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Abstract

Background: Validated algorithms to classify type 1 and 2 diabetes (T1D, T2D) are mostly limited to white pediatric
populations. We conducted a large study in Hong Kong among children and adults with diabetes to develop and
validate algorithms using electronic health records (EHRs) to classify diabetes type against clinical assessment as the
reference standard, and to evaluate performance by age at diagnosis.

Methods: We included all people with diabetes (age at diagnosis 1.5–100 years during 2002–15) in the Hong Kong
Diabetes Register and randomized them to derivation and validation cohorts. We developed candidate algorithms
to identify diabetes types using encounter codes, prescriptions, and combinations of these criteria (“combination
algorithms”). We identified 3 algorithms with the highest sensitivity, positive predictive value (PPV), and kappa
coefficient, and evaluated performance by age at diagnosis in the validation cohort.

Results: There were 10,196 (T1D n = 60, T2D n = 10,136) and 5101 (T1D n = 43, T2D n = 5058) people in the
derivation and validation cohorts (mean age at diagnosis 22.7, 55.9 years; 53.3, 43.9% female; for T1D and T2D
respectively). Algorithms using codes or prescriptions classified T1D well for age at diagnosis < 20 years, but
sensitivity and PPV dropped for older ages at diagnosis. Combination algorithms maximized sensitivity or PPV, but
not both. The “high sensitivity for type 1” algorithm (ratio of type 1 to type 2 codes ≥ 4, or at least 1 insulin
prescription within 90 days) had a sensitivity of 95.3% (95% confidence interval 84.2–99.4%; PPV 12.8%, 9.3–16.9%),
while the “high PPV for type 1” algorithm (ratio of type 1 to type 2 codes ≥ 4, and multiple daily injections with no
other glucose-lowering medication prescription) had a PPV of 100.0% (79.4–100.0%; sensitivity 37.2%, 23.0–53.3%),
and the “optimized” algorithm (ratio of type 1 to type 2 codes ≥ 4, and at least 1 insulin prescription within 90
days) had a sensitivity of 65.1% (49.1–79.0%) and PPV of 75.7% (58.8–88.2%) across all ages. Accuracy of T2D
classification was high for all algorithms.

Conclusions: Our validated set of algorithms accurately classifies T1D and T2D using EHRs for Hong Kong residents
enrolled in a diabetes register. The choice of algorithm should be tailored to the unique requirements of each
study question.
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Background
Administrative health databases are an important resource
for population-based diabetes research [1]. Using routinely-
collected data such as billing codes and hospitalization re-
cords, various algorithms have been developed to identify
diabetes [2, 3]. While these algorithms capture diabetes
diagnoses, they cannot accurately identify diabetes type
[2–5]. Type 1 diabetes (T1D) is an autoimmune disease
that classically occurs in children, but may rarely occur
in older adults [6]. In T1D, autoantibodies destroy the
insulin-producing pancreatic beta cells, causing insulin
deficiency and hyperglycemia. Type 2 diabetes (T2D),
which typically occurs in adulthood, is caused by gen-
etic and other risk factors such as obesity that lead to
insulin resistance and hyperglycemia, although lean
individuals may also develop T2D due to insulin defi-
ciency [6]. While T1D must be treated with insulin,
T2D may be treated with lifestyle modification, insulin,
or other glucose-lowering medications [6].
Many epidemiological studies apply the untested as-

sumption that findings in adults with diabetes are repre-
sentative of T2D [7, 8]. However, the prognoses of T1D
and T2D are markedly different [9]—especially among
adults aged < 40 years, where both types commonly
occur and may be difficult to distinguish clinically [1, 9].
In this age group, it has been shown that T2D is associ-
ated with a 15-fold elevation in the risk of cardiovascular
complications versus T1D [9]. Yet, diabetes types are
poorly documented in administrative databases, which
were not originally designed for research purposes.
Specific diagnostic codes for T1D and T2D may be erro-
neously entered [10] or unavailable in some billing sys-
tems [2]. Furthermore, classification of diabetes type is
particularly important in Asia because disaggregated
population-level T1D and T2D incidence and prevalence
have never been measured [11].
Considering the lifelong and immediate need for insu-

lin treatment in T1D, novel algorithms have been devel-
oped to identify T1D using prescriptions and laboratory
data from electronic health records (EHRs) [12]. How-
ever, previous validation studies had small sample sizes
and were mostly limited to children in white populations
[13–16]. One study developed and validated a complex
algorithm to detect T1D in a US population with 65%
(36–100%) sensitivity and 88% (78–98%) positive pre-
dictive value (PPV) using EHRs [12]. However, algo-
rithms developed for white populations may have a
poorer PPV when applied to Asian populations, as the
prevalence of T1D in Asians appears to be much lower
than white people [17]. The proportion of diabetes cases
classified as T1D and T2D also varies enormously by age
at diagnosis; yet, the effect of age at diagnosis on the
performance of classification algorithms has never been
specifically studied. To address these gaps, we conducted

a large study among Hong Kong residents with diabetes
to develop and validate algorithms using EHRs to classify
T1D and T2D against clinical assessment as the refer-
ence standard, and to evaluate performance by age at
diagnosis.

Methods
Setting and data sources
Hong Kong is a special administrative region of China
with a population of 7.3 million and an estimated dia-
betes prevalence of 10.3% (2014) [18]. All residents are
entitled to universal inpatient and outpatient health ser-
vices operated by the governmental Hong Kong Hospital
Authority (HA), which is modeled after the National
Health Service of Britain. Given the wide public-private
healthcare cost differential, HA hospitals account for
about 95% of all bed-days [19].
The Hong Kong Diabetes Surveillance Database (HKDSD)

includes all Hong Kong residents with diabetes as
identified using the HA’s territory-wide EHR, which in-
cludes routinely-collected data on laboratory tests, pre-
scriptions, and hospital visits for the entire population.
We defined diabetes onset as the first occurrence of gly-
cated haemoglobin A1c ≥ 6.5% [20], fasting plasma glucose
≥ 7mmol/L [21], glucose-lowering medication prescription
[3, 4] excluding insulin, or long-term insulin prescription
(≥ 28 days). To avoid detecting gestational diabetes [22], we
excluded events occurring within 9months prior to or 6
months after delivery (International Statistical Classi-
fication of Diseases and Related Health Problems ver-
sion 9 (ICD-9) codes 72–75), or within 9 months of
any pregnancy-related encounter (ICD-9 codes 630–
676) outside these periods (in case of aborted preg-
nancies or delivery in a non-HA hospital). We also
excluded in-patient glucose measurements to avoid
misidentifying acute stress hyperglycemia as diabetes.
A subset of those in the HKDSD is additionally enrolled

in the multicentre Hong Kong Diabetes Register (HKDR,
Supplementary Table 1, Additional File). This register was
established in 1995 at the Diabetes and Endocrine Centre
at the Prince of Wales Hospital, a tertiary care public
hospital in the New Territories East region with a catch-
ment of 1.3 million residents, and was later expanded to 2
additional hospitals [23, 24]. Anyone with diabetes is
eligible for enrolment in the HKDR. Referrals are self-
initiated or from physicians located typically in commu-
nity- or hospital-based clinics. All enrolled individuals
undergo a comprehensive assessment including a detailed
clinical history, fundoscopy and foot exams, and serum
and urinary laboratory testing. This assessment yields
detailed data including diabetes type, which is otherwise
unavailable in the HKDSD. The research was approved by
the Chinese University of Hong Kong–New Territories
East Cluster Clinical Research Ethics Committee.
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Study population
Because the reference standard (clinical assessment)
was only established for the subset of those enrolled in
the HKDR, we restricted the study to this sub-
population. To ensure at least 1 year of follow-up data,
we included all people with diabetes diagnosed at ages
1.5 (to exclude neonatal diabetes) to 100 years from 1
January 2002 through 31 December 2015, defined
using the HKDSD criteria. The maximum follow-up
date was 31 December 2016. We excluded individuals
with monogenic or secondary diabetes and those with
missing diabetes type in the HKDR (Fig. 1). We

randomized the remaining individuals into the deriv-
ation (two thirds) and validation (one third) cohorts.

Reference standard
C-peptide and autoantibody testing are not routinely
available to confirm T1D diagnosis in the public setting,
and self-funded tests are rarely performed. Therefore, we
applied the standard clinical definition of T1D adopted by
the HKDR [25], which strictly defines T1D as diabetic
ketoacidosis, unprovoked heavy ketones in urine or re-
quirement of insulin within the first year of diagnosis. An

Fig. 1 Flow diagram depicting creation of the study cohorts using the sub-population of people in the Hong Kong Diabetes Surveillance
Database who were also enrolled in the Hong Kong Diabetes Register (HKDR). Diabetes type classification consisted of 2 steps: (1) comprehensive
assessment, and (2) chart review of cases initially flagged as type 1 diabetes
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endocrinologist reviewed all charts initially marked as
T1D in the HKDR to ensure accuracy.

Algorithm development and validation
We applied clinical knowledge (based on the experience
of endocrinologists with expertise in diabetes manage-
ment: CK, BRS, AL, JCNC) and reviewed previous valid-
ation studies [12–16, 26, 27] to develop candidate
algorithms to identify T1D using either ICD-9 encounter
codes (“code algorithms”; type 1 codes: 250.x1, 250.x3;
type 2 codes: 250.x0, 250.x2) or prescriptions (“prescrip-
tion algorithms”; Supplementary Tables 2–3, Additional
File). We varied the number, ratio, and types of codes re-
quired, as well as the duration of time allowed between
the diagnosis date and the initial insulin prescription. Posi-
tive cases were automatically classified as T1D and nega-
tive as T2D. Using the derivation cohort, we selected
algorithms based on the sensitivity and PPV of identifying
T1D, as these are the most important characteristics for
public health [28]. Since the most sensitive algorithms had
poor PPV and vice versa, we chose the best algorithms
with the highest sensitivity and PPV separately, among
both code and prescription algorithms (total: 4 algorithms,
labelled A–D). We resolved ties by selecting the algorithm
with the greatest sum of sensitivity and PPV. Then, we
paired the 2 best code algorithms with the 2 best prescrip-
tion algorithms using 2 methods in an effort to further im-
prove accuracy [29, 30]. These methods were: combining
using “or” (for example, “A or B”) to improve sensitivity,
and combining using “and” (for example, “A and B”) to
improve PPV. We then tested all 8 “combination algo-
rithms” in the derivation cohort. Of the 12 code, pre-
scription, and combination algorithms, we identified
the 3 algorithms with the highest sensitivity, highest
PPV, and highest kappa coefficient (“optimized” algo-
rithm) across all ages. Using the validation cohort, we
evaluated the performance of these 3 algorithms in
classifying T1D and T2D by age at diagnosis.
We repeated the entire procedure using additional

laboratory data (estimated glomerular filtration rate) to
determine whether requiring normal renal function with
insulin prescriptions would improve the performance of
prescription algorithms.

Statistical analysis
We calculated the sensitivity, specificity, PPV, and nega-
tive predictive value (NPV) with 95% exact confidence
intervals of each selected algorithm for classifying T1D
and T2D in the derivation and validation cohorts. We
also calculated Cohen’s kappa coefficient, which repre-
sents agreement after agreement due to chance is re-
moved [31]. A perfect algorithm would have sensitivity,
specificity, PPV, and NPV values of 100%, and a kappa
value of 1.0. Missing data were minimal (missing

diabetes type: n = 357, 2.3%) and handled by complete
case analysis. All analyses were performed using the
“FREQ” procedure in SAS version 9.4 (Cary, NC).

Results
There were 15,300 individuals with complete data and
diabetes diagnosed during 2002–15 (Fig. 1). Of these
cases, 121 were initially classified as T1D. After chart
review, 3 were excluded as monogenic or secondary dia-
betes and 15 were re-classified as T2D, leaving 103 T1D
cases remaining. The final cohorts consisted of 10,196
(derivation) and 5101 (validation) individuals. Tables 1
and 2 show the baseline demographic characteristics of
the study cohorts. The distribution of baseline character-
istics was highly similar across the derivation and valid-
ation cohorts and across the HKDR and HKDSD,
although the HKDR population had more prescriptions
for insulin and other glucose-lowering medications. The
average age at diagnosis was 22.7 years for T1D and
55.9 years for T2D (Table 2; see Supplementary Figure 1,
Additional File). More men (56.1%) had T2D, but for
T1D the sex ratio was more balanced. People with T1D
had a median of 3.0 type 1 codes, including 2.0 from the
primary diagnosis on the hospital discharge abstract.
People with T2D had a median of 1 type 2 code. Al-
though most people with T1D had at least 1 type 1 code
(83.3% sensitivity), the PPV for this algorithm was only
26.0%. Most people with T1D also had at least 1 type 2
code (70.0%). Code algorithms using a ratio of type 1 to
type 2 codes had a higher PPV and similar sensitivity
compared to those using the number of type 1 or type 2
codes. Two algorithms had the highest sensitivity
(83.3%), but “ratio of type 1 to type 2 codes ≥ 0.5” (algo-
rithm A) was chosen because it had a higher PPV
(34.0%) than “at least 1 type 1 code.” “Ratio of type 1 to
type 2 codes ≥ 4” (algorithm B) was chosen for having
the highest PPV (57.3%, sensitivity 71.7%).
Among the prescription algorithms, those specifying

“at least 1 insulin prescription” were the most sensitive
but lacked PPV for classifying T1D. Nearly everyone
with T1D received an insulin prescription at any time
(59 of 60 people, 98.3% sensitivity), and almost all re-
ceived it within 90 days of diabetes diagnosis (58 of 59
people, 96.7% sensitivity). As these 2 prescription algo-
rithms had the highest sensitivity values and classified
everyone identically except for 1 case, we applied the tie-
breaker criteria to choose “insulin prescription within 90
days” (algorithm C) based on its greater PPV (8.6%, ver-
sus 1.7% for “insulin prescription at any time”). Adding
criteria for other types of medications improved the PPV
of insulin-based prescription algorithms at the expense
of sensitivity. In the T1D cohort, 36.7% received at least
1 metformin prescription (versus 88.6% in the T2D co-
hort), and 16.7% received a glucose-lowering medication
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Table 1 Baseline characteristics of people in the Hong Kong Diabetes Register (HKDR, randomized 2:1 into derivation and validation
cohorts) and the Hong Kong Diabetes Surveillance Database (HKDSD). Laboratory and prescription data are from the first year after
diagnosis. Values are counts (n) and percentages unless otherwise indicated

HKDR HKDSD

Cohort Total
n = 15,297

Missing
(n, %)

n = 561,924 Missing
(n, %)

Derivation
n = 10,196

Validation
n = 5101

Age (years; mean, standard deviation) 55.7 (11.7) 55.6 (11.8) 55.7 (11.7) 0 (0.0) 61.8 (13.2) 0 (0.0)

Age < 18 years 36 (0.4) 28 (0.6) 64 (0.4) 1577 (0.3)

Age 18–39 years 801 (7.9) 375 (7.4) 1176 (7.7) 24,148 (4.3)

Age ≥ 40 years 9359 (91.8) 4698 (92.1) 14,057 (91.9) 536,199 (95.4)

Female 4488 (44.0) 2341 (45.9) 6829 (44.6) 270,282 (48.1)

Baseline Comorbidities*

Ischemic heart disease 972 (9.5) 456 (8.9) 1428 (9.3) 49,931 (8.9)

Congestive heart failure 411 (4.0) 196 (3.8) 607 (4.0) 28,745 (5.1)

Stroke 855 (8.4) 426 (8.4) 1281 (8.4) 54,762 (9.8)

Peripheral arterial disease 125 (1.2) 52 (1.0) 177 (1.2) 5241 (0.9)

Cancer 1071 (10.5) 537 (10.5) 1608 (10.5) 63,510 (11.3)

Chronic kidney disease† 1885 (18.5) 948 (18.6) 2833 (18.5) 1 (0.0) 125,274 (22.5) 6101 (0.0)

End-stage renal disease† 133 (1.3) 78 (1.5) 211 (1.4) 8274 (1.5)

Risk Factors (mean, standard deviation unless otherwise indicated)

A1C (%) 7.4 (1.0) 7.4 (1.0) 7.4 (1.0) 17 (0.1) 7.2 (1.1) 24,485 (4.4)

Fasting plasma glucose (mmol/L) 7.7 (1.7) 7.7 (1.7) 7.7 (1.7) 90 (0.6) 7.4 (1.8) 32,708 (5.8)

LDL-C (mmol/L) 2.5 (0.6) 2.5 (0.6) 2.5 (0.6) 48 (0.3) 2.7 (0.7) 38,691 (6.9)

HDL-C (mmol/L) 1.3 (0.3) 1.3 (0.3) 1.3 (0.3) 45 (0.3) 1.3 (0.3) 37,813 (6.7)

Triglycerides (median, IQR; mmol/L) 1.4 (0.9) 1.4 (0.9) 1.4 (0.9) 41 (0.3) 1.4 (0.9) 34,211 (6.1)

eGFR (mL/min/1.73 m2) 79.4 (23.3) 79.9 (23.5) 79.5 (23.4) 1 (0.0) 76.3 (23.4) 6101 (0.0)

Glucose-Lowering Medications (excluding insulin)

Metformin 9044 (88.7) 4540 (89.0) 13,584 (88.8) 399,235 (71.0)

Sulfonylureas 7492 (73.5) 3752 (73.6) 11,244 (73.5) 301,158 (53.6)

Thiazolidinediones 674 (6.6) 306 (6.0) 980 (6.4) 11,414 (2.0)

DPP-4 inhibitors 1945 (19.1) 932 (18.3) 2877 (18.8) 24,529 (4.4)

GLP-1 agonists 32 (0.3) 21 (0.4) 53 (0.4) 319 (0.1)

SGLT2 inhibitors 171 (1.7) 79 (1.6) 250 (1.6) 1381 (0.2)

Alpha-glucosidase inhibitor 347 (3.4) 159 (3.1) 506 (3.3) 7885 (1.4)

Insulin‡ (n, %)

Long-acting 505 (5.0) 232 (4.6) 737 (4.8) 7260 (1.3)

Intermediate-acting 2903 (28.5) 1397 (27.4) 4303 (28.1) 54,859 (9.8)

Short-acting 1337 (13.1) 630 (12.4) 1967 (12.9) 58,096 (10.3)

Premixed 907 (8.9) 430 (8.4) 1337 (8.7) 18,040 (3.2)

Multiple daily injections** 1001 (9.8) 480 (9.4) 1481 (9.7) 23,445 (4.2)

Any insulin 3454 (33.9) 1648 (32.3) 5102 (33.4) 94,974 (16.9)

Other Medications

Statin 7098 (69.6) 3546 (69.5) 10,644 (69.6) 349,324 (62.2)

RAS inhibitor 7054 (69.2) 3530 (69.2) 10,584 (69.2) 344,949 (61.4)

Antiplatelet agent 3651 (35.8) 1836 (36.0) 5487 (35.9) 197,612 (35.2)
*based on principal diagnoses on hospitalization discharge abstracts within 2 years prior to diagnosis (except for renal conditions)
†chronic kidney disease eGFR< 60mL/min/1.73 m2, end-stage renal disease eGFR< 15mL/min/1.73 m2

‡prescriptions ≥ 28 days in duration
**any combination of long-acting and short-acting insulin
Abbreviations: A1C glycated haemoglobin A1c, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, IQR interquartile range, eGFR
estimated glomerular filtration rate, DPP-4 dipeptidyl peptidase-4, GLP-1 glucagon-like peptide-1, SGLT2 sodium-glucose transport protein 2, RAS
renin-angiotensin system

Ke et al. BMC Medical Research Methodology           (2020) 20:35 Page 5 of 15



Table 2 Baseline characteristics and performance of candidate algorithms among people in the derivation cohort, stratified by
diabetes type. Candidate algorithms developed using encounter codes (“code algorithms”) or prescriptions (“prescription
algorithms”) are also shown. For each algorithm, values in the Type 1 and 2 columns indicate the number and percentage of
individuals satisfying the algorithm (sensitivity). Positive predictive values for classifying type 1 diabetes are shown in the right
column. The best 4 algorithms are indicated by the letters in parentheses (A–D; see text for selection criteria)

Type 1 (n = 60) Type 2 (n = 10,136) Positive Predictive
Value (%)

Demographic Characteristics

Age at diagnosis (years; mean, standard deviation) 22.7 (12.6) 55.9 (11.4)

< 18 16 (26.7) 20 (0.2)

18–39 33 (55.0) 768 (7.6)

≥ 40 years 11 (18.3) 9348 (92.3)

Female 32 (53.3) 4456 (43.9)

Coding Characteristics*

Number of type 1 codes (median, interquartile range) 3.0 (4.0) 0.0 (0.0)

Total number of type 1principal codes (median, interquartile range) 2.0 (2.5) 0.0 (0.0)

Total number of type 1 mixed codes (median, interquartile range) 1.0 (2.0) 0.0 (0.0)

Number of type 2 codes (median, interquartile range) 0.0 (1.0) 1.0 (3.0)

Total number of type 2 principal codes (median, interquartile range) 0.0 (0.0) 1.0 (2.0)

Total number of type 2 mixed codes (median, interquartile range) 0.0 (0.0) 1.0 (2.0)

Candidate Code Algorithms*

At least 1 type 1 code 50 (83.3) 142 (1.4) 26.0

At least 1 type 1 principal code 42 (70.0) 65 (0.6) 39.2

At least 1 type 1 mixed code 38 (63.3) 108 (1.1) 26.0

At least 1 type 2 code 43 (71.7) 92 (0.9) 31.8

At least 1 type 2 principal code 29 (48.3) 25 (0.2) 53.7

At least 1 type 2 mixed code 21 (35.0) 66 (0.6) 24.1

Ratio of type 1 to type 2 codes ≥ 0.5 (A) 50 (83.3) 97 (1.0) 34.0

Ratio of type 1 to type 2 codes ≥ 0.75 49 (81.7) 81 (0.8) 37.7

Ratio of type 1 to type 2 codes ≥ 1 49 (81.7) 78 (0.8) 38.6

Ratio of type 1 to type 2 codes ≥ 2 47 (78.3) 47 (0.5) 50.0

Ratio of type 1 to type 2 codes ≥ 3 46 (76.7) 38 (0.4) 54.8

Ratio of type 1 to type 2 codes ≥ 4 (B) 43 (71.7) 32 (0.3) 57.3

Candidate Prescription Algorithms†

At least 1 insulin prescription 59 (98.3) 3408 (33.6) 1.7

within 90 days (C) 58 (96.7) 615 (6.1) 8.6

within 180 days 58 (96.7) 715 (7.1) 7.5

within 365 days 58 (96.7) 844 (8.3) 6.4

At least 1 insulin prescription with no other glucose-lowering medication prescription 36 (60.0) 80 (0.8) 31.0

within 90 days 43 (71.7) 362 (3.6) 10.6

within 180 days 44 (73.3) 483 (4.8) 8.4

within 365 days 45 (75.0) 653 (6.4) 6.4

At least 1 insulin prescription with no other glucose-lowering medication prescription
except metformin

50 (83.3) 275 (2.7) 15.4

within 90 days 53 (88.3) 451 (4.4) 10.5

within 180 days 54 (90.0) 566 (5.6) 8.7

within 365 days 54 (90.0) 727 (7.2) 6.9

Multiple daily injections‡ 47 (78.3) 273 (2.7) 14.7
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prescription other than insulin and metformin (versus
75.7% in the T2D cohort). Of the algorithms that added
a condition for no other glucose-lowering medication
prescriptions in addition to an insulin prescription, the
algorithm “at least 1 insulin prescription with no other
glucose-lowering medication prescriptions except for met-
formin” had the highest PPV (31.0%; sensitivity 60.0%).
Specifying the type of insulin as multiple daily injections
further improved the PPV. “Multiple daily injections with
no other glucose-lowering medication prescription” (algo-
rithm D) had a 78.0% PPV (sensitivity 53.3%), which was
the highest of the prescription algorithms.
Algorithms A–D classified T1D well for age at diagno-

sis < 20 years in the derivation cohort, but as the propor-
tion of diabetes cases classified as T1D dropped with
age, the precision and estimates of sensitivity and PPV
also dropped (Fig. 2). For age at diagnosis < 20 years,
algorithm B had the highest kappa coefficient (sensi-
tivity: 91.3, 95% confidence interval 72.0–98.9%; PPV:
80.8%, 60.6–93.4%; Table 3). For age at diagnosis ≥ 20
years, algorithm C was the most sensitive but lacked PPV,
while algorithm D had the highest PPV and kappa
coefficient, despite a low sensitivity (age at diagnosis
20–39 years: sensitivity 50.0%, 29.9–70.1%, PPV 81.3,

54.4–96.0%; ≥ 40 years: sensitivity 27.3%, 6.0–61.0%,
PPV 50.0%, 11.8–88.2%).
As with algorithms A–D, performance of the combin-

ation algorithms also generally dropped at older ages at
diagnosis (Fig. 3). For ages at diagnosis < 20 years, 4
combinations had 100.0% (85.2–100.0%; Table 3) sensi-
tivity; among these algorithms, combination “A and C”
had the highest PPV (74.2%, 55.4–88.1%). Among adults
aged ≥ 20 years, sensitivity and PPV differed depending
on the type of combination. “And” combinations had the
highest PPV. “A and D” had the highest PPV among
adults (age at diagnosis 20–39 years: 90.9%, 58.7–99.8%;
≥ 40 years: 50.0%, 11.8–88.2%), but the sensitivity was
low (age at diagnosis 20–39 years: 38.5%, 20.2–59.4%,
≥40 years: 27.3%, 6.0–61.0%). Combinations “A or C”
and “B or C” had the highest sensitivity (100.0%, 86.8–
100.0%), while “B or C” had a relatively higher PPV (age
at diagnosis 20–39 years: 38.5, 22.8%, 15.5–31.6%, ≥ 40
years: 1.9%, 0.9–3.4%). Among the “or” combinations, “A
or C” and “B or C” had the identically highest sensitivity
for classifying T1D (age at diagnosis 20–39 years:
100.0%, 86.8–100.0%, ≥ 40 years: 90.9%, 58.7–99.8%).
However, these algorithms had low PPV (age at diagno-
sis 20–39 years: 19.1–22.8%, ≥ 40 years: 1.8–1.9%).

Table 2 Baseline characteristics and performance of candidate algorithms among people in the derivation cohort, stratified by
diabetes type. Candidate algorithms developed using encounter codes (“code algorithms”) or prescriptions (“prescription
algorithms”) are also shown. For each algorithm, values in the Type 1 and 2 columns indicate the number and percentage of
individuals satisfying the algorithm (sensitivity). Positive predictive values for classifying type 1 diabetes are shown in the right
column. The best 4 algorithms are indicated by the letters in parentheses (A–D; see text for selection criteria) (Continued)

Type 1 (n = 60) Type 2 (n = 10,136) Positive Predictive
Value (%)

within 90 days 7 (11.7) 5 (0.0) 58.3

within 180 days 8 (13.3) 9 (0.1) 47.1

within 365 days 12 (20.0) 13 (0.1) 48.0

Multiple daily injections with no other glucose-lowering medication prescription (D) 32 (53.3) 9 (0.1) 78.0

within 90 days 7 (11.7) 2 (0.0) 77.8

within 180 days 8 (13.3) 6 (0.1) 571

within 365 days 12 (20.0) 11 (0.1) 52.2

Multiple daily injections with no other glucose-lowering medication prescription
except metformin

42 (70.0) 26 (0.3) 61.8

within 90 days 7 (11.7) 2 (0.0) 77.8

within 180 days 8 (13.3) 6 (0.1) 57.1

within 365 days 12 (20.0) 11 (0.1) 52.2

At least 1 metformin prescription 22 (36.7) 8979 (88.6) 0.2

Other glucose-lowering medication prescription excluding insulin and metformin 10 (16.7) 7673 (75.7) 0.2

*In our dataset, encounter codes were classified as “principal” (principal diagnoses from hospital discharge abstracts) or “mixed” (including secondary diagnoses
from hospital discharge abstracts and encounter codes from hospital outpatient clinics). Type 1 codes are defined as International Classifications of Diseases Ninth
Revision (ICD-9) codes 250.x1 or 250.x3; type 2 codes are defined as ICD-9 codes 250.x0 or 250.x2
†We only included long-term insulin prescriptions (duration ≥ 28 days). See Appendix Table 4 for prescriptions algorithms using renal function criteria. All
indicated durations are counted from the diagnosis date. If no duration is indicated, all data were utilized (up to 2016)
‡Multiple daily injections: defined as prescriptions for long-acting and short-acting insulin (both initiated within the same time frame as specified)
See Supplementary Table 4 (Additional File 1) for algorithms using renal function criteria
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Among the 12 algorithms we tested, “B or C,” “B and D,”
and “B and C” had the best sensitivity (“high sensitivity for
type 1” algorithm), PPV (“high PPV for type 1” algorithm),
and kappa coefficient (“optimized” algorithm) respectively
across all ages in the derivation cohort. Table 4 displays the
performance characteristics of these algorithms in the valid-
ation cohort. The “high sensitivity for type 1” algorithm had
a sensitivity of 95.3% (84.2–99.4%; PPV 12.8%, 9.3–16.9%),
while the “high PPV for type 1” algorithm had a PPV of
100.0% (79.4–100.0%; sensitivity 37.2%, 23.0–53.3%) across
all ages. The optimized algorithm had a sensitivity of 65.1%
(49.1–79.0%) and PPV of 75.7% (58.8–88.2%) across all ages.
These algorithms produced distinctive estimates of the pro-
portion of cases classified as T1D among all diabetes cases
according to age at diagnosis (Fig. 4). The high “PPV for
type 1” algorithm yielded conservative estimates, while the
“high sensitivity for type 1” algorithm inflated estimates. Es-
timates from “optimized” algorithm closely matched the ref-
erence standard across age at diagnosis.
Modifying algorithms with renal function criteria

resulted in similar PPV with the same or lower

sensitivity, and ultimately did not improve perform-
ance (Supplementary Tables 4–6, Additional File).
All selected algorithms had high sensitivity and PPV
in classifying T2D across all ages at diagnosis (sensi-
tivity range 93.5–100.0%, PPV range 99.7–100.0%,
Supplementary Table 7, Additional File). As all cases
were classified as T1D or T2D in a binary fashion, the
“high sensitivity for type 1” algorithm was equivalent to
a “high PPV for type 2” algorithm, while the “high PPV
for type 1” algorithm was equivalent to a “high sensitiv-
ity for type 2” algorithm (Supplementary Table 8,
Additional File).

Discussion
This is one of the largest validation studies of algorithms
using EHRs to classify T1D and T2D among children and
adults, and the only validation study in an Asian popula-
tion. Using a systematic approach to generate a set of al-
gorithms maximizing sensitivity and PPV, we revealed
that classification performance is best at lower ages at

Fig. 2 Sensitivity and positive predictive value of the 4 best single algorithms for classifying type 1 diabetes in the derivation cohort by age at
diagnosis*, displayed with the proportion of all diabetes cases classified as type 1 using the reference standard (dashed line). Algorithms: (a) ratio
of type 1 to type 2 codes ≥ 0.5; (b) ratio of type 1 to type 2 codes ≥ 4; (c) at least 1 insulin prescription within 90 days of diagnosis; (d) multiple
daily injections with no other glucose-lowering medication prescriptions
*smoothed using 15-year moving averages

Ke et al. BMC Medical Research Methodology           (2020) 20:35 Page 8 of 15



Table 3 Test characteristics of single (A–D) and combination algorithms for classifying type 1 diabetes compared to the reference
standard in the derivation cohort, stratified by age at diagnosis. Sensitivity, specificity, positive predictive value (PPV) and negative
predictive value (NPV) are percentages with 95% confidence intervals. Cohen’s kappa coefficient represents agreement after
agreement due to chance is removed (1.0 indicates perfect agreement) [31]. The “Type 1 Proportion” columns refer to the
percentage of people in the cohort with diabetes classified as having type 1 using each algorithm (“Calculated”) and the reference
standard (“True”). The best overall algorithms are marked (* = highest sensitivity, † = highest PPV, ‡ = highest kappa coefficient)

Algorithm TP FP FN TN Sensitivity Specificity PPV NPV Kappa Type 1 Proportion (%)

Calculated True

All Ages

Ratio of type 1 to
type 2 codes ≥ 0.5 (A)

50 97 10 10,039 83.3 (71.5, 91.7) 99.0 (98.8, 99.2) 34.0 (26.4, 42.3) 99.9 (99.8, 100.0) 0.48 1.4 0.6

Ratio of type 1 to
type 2 codes ≥ 4 (B)

43 32 17 10,104 71.7 (58.6, 82.5) 99.7 (99.6, 99.8) 57.3 (45.4, 68.7) 99.8 (99.7, 99.9) 0.63 0.7

At least 1 insulin
prescription within
90 days (C)

58 615 2 9521 96.7 (88.5, 99.6) 93.9 (93.5, 94.4) 8.6 (6.6, 11.0) 100.0 (99.9, 100.0) 0.15 6.6

Multiple daily
injections with no
other glucose-
lowering medication
prescription (D)

32 9 28 10,127 53.3 (40.0, 66.3) 99.9 (99.8, 100.0) 78.0 (62.4, 89.4) 99.7 (99.6, 99.8) 0.63 0.4

A and C 49 52 11 10,084 81.7 (69.6, 90.5) 99.5 (99.3, 99.6) 48.5 (38.4, 58.7) 99.9 (99.8, 99.9) 0.61 1.0

A and D 28 5 32 10,131 46.7 (33.7, 60.0) 100.0 (99.9, 100.0) 84.8 (68.1, 94.9) 99.7 (99.6, 99.8) 0.60 0.3

B and C‡ 42 19 18 10,117 70.0 (56.8, 81.2) 99.8 (99.7, 99.9) 68.9 (55.7, 80.1) 99.8 (99.7, 99.9) 0.69 0.6

B and D† 25 4 35 10,132 41.7 (29.1, 55.1) 100.0 (99.9, 100.0) 86.2 (68.3, 96.1) 99.7 (99.5, 99.8) 0.56 0.3

A or C 59 660 1 9476 98.3 (91.1, 100.0) 93.5 (93.0, 94.0) 8.2 (6.3, 10.5) 100.0 (99.9, 100.0) 0.14 7.1

A or D 54 101 6 10,035 90.0 (79.5, 96.2) 99.0 (98.8, 99.2) 34.8 (27.4, 42.9) 99.9 (99.9, 100.0) 0.50 1.5

B or C* 59 628 1 9508 98.3 (91.1, 100.0) 93.8 (93.3, 94.3) 8.6 (6.6, 10.9) 100.0 (99.9, 100.0) 0.15 6.7

B or D 50 37 10 10,099 83.3 (71.5, 91.7) 99.6 (99.5, 99.7) 57.5 (46.4, 68.0) 99.9 (99.8, 100.0) 0.68 0.9

Age < 20 years

Ratio of type 1 to
type 2 codes ≥ 0.5 (A)

23 9 0 26 100.0 (85.2, 100.0) 74.3 (56.7, 87.5) 71.9 (53.3, 86.3) 100.0 (86.8, 100.0) 0.70 55.2 39.7

Ratio of type 1 to
type 2 codes ≥ 4 (B)

21 5 2 30 91.3 (72.0, 98.9) 85.7 (69.7, 95.2) 80.8 (60.6, 93.4) 93.8 (79.2, 99.2) 0.75 44.8

At least 1 insulin
prescription within
90 days (C)

23 13 0 22 100.0 (85.2, 100.0) 62.9 (44.9, 78.5) 63.9 (46.2, 79.2) 100.0 (84.6, 100.0) 0.57 62.1

Multiple daily
injections with no
other glucose-
lowering medication
prescription (D)

16 3 7 32 69.6 (47.1, 86.8) 91.4 (76.9, 98.2) 84.2 (60.4, 96.6) 82.1 (66.5, 92.5) 0.63 32.8

A and C 23 8 0 27 100.0 (85.2, 100.0) 77.1 (59.9, 89.6) 74.2 (55.4, 88.1) 100.0 (87.2, 100.0) 0.73 53.4

A and D 16 2 7 33 69.6 (47.1, 86.8) 94.3 (80.8, 99.3) 88.9 (65.3, 98.6) 82.5 (67.2, 92.7) 0.66 31.0

B and C 21 5 2 30 91.3 (72.0, 98.9) 85.7 (69.7, 95.2) 80.8 (60.6, 93.4) 93.8 (79.2, 99.2) 0.75 44.8

B and D 15 2 8 33 65.2 (42.7, 83.6) 94.3 (80.8, 99.3) 88.2 (63.6, 98.5) 80.5 (65.1, 91.2) 0.62 29.3

A or C 23 14 0 21 100.0 (85.2, 100.0) 60.0 (42.1, 76.1) 62.2 (44.8, 77.5) 100.0 (83.9, 100.0) 0.54 63.8

A or D 23 10 0 25 100.0 (85.2, 100.0) 71.4 (53.7, 85.4) 69.7 (51.3, 84.4) 100.0 (86.3, 100.0) 0.66 56.9

B or C 23 13 0 22 100.0 (85.2, 100.0) 62.9 (44.9, 78.5) 63.9 (46.2, 79.2) 100.0 (84.6, 100.0) 0.57 62.1

B or D 22 6 1 29 95.7 (78.1, 99.9) 82.9 (66.4, 93.4) 78.6 (59.0, 91.7) 96.7 (82.8, 99.9) 0.76 48.3

Age 20–39 years

Ratio of type 1 to
type 2 codes ≥ 0.5 (A)

21 53 5 700 80.8 (60.6, 93.4) 93.0 (90.9, 94.7) 28.4 (18.5, 40.1) 99.3 (98.4, 99.8) 0.39 9.5 3.3

Ratio of type 1 to
type 2 codes ≥ 4 (B)

19 16 7 737 73.1 (52.2, 88.4) 97.9 (96.6, 98.8) 54.3 (36.6, 71.2) 99.1 (98.1, 99.6) 0.61 4.5
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diagnosis and drops as age at diagnosis increases—a find-
ing that has not previously been demonstrated. We devel-
oped a “high sensitivity for type 1” algorithm (ratio of type
1 to type 2 codes ≥ 4, or at least 1 insulin prescription
within 90 days) with > 90% sensitivity across age at diagno-
sis at the expense of lower PPV, and a “high PPV for type
1” algorithm (ratio of type 1 to type 2 codes ≥ 4, and

multiple daily injections with no other glucose-lowering
medication prescription) with perfect PPV across age at
diagnosis at the expense of lower sensitivity. Our opti-
mized algorithm (ratio of type 1 to type 2 codes ≥ 4, and
at least 1 insulin prescription within 90 days) produced
the most accurate estimates of the proportion of T1D
cases across all ages at diagnosis. The complementary

Table 3 Test characteristics of single (A–D) and combination algorithms for classifying type 1 diabetes compared to the reference
standard in the derivation cohort, stratified by age at diagnosis. Sensitivity, specificity, positive predictive value (PPV) and negative
predictive value (NPV) are percentages with 95% confidence intervals. Cohen’s kappa coefficient represents agreement after
agreement due to chance is removed (1.0 indicates perfect agreement) [31]. The “Type 1 Proportion” columns refer to the
percentage of people in the cohort with diabetes classified as having type 1 using each algorithm (“Calculated”) and the reference
standard (“True”). The best overall algorithms are marked (* = highest sensitivity, † = highest PPV, ‡ = highest kappa coefficient)
(Continued)

Algorithm TP FP FN TN Sensitivity Specificity PPV NPV Kappa Type 1 Proportion (%)

Calculated True

At least 1 insulin
prescription within
90 days (C)

25 80 1 673 96.2 (80.4, 99.9) 89.4 (87.0, 91.5) 23.8 (16.0, 33.1) 99.9 (99.2, 100.0) 0.35 13.5

Multiple daily injections
with no other glucose-
lowering medication
prescription (D)

13 3 13 750 50.0 (29.9, 70.1) 99.6 (98.8, 99.9) 81.3 (54.4, 96.0) 98.3 (97.1, 99.1) 0.61 2.1

A and C 20 23 6 730 76.9 (56.4, 91.0) 96.9 (95.5, 98.1) 46.5 (31.2, 62.3) 99.2 (98.2, 99.7) 0.56 5.5

A and D 10 1 16 752 38.5 (20.2, 59.4) 99.9 (99.3, 100.0) 90.9 (58.7, 99.8) 97.9 (96.6, 98.8) 0.53 1.4

B and C 18 8 8 745 69.2 (48.2, 85.7) 98.9 (97.9, 99.5) 69.2 (48.2, 85.7) 98.9 (97.9, 99.5) 0.68 3.3

B and D 10 1 16 752 38.5 (20.2, 59.4) 99.9 (99.3, 100.0) 90.9 (58.7, 99.8) 97.9 (96.6, 98.8) 0.53 1.4

A or C 26 110 0 643 100.0 (86.8, 100.0) 85.4 (82.7, 87.8) 19.1 (12.9, 26.7) 100.0 (99.4, 100.0) 0.28 17.5

A or D 24 55 2 698 92.3 (74.9, 99.1) 92.7 (90.6, 94.5) 30.4 (20.5, 41.8) 99.7 (99.0, 100.0) 0.43 10.1

B or C 26 88 0 665 100.0 (86.8, 100.0) 88.3 (85.8, 90.5) 22.8 (15.5, 31.6) 100.0 (99.4, 100.0) 0.34 14.6

B or D 22 18 4 735 84.6 (65.1, 95.6) 97.6 (96.2, 98.6) 55.0 (38.5, 70.7) 99.5 (98.6, 99.9) 0.65 5.1

Age ≥ 40 years

Ratio of type 1 to
type 2 codes ≥ 0.5 (A)

6 35 5 9313 54.5 (23.4, 83.3) 99.6 (99.5, 99.7) 14.6 (5.6, 29.2) 99.9 (99.9, 100.0) 0.23 0.4 0.1

Ratio of type 1 to
type 2 codes ≥ 4 (B)

3 11 8 9337 27.3 (6.0, 61.0) 99.9 (99.8, 99.9) 21.4 (4.7, 50.8) 99.9 (99.8, 100.0) 0.24 0.1

At least 1 insulin
prescription within
90 days (C)

10 522 1 8826 90.9 (58.7, 99.8) 94.4 (93.9, 94.9) 1.9 (0.9, 3.4) 100.0 (99.9, 100.0) 0.03 5.7

Multiple daily
injections with
no other glucose-
lowering medication
prescription (D)

3 3 8 9345 27.3 (6.0, 61.0) 100.0 (99.9, 100.0) 50.0 (11.8, 88.2) 99.9 (99.8, 100.0) 0.35 0.1

A and C 6 21 5 9327 54.5 (23.4, 83.3) 99.8 (99.7, 99.9) 22.2 (8.6, 42.3) 99.9 (99.9, 100.0) 0.31 0.3

A and D 2 2 9 9346 18.2 (2.3, 51.8) 100.0 (99.9, 100.0) 50.0 (6.8, 93.2) 99.9 (99.8, 100.0) 0.27 0.0

B and C 3 6 8 9342 27.3 (6.0, 61.0) 99.9 (99.9, 100.0) 33.3 (7.5, 70.1) 99.9 (99.8, 100.0) 0.30 0.1

B and D 0 1 11 9347 0.0 (0.0, 28.5) 100.0 (99.9, 100.0) Undefined 99.9 (99.8, 99.9) 0.00 0.0

A or C 10 536 1 8812 90.9 (58.7, 99.8) 94.3 (93.8, 94.7) 1.8 (0.9, 3.3) 100.0 (99.9, 100.0) 0.03 5.8

A or D 7 36 4 9312 63.6 (30.8, 89.1) 99.6 (99.5, 99.7) 16.3 (6.8, 30.7) 100.0 (99.9, 100.0) 0.26 0.5

B or C 10 527 1 8821 90.9 (58.7, 99.8) 94.4 (93.9, 94.8) 1.9 (0.9, 3.4) 100.0 (99.9, 100.0) 0.03 5.7

B or D 6 13 5 9335 54.5 (23.4, 83.3) 99.9 (99.8, 99.9) 31.6 (12.6, 56.6) 99.9 (99.9, 100.0) 0.40 0.2

Abbreviations: TP true positive, FP false positive, FN false negative, TN true negative
If there were no true positive cases identified, the positive predictive was indicated as “undefined”
See Supplementary Table 5 (Additional File 1) for algorithms using renal function criteria

Ke et al. BMC Medical Research Methodology           (2020) 20:35 Page 10 of 15



Fig. 3 Sensitivity and positive predictive value of the 8 combination algorithms for classifying type 1 diabetes in the derivation cohort by age at
diagnosis.* We paired single algorithms using “and” to maximize positive predictive value (panels a–d) and “or” to maximize sensitivity (panels
e–h). See Fig. 2 for algorithm descriptions
*smoothed using 15-year moving averages
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performance characteristics of these algorithms can in-
form their application to future studies, and the choice of
algorithm should be tailored to the unique requirements
of each study question.
Among children and adolescents, our diabetes classifica-

tion algorithms performed similarly to others developed

in white populations. Using Canadian administrative
and prescription data, Vanderloo et al. [14] validated 4
algorithms using a combination of “Status Indian” registra-
tion, age < 10 years, and prescriptions to classify diabetes
types. Although the sensitivity and PPV for classifying T1D
were high (range: 96.9–99.2%), performance for identifying

Table 4 Test characteristics of the high sensitivity, high positive predictive value (PPV), and balanced algorithms for classifying type 1
diabetes compared to the reference standard in the validation cohort, stratified by age at diagnosis. Sensitivity, specificity, PPV and
negative predictive value (NPV) are percentages with 95% confidence intervals. Cohen’s kappa coefficient represents agreement after
agreement due to chance is removed (1.0 indicates perfect agreement) [31]. The “Type 1 Proportion” columns refer to the percentage of
people in the cohort with diabetes classified as type 1 using each algorithm (“Calculated”) and the reference standard (“True”)

Algorithm TP FP FN TN Sensitivity Specificity PPV NPV Kappa Type 1 Proportion (%)

Calculated True

High Sensitivity for Type 1: ratio of type 1 to type 2 codes ≥ 4, or at least 1 insulin prescription within 90 days

All Ages 41 280 2 4778 95.3 (84.2, 99.4) 94.5 (93.8, 95.1) 12.8 (9.3, 16.9) 100.0 (99.8, 100.0) 0.21 6.3 0.8

Age < 20 years 14 6 0 21 100.0 (76.8, 100.0) 77.8 (57.7, 91.4) 70.0 (45.7, 88.1) 100.0 (83.9, 100.0) 0.71 48.8 34.1

Age 20–39 years 19 41 2 300 90.5 (69.6, 98.8) 88.0 (84.0, 91.2) 31.7 (20.3, 45.0) 99.3 (97.6, 99.9) 0.42 16.6 5.8

Age≥ 40 years 8 233 0 4457 100.0 (63.1, 100.0) 95.0 (94.4, 95.6) 3.3 (1.4, 6.4) 100.0 (99.9, 100.0) 0.06 5.1 0.2

High PPV for Type 1: ratio of type 1 to type 2 codes ≥ 4, and multiple daily injections* with no other glucose-lowering medication prescription

All Ages 16 0 27 5058 37.2 (23.0, 53.3) 100.0 (99.9, 100.0) 100.0 (79.4, 100.0) 99.5 (99.2, 99.6) 0.54 0.3 0.8

Age < 20 years 8 0 6 27 57.1 (28.9, 82.3) 100.0 (87.2, 100.0) 100.0 (63.1, 100.0) 81.8 (64.5, 93.0) 0.64 19.5 34.1

Age 20–39 years 6 0 15 341 28.6 (11.3, 52.2) 100.0 (98.9, 100.0) 100.0 (54.1, 100.0) 95.8 (93.1, 97.6) 0.43 1.7 5.8

Age≥ 40 years 2 0 6 4690 25.0 (3.2, 65.1) 100.0 (99.9, 100.0) 100.0 (15.8, 100.0) 99.9 (99.7, 100.0) 0.40 0.0 0.2

Optimized: ratio of type 1 to type 2 codes ≥ 4, and at least 1 insulin prescription within 90 days

All Ages 28 9 15 5049 65.1 (49.1, 79.0) 99.8 (99.7, 99.9) 75.7 (58.8, 88.2) 99.7 (99.5, 99.8) 0.70 0.7 0.8

Age < 20 years 12 0 2 27 85.7 (57.2, 98.2) 100.0 (87.2, 100.0) 100.0 (73.5, 100.0) 93.1 (77.2, 99.2) 0.89 29.3 34.1

Age 20–39 years 12 7 9 334 57.1 (34.0, 78.2) 97.9 (95.8, 99.2) 63.2 (38.4, 83.7) 97.4 (95.1, 98.8) 0.58 5.2 5.8

Age≥ 40 years 4 2 4 4688 50.0 (15.7, 84.3) 100.0 (99.8, 100.0) 66.7 (22.3, 95.7) 99.9 (99.8, 100.0) 0.57 0.1 0.2

Abbreviations: TP true positive, FP false positive, FN false negative, TN true negative
*Multiple daily injections: defined as prescriptions for long-acting and short-acting insulin initiated in the same month
See Appendix Table 6 for algorithms using renal function criteria

Fig. 4 Proportion of all diabetes cases classified as type 1 by age at diagnosis in the validation cohort.* This proportion is calculated as the
percentage of people in the cohort with diabetes classified as type 1 using the reference standard (dashed line), as well as high sensitivity for
type 1, optimized, and high positive predictive value for type 1 algorithms (see Table 4 for descriptions)
*smoothed using 15-year moving averages
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T2D was worse (sensitivity range: 55.4–84.2%; PPV range:
54.7–73.7%) and relied on ethnicity criteria that are not
applicable in other populations. In a post-hoc analysis, we
modified these algorithms by excluding inapplicable
criteria and applied them to our data (Supplementary Ta-
bles 9–10, Additional File). These modified algorithms per-
formed identically to our “high sensitivity for type 1”
algorithm in classifying T1D (sensitivity 100.0%, 76.8–
100.0%; PPV 70.0%, 45.7–88.1%) and T2D (sensitivity
77.8%, 57.7–91.4%; PPV 100.0%, 83.9–100.0%). In the large
United States SEARCH for Diabetes in Youth Study
(SEARCH), several algorithms were developed to identify
diabetes type [13, 15, 16]. The “at least 1 outpatient T1D
code” (sensitivity 94.8%, PPV 98.0% in SEARCH) [13] had
100.0% sensitivity (76.8–100.0%) and a better PPV (87.5%,
61.7–98.4%) than our “high sensitivity for type 1” algo-
rithm. Other published SEARCH algorithms requiring the
ratio of type 1 to total codes > 0.5 [15] and 0.6 [16] per-
formed identically to our optimized algorithm (sensitivity
85.7–100.0%, PPV 87.5–100.0% for identifying T1D), al-
though the latter algorithm required manual review to as-
sess diabetes type for over a third of cases. The reasonable
performance of these other algorithms confirms that T1D
can be identified among children and adolescents using ad-
ministrative and EHR data across different settings. Our re-
sults extend the literature with an expanded set of
algorithms with optimal, maximally sensitive, or maximally
predictive characteristics without the use of manual review,
which would be unfeasible for large population-based
studies.
By contrast, classification accuracy of the algorithms

was lower among adults versus children. Previous valid-
ation studies including adults are limited. Klompas et al.
[12] used a large EHR including primary and specialty
care providers to develop and validate a complex algo-
rithm (type 1 to type 2 codes > 0.5 and prescription for
glucagon, type 1 to type 2 codes > 0.5 with no oral
hypoglycemic other than metformin, C-peptide negative,
autoantibodies positive, or prescription for urine acetone
test strips) that reported a 65% (36–100%) sensitivity
and 88% (78–98%) PPV for T1D and 100% (99–100%)
sensitivity and 95% (88–100%) PPV for T2D. A modified
version of this algorithm excluding urine acetone test
strips was later tested separately [27]. However, these
studies are limited by the lack of “and” combinations,
and the use of a weighted sampling strategy that could
have inflated estimates of PPV [12, 27]. Although algo-
rithm performance in adults was not specifically re-
ported, our post-hoc analysis showed that the algorithm
proposed by Klompas et al. [12] (adapted to fit our data;
see Supplementary Tables 9–10, Additional File) had de-
creased sensitivity (62.5%, 24.5–91.5%) and PPV (26.3%,
9.1–51.2%) among adults aged ≥ 40 years at diagnosis
versus people aged < 20 years at diagnosis (sensitivity

100.0%, 76.8–100.0%, PPV 93.3%, 68.1–99.8%). The per-
formance of another algorithm developed within a gen-
eral practice EHR in the UK [26] showed a similar
pattern using our data, although the overall performance
was worse than our algorithms (sensitivity 39.5%, 25.0–
55.6%; PPV 40.5%, 25.6–56.7% at all ages). While these
results may be expected based on the rarity of T1D in
adulthood, our large study adds a new approach to
maximize sensitivity, PPV, or overall accuracy across all
ages using different types of combinations. Moreover,
we confirmed that renal function does not improve al-
gorithm performance in adults, and this may reflect the
growing variety of non-insulin agents available for
people with diabetes and impaired renal function.
Our study yielded 3 complementary algorithms, the

choice of which can be tailored to different study contexts
depending on diabetes type, sensitivity, and PPV require-
ments. The optimized algorithm (ratio of type 1 to type 2
codes ≥ 4, and at least 1 insulin prescription within 90 days)
performed highly accurately at ages at diagnosis < 20 years,
but it also generated close estimates of the proportion of
T1D among adults, as misclassified T1D and T2D cases
were approximately balanced. Thus, the optimized algo-
rithm could be applied to diabetes incidence and prevalence
studies. Other algorithms may be better suited for cohort
studies or other designs. For example, an adult-onset T1D
cohort study could use the “high PPV for type 1” algorithm
(ratio of type 1 to type 2 codes ≥ 4, and multiple daily injec-
tions with no other glucose-lowering medication prescrip-
tion) to maximize PPV. Alternatively, a case-finding study
designed to identify as many people with T1D as possible
might apply the “high sensitivity for type 1” algorithm (ratio
of type 1 to type 2 codes ≥ 4, or at least 1 insulin prescrip-
tion within 90 days). A cohort study of T2D among adults
could apply the “high PPV for type 2” (equivalent to “high
sensitivity for type 1”) algorithm, although all 3 algorithms
performed well considering the relatively high T2D preva-
lence in adults.
Our large register-based validation study is the first to

specifically distinguish T1D and T2D in Asians, using
routinely available encounter codes and prescriptions in
a population-wide EHR within a public universal healthcare
context. Unlike previous studies, we demonstrated the crit-
ical importance of age at diagnosis, defining separate deriv-
ation and validation cohorts to avoid overfitting. However,
there are some limitations to note. As in other public
healthcare settings, we did not have access to routine auto-
antibody or C-peptide testing to verify diagnoses of T1D.
We could not include the entire HKDSD or externally
validate because full chart access was only authorized for
the HKDR. However, the HKDR represents a large geo-
graphic region of Hong Kong, which has a single publicly
administered healthcare system serving its entire popula-
tion. Although socioeconomic status variables were not
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captured in our databases, other baseline characteristics
were highly similar between the HKDR and HKDSD, sup-
porting the generalizability of our algorithms. Research
platforms such as the HA’s Data Collaboration Lab should
allow more comprehensive use of EHR data to improve dia-
betes classification using more complex methodologies and
to enhance population research [32–34].

Conclusions
In summary, we developed and validated a set of algo-
rithms to accurately classify diabetes type for different
ages at diagnosis using population-level health data. As
EHRs become increasingly available, our approach may
be applied to generate similar algorithms in other set-
tings. These algorithms can be applied to future studies
to characterize incidence, prevalence, and other statistics
separately for T1D and T2D—especially in China and
other populations where these statistics have never been
measured [11].
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