04 −0.04 ± 0.07 −2.23(ns) 0.00 ± 0.03 −0.02 ± 0.04 −1.75(ns)
CingG_R 0.00 ± 2.25 1.46 ± 6.19 1.16(ns) 0.00 ± 0.02 0.00 ± 0.04 0.44(ns) 0.00 ± 0.06 −0.01 ± 0.10 −0.23(ns) 0.00 ± 0.04 0.00 ± 0.06 0.30(ns)
LG_L 0.00 ± 2.02 −0.24 ± 4.53 −0.25(ns) 0.00 ± 0.02 −0.01 ± 0.02 −1.23(ns) 0.00 ± 0.05 0.07 ± 0.15 2.30(ns) 0.00 ± 0.04 0.04 ± 0.08 2.49 (0.09)
LG_R 0.00 ± 1.86 0.92 ± 4.22 1.02(ns) 0.00 ± 0.02 0.00 ± 0.03 0.07(ns) 0.00 ± 0.04 0.01 ± 0.11 0.45( ns) 0.00 ± 0.03 0.01 ± 0.07 0.71(ns)
STG_L 0.00 ± 2.55 −0.33 ± 2.47 −0.43(ns) 0.00 ± 0.01 0.00 ± 0.02 0.06(ns) 0.00 ± 0.08 −0.01 ± 0.08 −0.45(ns) 0.00 ± 0.05 0.00 ± 0.05 0.28(ns)
STG_R 0.00 ± 2.50 0.57 ± 3.13 0.68(ns) 0.00 ± 0.02 −0.01 ± 0.02 −1.15(ns) 0.00 ± 0.0 0.02 ± 0.06 1.28(ns) 0.00 ± 0.05 0.02 ± 0.04 1.71(ns)
Caud_L 0.00 ± 3.00 1.34 ± 5.25 1.10(ns) 0.00 ± 0.00 0.00 ± 0.01 1.54(ns) 0.00 ± 0.19 −0.14 ± 0.25 −2.22(ns) 0.00 ± 0.14 −0.11 ± 0.25 −1.84(ns)
Caud_R 0.00 ± 2.20 2.25 ± 4.76 2.19(ns) 0.00 ± 0.00 0.00 ± 0.00 2.30(ns) 0.00 ± 0.27 −0.28 ± 0.30 −3.22 (0.0348) 0.00 ± 0.25 −0.24 ± 0.37 −2.61 (0.0782)
Cu_L 0.00 ± 1.95 2.25 ± 4.84 2.23(ns) 0.00 ± 0.01 0.01 ± 0.02 2.32(ns) 0.00 ± 0.09 −0.06 ± 0.13 −1.77(ns) 0.00 ± 0.05 −0.03 ± 0.06 −2.08(ns)
Ins_R 0.00 ± 2.43 1.90 ± 3.04 2.32(ns) 0.00 ± 0.01 −0.00 ± 0.01 −0.77(ns) 0.00 ± 0.11 −0.00 ± 0.09 −0.06(ns) 0.00 ± 0.07 0.01 ± 0.04 0.67(ns)
RG_L 0.00 ± 1.23 0.49 ± 1.63 1.15(ns) 0.00 ± 0.00 0.00 ± 0.00 0.46(ns) 0.00 ± 0.10 −0.03 ± 0.16 −0.68(ns) 0.00 ± 0.07 −0.01 ± 0.07 −0.66(ns)
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can only be testedwith a pre- and post-studydesign usingdata acquired
from the same patient group.

4.3. Regional network analysis

Based on the regional network analysis in the present study, 10 brain
regions (bilaterally or unilaterally) in children with HCP were found to
have significant difference, or at least at trend level, in one or more of
the four regional network measures, when compared to the controls.
These brain regions included the media occipital gyrus, medial frontal
gyrus, thalamus, cingulate gurus, superior temporal gyrus, lingual
gyrus, rectal gyrus, cuneus, caudate, and insular (Tables 4 and 5).
These areas are involved in many essential functions including visual
and non-visual spatial processing, language, attention, working memo-
ry, learning, executive functions, motor, as well as centers for relaying
various sensorimotor information for associated cortical regions
(Dupont et al., 1994; Shulman et al., 1998; Renier et al., 2010). Conceiv-
ably, the abnormal level in the local connectivity measures for these
brain regions may contribute to the change in normal functioning of
the entire network, and thus to the change in eventual long-term out-
comes. Based on the literature, the primary functional deficits in hydro-
cephalus patients are in the visual spatial and perceptual, visual
attention, and visual motor coordination domains (Lumenta et al.,
1995; Hoppe-Hirsch et al., 1998; Mataro et al., 2001; Heinsbergen
et al., 2002; Persson et al., 2006, 2007). Our analysis showed that the
medial occipital gyrus and thalamus (bilaterally or unilaterally) exhibit-
ed lower betweenness centrality and degree of connection in the pa-
tients. The medial occipital gyrus showed higher local efficiency and
clustering coefficient in both HCP patient groups, while the thalamus
showed decreased local efficiency in PreOp HCP group. The left cuneus
was found to have significantly higher degree, higher betweenness cen-
trality, lower local efficiency, and lower clustering coefficient in the
PreOp group but none of these differences was significant between
the PostOp HCP group and the control group. In addition, the lingual
gyrus was also found to have significantly higher degree (bilateral)
and higher betweenness centrality (left). It is worth noting that these
regions have high potential to account for functional deficits observed
frequently in hydrocephalus patients. The medial occipital gyrus is the
secondary visual cortex that is involved in the visual spatial and visual
perspective functioning as well as in attention and learning (Waberski
et al., 2008; Tanaka et al., 2009; Schurz et al., 2013; Tu et al., 2013).
The thalamus plays a key role in brain network as the gateway for relay-
ing sensory information, including visual processing, to a wide range of
cortical areas via thalamic radiation. Recent studies also demonstrate
that the thalamus is an integral part of the feedback circuitry in sensory
processing (see Briggs and Usery, 2008 for review). The cuneus and lin-
gual gyrus are also known to be involved in basic visual information
processing and visual memory functions (Beason-Held et al., 1998;
Slotnick and Schacter, 2006; Chechlacz et al., 2012; Tamura et al.,
2012; Kraft et al., 2014). It is conceivable that any disturbance to these
brain regions, such as the abnormal structural connectivity measures
as seen in our study, may have a ripple effect leading to disruption of
normal functions in extended brain areas. Althoughwe do not have suf-
ficient data to establish the association between the changes in neuro-
anatomical substrate and the neuropsychological and behavioral
outcomes in the above-mentioned domains, the data from our study
based on the regional network topological features certainly point to a
direction that warrant further investigation.

4.4. Compatibility and consistency of network features

It should be noted that all the network properties based on graph
theoretical analysis, including global and regional measures, depend
strongly on a series of factors such as parcellation scheme, imaging
data acquisition protocol, and fiber tracking algorithm. As shown in a
systemic review article by Zaleski et al. (2010), a network analyzed
with a finer parcellation scheme (larger number of nodes) has smaller
global efficiency, larger normalized clustering coefficient, slightly larger
normalized path length, and larger small-worldness. Compared to con-
ventional DTI acquisition protocol, HARDI (High Angular Resolution Dif-
fusion Imaging), a diffusion MR imaging acquisition approach that is
more sensitive to detect crossing fibers, usually generates more white
matter streamlines from fiber tracking in comparison to DTI, and leads
to higher global efficiency, smaller normalized clustering coefficient,
smaller normalized characteristic path length, and weaker small-
worldness attribute. In the present study, the brain networks from
both controls and HCP patients all presented typical features of small-
worldness (Watts and Strogatz, 1998; Achard et al., 2006; Humphries
et al., 2006) based on the global network measures (original γ =
1.55–2.27; λ = 1.00–1.16; and σ = 1.55–2.01). After accounting for
the age factor, we identified significant structural connectivity differ-
ences for the entire brain network and also in many specific brain re-
gions. These new findings were based on the diffusion MR imaging
data acquired using a 15-direction DTI protocol and the brain network
with 62 cortical and subcortical regions derived from the JHU-DTI-
WMPM II atlas (Oishi et al., 2008; Oishi et al., 2009; Djamanakova
et al., 2013). The combination of these settings will inevitably influence
the compatibilities and consistency when these results are compared
with other studies.
4.5. Limitations

There are several limitations to the present study. First, the sample
size for both pre- and post-op patient groups was small. Due to the typ-
ical age when CSF diversion surgeries were performed, most surgical
candidates were infants. The contrast and deformation in these infants3
brain images pose significant challenges for registration to a common
normalized brain image template. Therefore only the older surgical can-
didates (N11 months) were included in the pre-operative HCP patient
group. Patients at post-operative stage were older; however, many of
these patients had to be excluded due to the MR image artifact caused
by programmable shunt valves. Although the large deformation
diffeomorphic metric mapping method used in the normalization is a
highly elastic algorithm and showed good results in the present study,
this step remains a challenging task in our patient population, especially
when there is severe ventricle enlargement and poor image contrast. In
some cases the normalization step needed to be repeated several times
with manual adjustment of parameter settings. Among all the brain re-
gions, the subcortical structures are more likely to be affected in this
step due to their proximity to the enlarged ventricles in the patients.
The fiber tracking and regional network measures related to these sub-
cortical brain areas are also likely affected by the distortion. Therefore,
although the present study demonstrated some interesting and promis-
ing results that were statistically significant, they all need to be replicat-
ed in a larger study population for validation. The second issue is also
related to sample size, i.e., the patients in the post-operative group
were scanned at either 3 or 12 month post-operative follow-up. Com-
bining the datasets (all from different subjects) prevented us from see-
ing any differences between the two time points. Third, the MR
sequence used in DTI data acquisition was a 15 direction sequence,
which lacked the angular resolution needed for optimal white matter
fiber tracking. The impact of this factor on the sensitivity and specificity
of the graph analysis is unknown. However, in future study design a DTI
sequence with more directions, or even a HARDI sequence should be
considered. Lastly, we did not have behavioral outcome or neuropsy-
chological evaluation data to correlate with the neuroimaging results.
It should be noted that the present study is a retrospective analysis
that focused on testing a new imaging analysis approach in children
with hydrocephalus. The data generated from the present study should
be regarded as preliminary in nature to help formulate hypotheses in fu-
ture new studies.
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4.6. Conclusion

The current study demonstrated that the structural connectivity
analysis based on graph theory and DTI tractography is sensitive to
the detection of abnormalities of brain network connectivity in children
with hydrocephalus at both pre- and post-operative stages.
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