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Abstract

Background: Self-organization is a fundamental feature of living organisms at all
hierarchical levels from molecule to organ. It has also been documented in
developing embryos.

Methods: In this study, a scale-invariant power law (SIPL) method has been used to
study self-organization in developing embryos. The SIPL coefficient was calculated
using a centro-axial skew symmetrical matrix (CSSM) generated by entering the
components of the Cartesian coordinates; for each component, one CSSM was
generated. A basic square matrix (BSM) was constructed and the determinant was
calculated in order to estimate the SIPL coefficient. This was applied to developing
C. elegans during early stages of embryogenesis. The power law property of the
method was evaluated using the straight line and Koch curve and the results were
consistent with fractal dimensions (fd). Diffusion-limited aggregation (DLA) was used
to validate the SIPL method.

Results and conclusion: The fractal dimensions of both the straight line and Koch
curve showed consistency with the SIPL coefficients, which indicated the power law
behavior of the SIPL method. The results showed that the ABp sublineage had a
higher SIPL coefficient than EMS, indicating that ABp is more organized than EMS. The
fd determined using DLA was higher in ABp than in EMS and its value was consistent
with type 1 cluster formation, while that in EMS was consistent with type 2.

Background
Self-organization is a property of the biological structure [1] and is reported to be

important in protein folding [2-4]. It has also been documented that at higher hier-

archical levels such as the organelle level, it has a crucial role in the biogenesis of

secretory granules in the Golgi apparatus [5,6]. Martin and Russell have shown that

self-organization exists in mitochondria, where redox reactions are localized [7]. The

most obvious example of self-organization at the organelle level is the cytoskeleton

during the mitotic cycle, where mitotic spindle forms dynamically [8] using molecular

motors [9]. Misteli concluded that self-organization could govern the mechanistic prin-

ciples of cellular architecture [10]. The multicellular embryo develops from a zygote,

characterized by a dynamic self-organizing process [11].

At an early stage of embryonic development, the forming cells adhere to each other

[12] with coordinated cellular movement to form the primary embryonic body axis

[13]. These movements are self-regulated and lead to a defined pattern [14]. In vitro
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studies have confirmed self-organization in human embryonic stem cell (hESC) differen-

tiation, resulting in the formation of the three germ layers and gastrulation [15]. Ungrin

et al. reported a similar finding in the morphogenesis of hESCs cultured in suspension,

which yielded embryoid bodies [16] with the property of self-organization. At later

developmental stages such as organogenesis, Schiffmann reported self-organization in

driving gastrulation and organ formation [17], where the increase in the mass of the

organ and its cell number reportedly contribute to organogenesis [18]. Moreover, in

vitro organogenesis showed a mechanism similar to that in vivo [19]. Among the factors

contributing to organogenesis is self-organization; for example, in vitro organogenesis of

the cultured mouse submandibular salivary gland at embryonic day 13 retains the

capacity for branching, and when it is co-cultured with mesenchymal tissues, morpholo-

gical differentiation of the gland results [20]. Similar results were obtained with cultured

embryonic kidney explants leading to nephronal differentiation [21]. Other investigators

introduced developmental self-organization in order to evaluate the morphogenesis of

the embryo [22]. While the development of the embryo from a zygote to a multicellular

organism is characterized by a dynamic self-organizing process [11], the emergence of

an organized system is also associated with the expression of gene networks [23]. This

could demonstrate the advantage of applying self-organization to cellular events [24]. In

the present study, early development of C. elegans was investigated as an example of

self-organization using a scale-invariant power law to evaluate the self-organizing

properties of two sublineages with different differentiation fates.

Two features should be considered in the quantitative validation of a self-organization

process in a developing embryo. First, the different scales of the animal body; for exam-

ple, Waliszewski et al. reported that the microscopic gene expression and the macro-

scopic cellular proliferation were scale-invariant systems [25], the scale-free feature of

which was shown to result in the emergence of organizational dynamics at all hierarchi-

cal levels of the living matter [26]. Secondly, metazoan cells develop from a single cell,

and this involves complex spatio-temporal events [11,27].

Moreover, Molski and Konarski revealed that the fractal structure of the space in any

biological system could characterize self-organization [28]. The fractal method can be

used to describe the irregularity of shapes that cannot be formulated in Euclidean geo-

metry. It is characterized by self-similarity [29], and describes spatial structure in a scale

free measure [30]. In this study, the development of C. elegans embryos was evaluated at

different time frames (stages) using a scale free power law. This method was developed

in order to integrate spatial with temporal information. Moreover, the changes in the

numbers and positions of cells during morphogenesis have been represented by the Car-

tesian coordinates at different developmental times. The components of the Cartesian

coordinates were entered as the primary set data for calculating the power law coeffi-

cient in order to define the expanding character of the growing embryo.

Materials and methods
The concepts of CSSM and BSM

A matrix is an array of numbers arranged in rows (i) and columns (j). If the number of

rows and columns is equal (i, j = n, n × n), then this matrix is a square matrix. The

elements above the diagonal elements are considered as the upper triangular matrix of

the square matrix and those below the diagonal elements are its lower triangular
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matrix. If the elements in the upper and lower triangular matrix of the matrix have

equal values(ai,j = aj,i), then it is a symmetric square matrix. If all the elements in the

upper triangular matrix have negative values of the lower triangular matrix or vice

versa (ai,j = -aj,i), then it is a skewed symmetric (anti-symmetric) matrix, and if the

diagonal elements values are equal to zero, the matrix is known as “zero centro-axial

skewed-symmetric matrix” (CSSM). The matrix resulting from the exchange of the

upper and lower triangular matrices is a transpose matrix. If the a square matrix is

subtracted from its transpose, followed by division by two, then the resulting matrix is

a skew matrix, while the sum of a square matrix and its transpose followed by division

by two is a symmetric matrix. The square matrix is used for generating symmetric and

anti-symmetric matrices. The square matrix generated in this study by a special algo-

rithm is called the basic square matrix (BSM).

The scale invariant power law

There are two aspects of the scale invariant power law: scale invariance means that the

value of the SIPL coefficient does not change as the scale [31], magnification [32], or

tissue growth changes [33,34]; and a power law is a relationship between two variables

where one quantity varies as a function of the power of the other [33]. For example,

Zhang and Sejnowski revealed that the growth of the volume of the white matter

increases disproportionately more quickly than the gray matter, where it follows a

power law relation [35]. In fact, one of the properties of power laws is scale-invariance

[33]. Therefore, the SIPL defines the coefficient obtained by calculating the BSM deter-

minant, which follows a power law rule and is scale invariant.

The reason for using the power law is the nature of the biological matter, over 21

orders of magnitude consistently follows a simple and systematic empirical power law.

This includes metabolic rate, time scales and body size [36]. The most commonly used

power laws are fractal dimension and allometry [37]. Fractal dimensions have been used

to study diverse structures in nature at different levels and from galaxies [38] to suba-

tomic structures [39]. In biomedicine, there are wide ranging applications; for example,

at the molecular level, fractals were proposed for evaluating the physical features of ion

channel proteins [40]. Vélez et al. reported the possible use of multifractals in the mea-

surement of local variations in DNA sequence in order to define the structure-function

relationship in chromosomes [41], and Mathur et al. used fractal analysis of gene expres-

sion in studying the hair growth cycle. Moreover [42], fractal genomics modeling has

been used to predict new factors in signaling pathways and the networks operating in

neurodegenerative disorders [43]. At the cellular level, fractal dimension was used in

evaluating the morphological diversity of neurons and discriminating them on the basis

of the neuronal extensions [44]; fractals can also explain higher orders of organization in

biological materials such as the organization of tissues [45] and branching of tubular sys-

tems such as the respiratory and the vascular systems [46-49]. On the other hand, one of

the best known applications of allometry is the metabolic rate scale (Kleiber’s law),

which is considered universal among different species, within the same species, or in

individual animal at different orders including molecular, cellular and body levels

[50,51]. A similarly universal allometric law relating time and body weight, including

growth rates and animal age, has been documented [52]. This time scale relation is

noticed in development biology [53]. Gillooly et al. reported an allometric relationship
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between metabolic rate and the developmental growth rate during embryogenesis, which

has phylogenically and ontogenically invariant values [54]. Allometry was recently used

in pharmacokinetics [55], predicting the pharmacokinetics of drugs [56,57]. In addition

to allometry and Kleiber’s law, other investigators have reported power law relationships

in biomedicine; for example, Grandison and Morris reported that kinetic rate parameters

showed a scale free relationship with the gene network and protein-protein interactions,

which follows Benford’s law [58]. Also, Zipf’s Law has been used to discriminate the

effect of natural selection from random genetic drift [59]; Furusawa and Kaneko (2003)

reported that Zipf’s Law applies universally to gene expression in yeast, nematodes,

mammalian embryonic stem cells and human tissues [60].

The above discussion suggests that not every power law is fractal; on the other hand,

in certain situations the behavior of the system shows fractal-like properties but is not

truly fractal [61]. In addition, even natural fractal structures such as the triadic Koch

curve could have non-fractal properties [62]. The growth of differentiating cells in a

developing embryo certainly follows a power law, so we are justified in calling it SIPL

to avoid fallacious attribution of fractal properties.

Analytical descriptions of CSSM and BSM

CSSM

Suppose we have n points {(x1, y1, z1), (x2, y2, z2), ..., (xn, yn, zn)} ⊂ R3 and relative 1 × n

matrices {(x1, x2, ..., xn), (y1, y2, ..., yn), ..., (z1, z2, ..., zn)}. By subtracting the first entry x1
from xi, for each 1 ≤ i ≤ n, we get (0, x2 - x1, ..., xn - x1), with 0 as its first entry. We do

this for the other matrices. Now we use each of the resulting matrices as the first row of

the CSSM matrix. The other rows of the CSSM matrix are defined using the recursive

formula:

xni,j = xni−1,j − xni−1,i .

We only need to prove that the matrix which is constructed from (a1, a2, ..., an),

where xi,j= aj- ai, is anti-symmetric and hence it is CSSM. For each i,j

we have xni,j = xni−1,j − xni−1,i. Let xi,j = aj - ai. Then xi,j = -(ai - aj) = -xj,i, so the matrix

is anti-symmetric. Now, we need to prove that when xi,j = aj- ai, then we have xi+1,j =

aj - ai+1.

We have xi+1,j = xi,j - xi,i+1 = aj - ai - (ai+1 - ai) = aj - ai+1.

Also, by definition, this holds for the first row. So for every i,j, xi,j = aj - ai This

shows the matrix is anti-symmetric.

BSM

Now we prove that there is a one to one correspondence between the CSSM matrices

and the BSM matrices which is generated from the CSSM matrices. Suppose that (Ai,j)

is a CSSM matrix and the BSM matrix defined by

Bi,j =
{

4 ai,j, if Ai,j > 0
−2 ai,j, if Ai,j < 0

.

Now we show that

Ai,j =
Bi,j − Bj,i

2
, for each i, j.
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We know that Ai,j Aj,i < 0 or Ai,j Aj,i = 0. If Ai,j = Aj,i = 0, then Bi,j = Bj,i = 0 and the

claim is true. If Ai,j > 0, then Bi,j = 4Ai,j and Bi,j = -2Aj,i. This implies that

Bi,j − Bj,i

2
=

4Ai,j−(−2Aj,i)

2
= Ai,j.

The case Ai,j < 0 is similar.

Descriptions of the biological data

In the early stages of C. elgans embryogenesis, the zygote (P0) divides into two daugh-

ter cells called the anterior blastomere (AB) and the posterior blastomere (P1) forming

a 2-cell stage embryo. This is followed by a second round of mitosis, where AB divides

into ABa (anterior) and ABp (posterior), while P1 divides into P2 and EMS forming a

4-cell stage embryo (see Figure 1). ABp differentiates into different types of cells

including neurons, body muscle, excretory duct cell and hypodermis, while EMS differ-

entiates into 42 body muscles and intestine [63]. During organogenesis of the C. ele-

gans embryo, ABp differentiates into a nervous system and epidermis, while EMS

differentiates into muscular tissues, midgut and pharynx [64]. Axis determination is

one of the most important events in the early stages of C. elegans embryogenesis; as

the pronucleus breaks down in the zygote, asymmetric division follows forming a large

daughter cell (AB) and a smaller one (P1) establishing the first antero-posterior axis.

Figure 1 presents the zygote (P0) at the 2-cell stage and the 4-cell stage of the early C. elegans
embryogenesis. The zygote divides into two cells, the anterior blastomere (AB) and the posterior
blastomere (P1). AB divides into an anterior (ABa) and a posterior (ABp) cell, while P1 divides into EMS and
P2. The long axis is formed by ABa and P2 and the short axis by ABp and EMS.
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AB starts the next division, which is initially oriented orthogonally to the antero-pos-

terior axis, but as the cell progresses through anaphase, the orientation of the mitotic

spindle of the dividing cell skews, resulting in anterior position of ABa to ABp. P1

commences mitosis a few minutes later resulting in a large EMS progeny cell ventrally

located, and a smaller P2 posteriorly located; this round of cell division establishes the

dorso-ventral axis [65]. The other important event is garstulation, which begins at the

28-cell stage of development, where Ea and Ep move to the center of the developing

embryo and gastrulate forming the three germ layers [64].

There are several reasons for comparing Abp-derived cells (ABp-dc) with those from

EMS (EMS-dc). At the developmental level, ABp is derived from the AB blastomere

while EMS is derived from the P1 blastomere [66], so ABp and EMS are two different

lineages and the use of their cells is relevant in developmental biology. At the organo-

genesis level, ABp differentiates into nervous system and epidermis, while EMS differ-

entiates into muscular tissue, midgut and pharynx [64], thus ABp and EMS form

entirely different organs. At the cellular level, the cells derived from AB blastomere

(ABa and ABp) enter the mitotic cycle and divide earlier than those of P1 (EMS and

P2), while EMS enters the mitotic cycle earlier than P2 [67]. In addition, ABa and P2

align on the long axis (defining the anterior-posterior poles), while ABp and EMS align

on the short axis (defining the dorsal-ventral poles) [68]. Therefore, from temporal and

geometrical viewpoints, the derivatives of ABp and EMS are closer to each other, so a

more powerful quantitative tool is needed to evaluate their development. At the mole-

cular level, P2 is reported to induce polarization in ABp and EMS using MOM-2/Wnt

signaling by direct contact between the cells [69].

Experimental setting

The C. elegans data were obtained according to the previous report of Tiraihi and Tir-

aihi [70]. Briefly, a C. elegans embryo (from the 4-cell to the 80-cell stages) was consid-

ered, the Cartesian coordinates (x,y,z) were estimated from ABp and EMS cell lineages

using the images obtained from SIMI-Biocell [71] and Angler softwares [72]. The Car-

tesian coordinates were entered into a computer program to calculate the distances

between the cells.

The distances at 30, 55, 82, 109 and 123 minute intervals (fixed intervals) were used

at different scales and the data were entered into a computer program used to calcu-

late the zero centro-axial skew-symmetrical (CSSM) and the basic square matrices

(BSM).

Straight line

In the zero order straight line, two points represent the beginning and the end of the

line. This line was divided into 48 unit lengths representing the steps (48 steps). The

first order line was divided into two segments of equal length. At higher orders, each

segment was divided into two equal parts, the box number increasing with the increase

of order, leading to duplication in the number of the boxes and reduction in the step

(see table 1). The SIPL method was applied to the straight line and the calculations

were done as for the Koch curve (see below) except that the components of coordi-

nates were taken from the straight line. The numbers of points at each order used in

the study are presented in table 2.
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Koch curve

The zero order Koch curve is a line comprising two points at the beginning and end,

which are named “initiator points”. In order to generate a higher order Koch curve,

every line segment was divided into three equal segments. We named the first and the

third segments “resting segments” and the second a “generating segment”. The resting

segments stay unmodified, and as the name implies, generation takes place in the gen-

erating segment. For each line, if we build an equilateral triangle on the generating seg-

ment, the two new lines are called “generated segments”. As the final step in

generating the next order, we remove the generating segment(s).

In order to generate a CSSM, we need a set of Cartesian coordinates as the input.

For every Koch curve, we consider the end points of every line segment. Before the

generation of a higher order curve, the current points satisfying this criterion are called

“resting points”. After the generation, the newly generated points that satisfy this cri-

terion are called “generated points”. The ends of each line segment at a certain order

are called that order’s principal points.

The algorithm for generating a CSSM from a set of points was described earlier. The

initiator line has two principal points, while the 1st and 2nd order Koch curve have 5

and 17 points, respectively.

A computer program was developed to generate the two-dimensional Cartesian coor-

dinates of the points (as described above) of a Koch curve. In this program, the

Table 1 The box counting method data used in estimating the scale-invariant power law
coefficient of the straight line.

Number of box (NB) Logarithm (NB) Step (h) 1/h Logarithm (1/h)

1 0 48 0.020833333 -1.681241237

2 0.301029996 24 0.041666667 -1.380211242

4 0.602059991 12 0.083333333 -1.079181246

8 0.903089987 6 0.166666667 -0.77815125

16 1.204119983 3 0.333333333 -0.477121255

The box number (NB) and the steps (h) as well as the logarithm of NB and the logarithm of the inverse of step are
presented. These data are plotted in figure 1, and the coefficients of the regression line were estimated in order to
calculate the SIPL coefficient.

Table 2 The straight line orders and the related parameters used in calculating the
scale-invariant power law coefficient using CSSM.

Order # of
Points at each
order

Scale Logarithm
(Scale)

b-coefficient of linear
regression

Logarithm of absolute
b-coefficient

0 2 100 0 -0.611244 -0.2137855

1 3 10-1 -1 -0.611244 -0.2137855

2 5 10-2 -2 -0.611244 -0.2137855

3 9 10-3 -3 -0.611244 -0.2137855

4 17 10-4 -4 -0.611244 -0.2137855

The orders, principal points and scales used in calculating the scale-invariant power law coefficient of the straight line
using the zero-centro-axial skew-symmetrical matrix method and the b-coefficients of the regression lines are presented
in this table. The data are plotted between the logarithms of the nth root of the absolute value of the basic square

matrix at the order (where n is the number of principal points)

(
log

∣∣∣∣ n

√∣∣det (BSMorder)
∣∣∣∣∣∣
)

and the logarithms

of the inverse of step (log(1/h)). The logarithms of the absolute b-coefficients are plotted against the logarithms of the
scales. The calculations of the regression line of this plot were used in calculating the scale-invariant power law
coefficient of the straight line.
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initiator line was a horizontal line of unit length, with the leftmost point (A) located at

the origin and the rightmost point (B) at coordinates (1,0) (see Figure 2).

We can also scale the coordinate; for example the line is defined as (A(0,0), B(1,0)))

at scale 100 and (A(0,0), B(101,0))),(A(0,0, B(102,0))), (A(0,0, B(103,0))) (A(0,0, B(104,0)))

(A(0,0, B(105,0))) and (A(0,0, B(106,0))) at scales 10-1, 10-2, 10-3, 10-4, 10-5 and 10-6,

respectively.

The program calculated the components of the Cartesian coordinates of the princi-

pal points for the five orders at different selected scales. These principal points were

entered into another algorithm in order to generate the zero centro-axial skew-sym-

metrical matrix (CSSM) and construct the basic square matrix (BSM) according to

the method described in the appendix. The program calculated the two-dimensional

Cartesian coordinates (x,y) at the different orders. In the first order (see Figure 2),

the program calculated 5 principal points as (1 × n) matrices, hence there were five

elements for the x (x1, x2, x3, x4, x5) and y (y1, y2, y3, y4, y5) components. These (1 ×

n) matrices (principal row) were used to generate 5 × 5 CSSMs and 5 × 5 BSMs. In

the same way, for the other orders, the principal points of Koch curve were calcu-

lated and the principal rows and CSSMs were generated and the BSMs were con-

structed. If there were identical elements in the principal row, then one element

would be included in the principal row and the others omitted, otherwise the con-

structed BSM of the generated CSSM would result in a singular matrix with zero

determinant.

For example, for the first order matrix, the program calculated 5 principal points

forming two (1 × n) matrices with 5 elements for each coordinate. This was also done

for all the scales in the first order.

The data from the x-components of the Cartesian coordinates of the principal points

(A,B) at zero order (initiator) of the Koch curve at 100 scale are (A(0,0), B(1,0))), the x-

component of the initiator is [(xa, xb) = (0,1)] and the y-component is [(ya, yb) = (0,0)].

If(xa, xb) are considered as the elements of the (1, n) matrix, then the first row of this

matrix is 0[1]. This was used to generate the CSSM for the x-components(xa):

xa =
[

0 1
−1 0

]

where a stands for anti-symmetric.

Figure 2 presents two orders of a Koch curve. The zero order is the initiator (straight line) with the
initiator points (A,B); the components of the Cartesian coordinates of this order forming the (1 × n) matrix
are (xa, xb) and (ya, yb). The first order Koch curve consisted of 5 principal points (2 initiators points (1 and
5) and 3 generated points (2, 3 and 4)); the components of the Cartesian coordinates of this order forming
the (1 × n) matrix are (x1, x2, x3, x4, x5) and (y1, y2, y3, y4, y5).
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The basic square matrix was constructed according to the algorithm presented in the

appendix:

xBSM =
[

0 4
2 0

]

The determinant of this matrix is -8.

For the y coordinates, ya = 0 and yBSM = 0, the determinant of yBSM is zero.

Another CSSM was generated from the combined determinants of xBSM and yBSM;

the input elements for the construction of this CSSM were (-8,0). It was translated to

the point of origin to construct the CSSM; the principal row was [0,8]. The resulting

matrix was:

xycombined =
[

0 8
−8 0

]

And the resulting basic square matrix was:

xycombinedBSM =
[

0 32
16 0

]

The determinant of the basic square matrix (det(xycombinedBSM)) was -512, this value

represents the determinant of the BSM at Koch curve segment level.

Five orders were used in the study (0th, 1st, 2nd, 3rd and 4th), where the 0th order is

the initiator of Koch curve (straight line). Seven scales (100, 10-1, 10-2, 10-3, 10-4, 10-5

and 10-6) were used in the calculations. At each scale, the determinant of

(xycombinedBSM) was calculated.

Two main operations were involved in calculating the SIPL coefficient; the first was

at the order level where CSSMorderwas used for subsequent calculations, while the sec-

ond was at the scale level where linear regression was done in both. The first operation

was subdivided into 3 sub-operations. In the first, an iterated algorithm was applied in

order to generate CSSMorderand construct BSMorder. For the first order (see Figure 2),

the determinant of (xycombinedBSM) of the 0th order was used as the first element of this

matrix det(xycombinedBSM(0)) and the second element was the determinant of the first

order det(xycombinedBSM(1)). Then the (1, n) of the first order to generate was

(det(xycombinedBSM(0)), det(xycombinedBSM(1))) . This was translated and used in generating

CSSMorder(1), then BSMorder(1) was constructed and its determinant det(BSMorder(1))

was calculated. Similarly, for the second order, the (1, n) matrix was

(det(xycombinedBSM(0)), det(xycombinedBSM(1)), det(xycombinedBSM(2))) , which was used in

generating CSSMorder(2), constructing BSMorder(2) and calculating det(BSMorder(2)).

For the third and fourth orders (CSSMorder(3) and CSSMorder(4)), the (1, n)

matrices were (det(xycombinedBSM(0)), det(xycombinedBSM(1)), det(xycombinedBSM(2)), det(xycombinedBSM(3))) and
(det(xycombinedBSM(0)), det(xycombinedBSM(1)), det(xycombinedBSM(2)), det(xycombinedBSM(3) , det(xycombinedBSM(4))) , respectively. Then BSMorder(3)

and BSMorder(4) were constructed and their determinants, det(BSMorder(3)) and det

(BSMorder(4)) were calculated. For the 0th order, det
(
xycombined(0)

)
was used for

det(BSMorder(0)). In the second sub-operation, the nth root of the absolute value of

BSMorder

(
n

√∣∣det (BSMorder)
∣∣) (n is the number of principal points, where n = 2 in the
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initiator) was calculated. The calculations were repeated for all the scales (see table 1).

In the third sub-operation, for a given scale, the data from the different orders at each

scale were plotted using a log-log plot, where the abscissa was the logarithm of the

inverse value of step (h) (log(1/h)), while the ordinate was the logarithm of the abso-

lute value of n

√∣∣det (BSMorder)
∣∣ (log

∣∣∣∣ n

√∣∣det (BSMorder)
∣∣∣∣∣∣
)
. The log-log plot was fitted for

linear regression and the b coefficients for the scales (bscale) were subsequently used in

estimating the SIPL of the Koch curve.

For the next operation (scale level), the logarithm of the scale (log(scale)) was plotted

against the logarithm of the absolute bscale and another linear regression was calcu-

lated. The b coefficient(bSIPL) was used in order to estimate the SIPL according to this

equation: SIPL = 1- (D), where SIPL is the scale-invariant power law coefficient, and D

is bSIPL.

Assessment of validity

The diffusion-limited aggregate method was used to estimate the fractal dimension of

the growing embryo according to Moatamed et al. [73]. Briefly, 5 concentric circles

with 5 μm increments were superimposed on the center of gravity of ABp-derived cells

(ABp-dc) and EMS-derived cells (EMS-dc) at the 123 min. stage of development, and

the nuclei of the ABp-derived cells were counted within each circle. The log of the

nuclear number was plotted against the log of circle radius, and the slope of the

regression line was used as the value of the fractal dimension. The same procedure

was done on EMS-dc.

Programming languages

A computer program was written in the C++ language and a text file was generated

containing the basic square matrix, which was copied into the command of the matrix

of MATLAB® software (http://www.mathworks.com: MathWorks, Inc, Natick, Massa-

chusetts) and its determinant was calculated. Also, at each scale (100, 10-1, 10-2, 10-3,

10-4, 10-5 and 10-6), the determinants of the basic square matrices were calculated for

the following Koch curve orders (0, 1, 2, 3 and 4). The step for each order was also

estimated and entered into the calculations.

Results
Straight line

The results for the straight line using the box counting method are presented in detail

in table 1 while Figure 3 presents Richardson’s plot; the slope of the regression line

equals zero and the SIPL coefficient is one. Table 2 presents the data and the calcula-

tions for the straight line using the CSSM. It shows the 4 orders and the number of

points at each order, the b coefficients of the linear regression at each order with dif-

ferent scales, the logarithm of the absolute value of b coefficients and the scales used

for calculating the second regression line in order to estimate the SIPL using the b

coefficients (D).

Figure 4-A presents the logarithms of the scales (log(scale)) plotted against the loga-

rithms of the absolute values of the b coefficients (log|bscale|) in the regression line for

the data plotted in Figure 4-B, C, D, E and F, representing the scales 100, 10-1, 10-2,

Tiraihi et al. Theoretical Biology and Medical Modelling 2011, 8:17
http://www.tbiomed.com/content/8/1/17

Page 10 of 24

http://www.mathworks.com


Figure 3 Calculations of the scale-invariant power law coefficient of the straight line using the box
counting method. The latter is presented using Richardson’s plot logarithm of the inverse of the steps
plotted against the logarithm of the box numbers. The regression line has a slope equal to one (y = 1.7 +
x: standard error = 0, correlation coefficient = 1).

Figure 4 Calculations of the scale-invariant power law coefficient of the straight line using the
CSSM method; linear regressions were used to evaluate the straight line. A: presents the logarithms
of the scales (log(scale)) plotted against the logarithms of the absolute values of the b coefficients (log|
bscale) in the regression line for the data plotted in this figure (B, C, D, E and F). The regression line has a
slope equal to zero (y = -0.61: standard error = 0, correlation coefficient = 0.2). The linear regression of the
logarithm of the inverse of the steps (log(1/h)) is plotted against the logarithm of the roots of the number
of the points on the straight line to the absolute value of the determinant of the basic square matrix(

log

∣∣∣∣ n

√∣∣det (BSMorder)
∣∣∣∣∣∣
)
. Plot B: presents scale 1 (100) unit, where the 0th, 1st, 2nd, 3th and 4th orders consist of 2, 3,

5, 9 and 17 points, respectively. C, D, E and F present the other four scales: 10-1, 10-2, 10-3 and 10-4. The
linear regression analyses of the plots are as follows: y = 1.15-0.61x (standard error = 0.061, correlation
coefficient = 0.98), y = 1.54-0.61x (standard error = 0.061, correlation coefficient = 0.98), y = 1.93-0.61x,
(standard error = 0.07, correlation coefficient = 0.98), y = 2.32-0.61x (standard error = 0.061, correlation
coefficient = 0.98) and y = 2.7-0.61x (standard error = 0.06, correlation coefficient = 0.98) for plots A, B, C,
D and E; the b coefficients of these regression lines represent (bscale).
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10-3 and 10-4, respectively. The abscissa represents the logarithm of the inverse of the

steps plotted against log

∣∣∣∣ n

√∣∣det (BSMorder)
∣∣∣∣∣∣ (ordinate). In each plot, the 0th, 1st, 2nd, 3rd

and 4th orders were entered in order to calculate the linear regression. The logarithms

of the absolute values of the b coefficients of the above plots were used for estimating

the SIPL of the straight line, which were plotted (ordinate) against the logarithm of the

scales (abscissa). The SIPL was calculated as follows: SIPL = 1- (D), where (D) is the b

coefficient of the regression line.

Koch curve

Figure 5 presents the first set of the linear regression of the Koch curve at different

scales. There are 4 plots (A, B, C and D) related to 100,10-1, 10-2 and 10-3; three other

plots are presented in (Figure 6A, B and 6C) representing the 10-4, 10-5 and 10-6 scales,

respectively. The abscissa presents the logarithms of inverse of the steps (log(1/h))

which were plotted against log

∣∣∣∣ n

√∣∣det (BSMorder)
∣∣∣∣∣∣ (ordinate). In each plot, the 0th, 1st,

2nd, 3rd and 4th orders were entered in order to calculate the linear regression; the b

coefficients are presented in table 3. Figure 6-D presents the plot used for calculating

the SIPL (SIPL) of the Koch curve, where the logarithms of the absolute values of the

b coefficients(log|bscale|) of the above plots are plotted against the logarithms of the

scales (log(scale)). The slope of the regression line was -0.25994438, while the SIPL

Figure 5 Calculations of the scale-invariant power law coefficient of the Koch curve using the
CSSM method. The linear regression of the logarithm of the inverse of the steps (log(1/h)) is plotted
against the logarithm of the roots of the number of the points on the Koch curve to the absolute value of

the determinant of the basic square matrix
(

log

∣∣∣∣ n

√∣∣det (BSMorder)
∣∣∣∣∣∣
)
. Plot A: presents scale 1 (100), where

the 0th, 1st, 2nd, 3rd, 4th and 5th orders consist of 2, 5, 17, 65, 257 and 1025 points, respectively. B, C and D
present the other three scales: 10-1, 10-2 and 10-3. The linear regression analyses of the plots are as follows:
y = 0.58-0.777 x (standard error = 0.12, correlation coefficient = 0.98), y = 0.367-2.13 x (standard error =
1.23, correlation coefficient = 0.83), y = -0.577-3.153x (standard error = 3.24, correlation coefficient = 0.65,
and y = -15.45-8.67x (standard error = 2.85, correlation coefficient = 0.93) for plots A, B, C and D.
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Figure 6 Calculations of the scale-invariant power law coefficient of the Koch curve using the
CSSM method. The linear regression of the logarithm of the inverse of the steps (log(1/h)) is plotted
against the logarithm of the root of the number of the points on the Koch curve to the absolute value of

the determinant of the basic square matrix
(

log

∣∣∣∣ n

√∣∣det (BSMorder)
∣∣∣∣∣∣
)
. Plot A: presents scale 4 (10-4) where

the 0th, 1st, 2nd, 3rd and 4th orders consist of 2, 5, 17, 65, 257 and 1025 points, respectively. B and C present
the other two scales: 10-5 and 10-6. The linear regression analyses of the plots are as follows: y = -41.44-
15.187x (standard error = 2.36, correlation coefficient = 0.98), y = -73.81-19.81x (standard error = 5.02,
correlation coefficient = 0.96), y = -134.43-27.77x (standard error = 5.45 and correlation coefficient = 0.98)
for the A, B and C plots. D: presents the logarithms of the scales (log(scale)) plotted against the logarithms
of the absolute values of the b coefficients (log|bscale|) in the regression line for the data plotted in figure 3
(A, B, C and D). The regression line has a slope equal to zero as it is presented in a linear regression
(y = 0.017-0.26x: standard error = 0.12, correlation coefficient = 0.98).

Table 3 Koch curve orders and the related parameters used in calculating the
scale-invariant power law coefficient using CSSM.

Order # of Points at each
order

Scale Logarithm
(Scale)

b-coefficient of linear
regression

Logarithm of absolute b-
coefficient

0 2 10-1 -1 -2.1323166 0.328851688

1 5 10-2 -2 -3.1527369 0.49868773

2 17 10-3 -3 -8.6691842 0.937978231

3 65 10-4 -4 -15.187111 1.181475167

4 257 10-5 -5 -19.809067 1.296864021

5 1025 10-6 -6 -27.767092 1.44353039

The number of the orders, principal points and scales used in calculating the SIPL coefficient of the Koch curve using
the zero centro-axial skew-symmetrical matrix method and the b-coefficients of the regression lines are presented in this
table. The data are plotted between the logarithms of the nth root of the absolute value of the basic square matrix at

the order (where n is the number of principal points)

(
log

∣∣∣∣ n

√∣∣det (BSMorder)
∣∣∣∣∣∣
)

and the logarithms of the

inverse of step(log(1/h)). The logarithms of the absolute b-coefficients are plotted against the logarithms of the scales.
The calculations of the regression line of this plot were used in calculating the scale-invariant power law coefficient of
the Koch curve.
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was 1.25994438 calculated according to the equation SIPL = 1- (D). The analytical

fractal value deviation from that was -0.15177%.

Diffusion-limited aggregation

The fractal dimension of ABp-dc was 2.24 (standard error = 0.094; correlation coeffi-

cient = 0.99), and that of EMS-dc was 0.96 (standard error = 0.084; correlation coeffi-

cient = 0.96) (see Figure 7).

Developing embryo

The SIPL coefficients were 1.34176236 and 1.33912941 in ABp-dc and EMS-dc,

respectively; the regression line of the plotted data is presented in Figure 8.

Discussion
The primary data used in the fractal analysis of the morphological studies are the

lengths of the boundaries of the structure, which become more irregular with the

increase of scale or magnification [74]. In this study, the components of the Carte-

sian coordinates were used as the primary data in the calculation of the SIPL coeffi-

cient. The development of an embryo from a fertilized egg is a dynamic process with

space and time domains [75]. The spatio-temporal dynamics in developing embryos

have studied by several investigators; for example, Wu et al. evaluated fetal develop-

ment by plotting the fractal dimension of the brain surface at different stages of

development against the time of brain development (in weeks) [76], and a similar

approach was used by Schaffner and Ghesquiere in evaluating the complexity of type

1 astrotrocytes using the changes in the fractal dimensions during in vitro differen-

tiation of the cells against the time of cell culture [77]. A different approach was

taken to evaluating the changes in the value of the fractal dimension using it as a

function of time [78]. While self-similarity is a property of fractals [79], cells in the

developing C. elegans embryo migrate in a defined direction, becoming located in

specific positions as they move. At each stage, the position of each cells is entirely

different from the preceding and succeeding stages [70], so self-similarity does not

hold during the development of the ABp and EMS sublineages of the C. elegans

embryo. Fractal analysis was used in this study in order to confirm only the power

law property of the SIPL, not self-similarity.

Figure 7 The regression line of the fractal dimension calculated according to the diffusion-limited
aggregate method in the ABp and EMS lineages. This shows the plotted data of the log of the nuclear
number against the log of the circle the radius; the b coefficient of the slope of the regression line
represents the fractal dimension.
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The straight line and Koch curve

The SIPL coefficient of the straight line using this method was equal to the fractal

dimension using the box counting method, which is consistent with the analytical

value of the fractal dimension. The standard error of this regression line was zero. The

SIPL of the Koch curve was 1.25994438 with standard error and correlation coefficient

equal to 0.1214845 and 0.9810513, respectively. The deviation from the analytical frac-

tal dimension value was -0.15177%. The box counting method was reported to be the

most suitable and appropriate of the methods discussed by Mandelbrot for estimating

the fractal dimension [80] and it is the most popular one [81]. The criterion for select-

ing the method is based on the consistency of the fractal dimensions of the straight

line and Koch curve. Mola et al. used the box counting method to estimate the fractal

dimension of a Koch curve [82], and the results deviated by 2%. Applying the box

counting method in calculating the fractal dimension using the fractal dimension cal-

culator [83] resulted in a deviation from its analytical value of 6%. Cajueiro et al. used

an isometric grid and the result deviated by 0.25% from the analytical fractal value

[84]. Jiang et al. also used the box counting method and reported that 3, 4 and 5 recur-

sive calculations of the Koch curve resulted in fractal values of 1.212, 1.226 and 1.255

(3.8, 2.6 and 0.4% deviation from the analytical value: 1.26) [85], respectively. There-

fore, the consistency of the SIPL coefficient with the fractal dimension suggests the

power law property of SIPL. Moreover, a few studies have used the Cartesian coordi-

nates as the primary data set in calculating the fractal dimension [86,87], and reported

it to be difficult [88], though the use of Cartesian coordinates in field of morphogenesis

Figure 8 shows the regression line of the plotted data of the scale-invariant power law coefficient
in ABp and EMS lineages (one plot from each lineage as a sample). A: presents the scale-invariant
power law coefficient in ABp. The b coefficient of another regression line between (log|bscale|) and the
logarithm of the scale (log(scale))) was calculated, and the b coefficient of this regression line (bo) was
estimated. SIPLowas calculated according to this equation: SIPLo = 1-(D) where D is bo. B: presents the plots
of the scale-invariant power law coefficient calculations in the EMS lineage.
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has been reported [89]. Also, the application of different methods of fractal dimensions

in spatial classification has been considered useful [44], but in the development of the

embryo, the spatio-temporal events are more essential for dynamic studies [70].

Diffusion-limited aggregation (DLA)

While diffusion-limited aggregation is used to study aggregation in clusters of particles

in the time domain [79], morphogenesis in the developing embryo was studied using

the DLA model, which confirmed the fractal property of the developing embryo [90].

DLA was suggested for quantifying the fractal dimension of blood vessel formation in

the developing embryo [91] and other branching systems [92]. Therefore, it was used

in this study in order to compare it with SIPL in the developing embryo. DLA was

also used in the analysis of tumor vasculature [93,94], tumor growth [73,95-99] and in

vitro tumor spheroids [100]. The emergence of complex morphology in developing

organisms was reported to be caused by DLA [101]. An in vitro study of embryonic

retinal neurons showed a decrease in the number of neurite branches with an increase

in viscosity of the medium, which was interpreted as a DLA mechanism [102]. Vilela

et al. reported that DLA could be used in describing biological growth processes [103].

Therefore, it was used in this study in order to verify the feasibility of using SIPL in

the developing embryo.

DLA is a physical technique for describing the process of particle addition to a

growing cluster of particles resulting in a power model for their number [79]. The

fractal dimension calculated by DLA demonstrates the gradient of the diffusing sub-

stance toward the cluster [93]. Ryabov et al. reported that the gradient of these parti-

cles was proportional to the growth rate [104]. Therefore, the fractal dimension

measured by the DLA method represents the growth rate, where the DLA value indi-

cates that ABp grows more rapidly than EMS; this is also consistent with the SIPL

results. Moreover, the value of DLA in ABp and EMS is different from the value

estimated by SIPL, and the difference could be attributed to the feature of fractal

dimension measured by DLA [105]. On the other hand, the large difference in values

between ABp and EMS can be explained on the basis of the property of the DLA

model. Peker et al. reported that two types of cluster formation resulted from DLA:

the first underwent simultaneous aggregation-fragmentation processes or restructur-

ing during growth; in the other type, growth depended on the immediate environ-

ment of the position of the new particles [96]. In the developing embryo, ABp-dc

and EMS-dc can be considered as separate clusters, and the differentiating cells as

particles. In previous studies, the results showed that EMS-DC had earlier regionali-

zation, as the cells were tethered to neighboring cells by adhesion molecules [70],

which is consistent with the second type of cluster formation. On the other hand,

the cells (particles) of ABp-dc are separated into four groups, resulting in the spread

of the cells in all directions (x, y, z), hence the value of the fractal dimension

between 2 and 3 (which may indicate cell behavior similar to the first type of cluster

formation) compared with that of EMS-dc (between 0 and 1), as the cells moved in

one direction [70]. This analysis of ABp-dc is a consistent property of the fractal

dimension of DLA, where the fractal dimension is a function of time, and the rate of

aggregation is reduced as the cluster increases, as a result of spontaneous restructur-

ing [106].
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The developing embryo

A qualitative study was done on self-organization based on the expression of PAR-3,

PAR-6 and PKC-3 at the anterior pole of the C. elegans ovum with PAR-1 serine/

threonine kinase and the PAR-2 proteins resulting in anterio-posterior polarization of

the embryo [107]; also, there was self-organization at all biological hierarchy levels [1].

In fact, an in vitro study on gastrulation in isolated P1-descendent cells at the 26-cell

stage of the C. elegans embryo (tracked in the cultured isolated cells using a 4D video-

microscope) showed that the cells gastrulate similarly to those of the intact embryo

[108]. Also, a quantitative evaluation of the motion of the isolated cells using an in

vitro setting showed that the onset of cellular motion was similar to that in the intact

embryo (in vivo) and that the direction of the P1-descendent cells was also similar to

that of the in vivo tracked cells [108]. This may indicate that patterning is required

for cell population dynamics with the tendency of cells to associate with each other

during gastrulation resulting in self-organization [49]. For example, in the vertebrate

embryo, vascular patterning is essential for gastrulation movement [109]. On the other

hand, in invertebrates, a quantitative study on video microscopy tracked cells at the

early stages of C. elegans embryogenesis showed that their motion in the intact

embryo was non-random in both EMS and ABp sublineages [70]. In this investigation,

we showed that the SIPL coefficient of the EMS lineage is lower than that of the ABp,

which is consistent with previous findings about the forward migration index (an

index for chemotatic bias) [70]. Therefore, the lower value of the SIPL coefficient is

not due to a decline in the complexity [26] or decomplexication of the sublineage

[25], but shows that EMS-derived cells start to form an organized structure more

rapidly as they tend to regionalize earlier than those of ABp [70]. Tabony documented

that self-organization was not related to a single element such as the founder cells in

the C. elegans embryo, but arose from the non-linear dynamics of all the elements col-

lectively coupled to each other [110]. Schulze and Schierenberg revealed that embryo-

nic cell lineages of low complexity formed a single sublineage or generated a single

tissue type [111], as in the case of the E cell (from the EMS sublineage). Also, Quin-

tana et al. reported that the isolated cells should adhere to each other in order to

form an organized structure and suggested that a similar mechanism operated during

the early stages of embryogenesis [12].

The results of this investigation are consistent with previous calculations of the

diffusion coefficient, a physical parameter reported in a previous communication to

be lower in the EMS lineage than in ABp during the early stages of embryogenesis

in C. elegans [70]. Moskal and Payatakes reported that a decrease in the fractal

dimension indicated a reduction in the diffusion coefficient, so the lower scale-

invariant power law coefficient in the EMS lineage may indicate an overall slower

motion of EMS-derived than Abp-derived cells. A reduction in the fractal dimension

indicates a reduction in the Brownian diffusion coefficient [112], which possesses a

random walk property [113], so the results indicate that ABp cells moved more ran-

domly than those of EMS.

The values of the SIPL coefficients in ABp and EMS are 1.34176236 and 1.33912941,

respectively (small difference), but these values were taken from logarithmic regression

and their anti-logarithms are 21.97 and 21.83, respectively, which are higher than the

original values.
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Conclusion
The study demonstrates that self-organization takes place during the early stages of

embryogenesis, as confirmed by a scale-invariant power law method, calculated by using

a centro-axial skew symmetrical matrix. The latter was generated from the components

of the Cartesian coordinates. The SIPL coefficient results are consistent with DLA,

where the fd calculated by DLA indicated that the cells in ABp-dc behaved similarly to

type 1 cluster formation, while in EMS-dc they behaved similarly to that of type 2.

Appendix
The model used for evaluating the methodology has three points; each was assumed to

be a center of gravity of a nucleus of a cell with two neighboring cells. The Cartesian

coordinates of the cells were taken in two dimensions and the point of origin of the

Cartesian coordinates was translated sequentially to the centers of gravity of all the

cells. The x-and y-coordinates of the three cells were used for generating a(3 × 3) zero

centro-axial skew-symmetric square matrix (CSSM). Another matrix, a basic square

matrix (BSM), was constructed by multiplying the negative elements of the skew

matrix with the negative operator (-1), while the positive elements were multiplied by

the positive operator (+2). Then all the elements were multiplied by a scalar operator

(+2) and the determinants of the matrices were calculated using Matlab software

http://www.mathworks.com.

CSSM generation

There are two algorithms for generating CSSM. The first algorithm was accomplished

according to the model shown in Figure 9. The nuclei of the three cells (A, B, C) can be

seen. There are three states of translating the origin of the Cartesian coordinates (0, 0)

to the center of the gravity of each cell:

State 1:

The origin of the Cartesian coordinates is located at the center of nucleus A, and the

values of the coordinates for the cells are as follows:

The set of cells is (A, B, C) and the Cartesian coordinates are [(0, 0), (3, 7), (11, 2)]

Figure 9 The model presents the method for generating the zero centro-axial skew-symmetrical
matrix. This represents the schematic positions of the nuclei of three cells (A, B and C) in a two-
dimensional space, where the center of gravity of cell A is located at the origin of the Cartesian
coordinates. This was used to generate the array of the zero centro-axial skew-symmetrical matrix (CSSM)
for both the x and y components.
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State 2:

If we translate the origin of the Cartesian coordinates to the center of gravity of

cell B, the values will be as follows:

The set of cells is (A, B, C) and the Cartesian coordinates are [(-3, -7), (0, 0),

(8, -5)]

State 3:

Likewise for cell C:

The set of cells is (A, B, C) and the Cartesian coordinates are [(-11, -2), (-8, 5),

(0, 0)]

Table 4 presents the arrangement of the x-components, while table 5 presents

the y-components for the cells A, B and C in the three states. The array of

numbers in table 4 can be presented in this skew matrix, which represents the

x-component of the Cartesian coordinates of the centers of gravity of the nuclei

in A, B and C cells:

y =

⎡
⎣ 0 7 2

−7 0 −5
−2 5 0

⎤
⎦

Similarly, the array of the y-components in table 5 is presented in the following skew

matrix:

xycssmcombined =
[

0 −9312
9312 0

]

This is a zero centro-axial skew-symmetrical matrix (CSSM).

The second algorithm for CSSM generation was done as described in the methods

section. Initially, (1 × 3) matrices for the x-and the y-components [(0,3,11) and

(0,7,2), respectively] were used for generating the skew matrices. The CSSM were

generated:

xi,j = xi−1,j − xi−1,i (1)

yi,j = yi−1,j − yi−1,i (2)

Where i and j are indices for rows and columns, respectively.

In Euclidean space, the formula can be generalized into n-dimensional space where

n = 1, 2, 3, 4.....N, and N is a finite number.

xni,j = xn1−1,j − xni−1,i (3)

Table 4 The array of the x-coordinates of the three states of translation for the three
cells.

Distance of the center of the gravity from cell

TCC-CG of A B C

A cell (x-coordinate) 0 3 11

B cell (x-coordinate) -3 0 8

C cell (x-coordinate) -11 -8 0

TCC-CG: translation of the origin of the Cartesian coordinates to the center of gravity of the nucleus of either A, B or C.
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According to Hadley’s [114] notation, the skew symmetric matrices can be rewritten

as follows:

xa =

⎡
⎣ 0 3 11

−3 0 8
−11 −8 0

⎤
⎦

and

ya =

⎡
⎣ 0 7 2

−7 0 −5
−2 5 0

⎤
⎦

where the “a” subscript stands for anti-symmetric.

2-Construction of the basic square matrix

The basic square matrices (BSM) xBSM and yBSM were constructed by multiplying the

negative elements of the CSSM by operator (-2) and the positive element by (+4):

xBSM =

⎡
⎣ 0 12 44

6 0 32
22 16 0

⎤
⎦

and

yBSM =

⎡
⎣ 0 28 8

14 0 10
4 20 0

⎤
⎦

The determinants of the basic square matrices (and det(yBSM)) were 12672 and 3360,

respectively.

A 2 × 2 CSSM can be generated from the values of det(yBSM) by arranging them into

a (1 × 2) matrix in the form of [det(xBSM), det(yBSM)]. This matrix will then be input to

the CSSM generation routine and a BSM will be constructed from the CSSM.

For example, for the above values, the input matrix to the CSSM generation process

(as described above) will be [12672, 3360] and the CSSM will be (see table 6):

xyCSSMcombined =
[

0 −9312
9312 0

]

and the BSM Matrix will be:

xyCSSMcombined =
[

0 18624
37248 0

]

Table 5 The array of the y-coordinates of the three states of translation for the three
cells.

Distance of the center of the gravity
from cell

TCC-CG of A B C

A cell (y-coordinate) 0 7 2

B cell (y-coordinate) -7 0 -5

C cell (y-coordinate) -2 5 0

TCC-CG: translation of the origin of the Cartesian coordinates to the center of gravity of the nucleus of either A, B or C.
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Finally, the determinant of this matrix is -693706752.

List of abbreviations used
BSM: basic square matrix; CSSM: zero centro-axial skew-symmetrical matrix; dc: descendent cells, derived cells; det:
determinant of a matrix; DLA: diffusion-limited aggregation; fd: fractal dimension; SIPL: scale-invariant power law.

Acknowledgements
We would like to express our profound thanks and gratitude to: Professor Dr. Ralf Schnabel (Institut fur Genetik,
Technical University at Braunschweig, Germany), who provided the SIMI-BioCell software http://www.simi.com, and
The Welcome Trust Sanger Institute at Cambridge. Our gratitude should be extended to other investigators involved
in the development of both softwares, and to Mrs. H. AliAkbar for editing the manuscript. We would like to extend
my thanks to Dr. Seyed Ahmad Moussavi (Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat
Modares University) and Dr Amir Hussein Abbasi (Department of Physics, Faculty of Basic Sciences, Tarbiat Modares
University). The project is a self-funded investigation.

Author details
1College of Computer and Electrical Engineering, Shaheed Behshti University, Tehran, Iran. 2Department of Computer
Engineering, Sharif University of Technology, Tehran, Iran. 3Department of Anatomical Sciences, Faculty of Medical
Sciences, Tarbiat Modares University, Tehran, Iran.

Authors’ contributions
MT developed the software for generating the data of the components of the Cartesian coordinates and developed
the computational techniques in the study, AT contributed to the data analysis and other calculations, and to the
writing and organization of the paper. TT developed the theoretical framework, proposed computational techniques,
guided the study and led the writing and organization of the paper. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 3 September 2010 Accepted: 3 June 2011 Published: 3 June 2011

References
1. Halley JD, Winkler DA: Critical-like self-organization and natural selection: two facets of a single evolutionary

process? Biosystems 2008, 92:148-158.
2. Gerstman BS, Chapagain PP: Self-organization in protein folding and the hydrophobic interaction. J Chem Phys 2005,

123:054901.
3. Bagler G, Sinha S: Assortative mixing in Protein Contact Networks and protein folding kinetics. Bioinformatics 2007,

23:1760-7.
4. Morra G, Meli M, Colombo G: Molecular dynamics simulations of proteins and peptides: from folding to drug

design. Curr Protein Pept Sci 2008, 9:181-96.
5. Glick BS: Can the Golgi form de novo? Nat Rev Mol Cell Biol 2002, 3:615-9.
6. Thiele C, Huttner WB: Protein and lipid sorting from the trans-Golgi network to secretory granules-recent

developments. Semin Cell Dev Biol 1998, 9:511-6.
7. Martin W, Russell MJ: On the origins of cells: a hypothesis for the evolutionary transitions from abiotic

geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil Trans R Soc Lond B
Biol Sci 2003, 358(1429):59-83.

8. Kunda P, Baum B: The actin cytoskeleton in spindle assembly and positioning. Trends Cell Biol 2009, 19:174-9.
9. Guérin T, Prost J, Martin P, Joanny JF: Coordination and collective properties of molecular motors: theory. Curr Opin

Cell Biol 2010, 22:14-20.
10. Misteli T: The concept of self-organization in cellular architecture. J Cell Biol 2001, 155:181-5.
11. Maeda TT, Ajioka I, Nakajima K: Computational cell model based on autonomous cell movement regulated by cell-

cell signalling successfully recapitulates the “inside and outside” pattern of cell sorting. BMC Syst Biol 2007, 1:43-59.
12. Quintana L, Muiños TF, Genove E, Del Mar Olmos M, Borrós S, Semino CE: Early tissue patterning recreated by mouse

embryonic fibroblasts in a three-dimensional environment. Tissue Eng Part A 2009, 15:45-54.
13. Green JB, Dominguez I, Davidson LA: Self-organization of vertebrate mesoderm based on simple boundary

conditions. Dev Dyn 2004, 231:576-81.

Table 6 The (2 × 2) array generated by translation of two points (det(xBSM) and (det
(yBSM)) on the real axis to the origin of real axis.

Translation of point on origin of the real axis det(xBSM) det(yBSM)

det(xBSM) 0 -9312

det(yBSM) 9312 0

det(xBSM) is the determinant of the basic square matrix (BSM) constructed from the zero-centro-axial skew-symmetrical
matrix (CSSM) presented in table 1.

det(yBSM) is the determinant of the basic square matrix (BSM) constructed from the zero centro-axial skew-symmetrical
matrix (CSSM) presented in table 2.

Tiraihi et al. Theoretical Biology and Medical Modelling 2011, 8:17
http://www.tbiomed.com/content/8/1/17

Page 21 of 24

http://www.simi.com
http://www.ncbi.nlm.nih.gov/pubmed/18353531?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18353531?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16108687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17519248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18393887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18393887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12154372?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9835638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9835638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19285869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20074926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11604416?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17883828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17883828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19025338?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19025338?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15376320?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15376320?dopt=Abstract


14. Meinhardt H: Organizer and axes formation as a self-organizing process. Int J Dev Biol 2001, 45:177-88.
15. ten Berge D, Koole W, Fuerer C, Fish M, Eroglu E, Nusse R: Wnt signaling mediates self-organization and axis

formation in embryoid bodies. Cell Stem Cell 2008, 3:508-18.
16. Ungrin MD, Joshi C, Nica A, Bauwens C, Zandstra PW: Reproducible, ultra high-throughput formation of multicellular

organization from single cell suspension-derived human embryonic stem cell aggregates. PLoS ONE 2008, 3:e1565.
17. Schiffmann Y: Induction and the Turing-Child field in development. Prog Biophys Mol Biol 2005, 89:36-92.
18. Su TT: The regulation of cell growth and proliferation during organogenesis. In Vivo 2000, 14:141-8.
19. Kaneko K, Sato K, Michiue T, Okabayashi K, Danno H, Asashima M: Developmental potential for morphogenesis in

vivo and in vitro. J Exp Zool B Mol Dev Evol 2008, 310:492-503.
20. Wei C, Larsen M, Hoffman MP, Yamada KM: Self-organization and branching morphogenesis of primary salivary

epithelial cells. Tissue Eng 2007, 13:721-35.
21. Schmidt-Ott KM: ROCK inhibition facilitates tissue reconstitution from embryonic kidney cell suspensions. Kidney Int

2010, 77:387-9.
22. Beloussov LV, Kazakova NI, Luchinskaia NN, Novoselov VV: Studies in developmental cytomechanic. Int J Dev Biol 1997,

41:793-9.
23. Mara A, Holley SA: Oscillators and the emergence of tissue organization during zebra fish somitogenesis. Trends Cell

Biol 2007, 17:593-9.
24. Riedel-Kruse IH, Müller C, Oates AC: Synchrony dynamics during initiation, failure, and rescue of the segmentation

clock. Science 2007, 317(5846):1911-1915.
25. Waliszewski P, Molski M, Konarski J: On the holistic approach in cellular and cancer biology: nonlinearity, complexity,

and quasi-determinism of the dynamic cellular network. J Surg Oncol 1998, 68:70-8.
26. Kurakin A: Scale-free flow of life: on the biology, economics, and physics of the cell. Theor Biol Med Model 2009,

6:6-34.
27. Lee S-H, Pak HK, Wi HS, Matsumoto T: Growth dynamics of domain pattern in a three-trophic population model.

Phys A 2004, 334:233-242.
28. Molski M, Konarski J: Tumor growth in the space-time with temporal fractal dimension. Chaos, Solitons and Fractals

2008, 36:811-818.
29. Sawant PD, Nicolau DV: Line and two-dimensional fractal analysis of micrographs obtained by atomic force

microscopy of surface-immobilized oligonucleotidenano-aggregates. App Phys Let 2005, 87:223117-9.
30. Bolliger J, Sprott JC, Mladenoff DJ: Self-organization and complexity in historical landscape patterns. OIKOS 2003,

100:541-553.
31. Papageorgiou S, Venieratos D: A reaction-diffusion theory of morphogenesis with inherent pattern invariance under

scale variations. J Theor Biol 1983, 100:57-79.
32. Wearne SL, Rodriguez A, Ehlenberger DB, Rocher AB, Henderson SC, Hof PR: New techniques for imaging, digitization

and analysis of three-dimensional neural morphology on multiple scales. Neurosci 2005, 136:661-80.
33. Gisiger T, Scale invariance in biology: coincidence or footprint of auniversal mechanism? Biol Rev Camb Philos Soc

2001, 76:161-209.
34. Pérez MA, Prendergast PJ: Random-walk models of cell dispersal included in mechanobiological simulations of

tissue differentiation. J Biomech 2007, 40:2244-53.
35. Zhang K, Sejnowski TJ: A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl

Acad Sci USA 2000, 97:5621-6.
36. West GB: The Origin of Universal Scaling Laws in Biology. Physica A 1999, 263:104-113.
37. West GB, Brown JH, Enquist BJ: The fourth dimension of life: fractal geometry and allometric scaling of organisms.

Science 1999, 284:1677-1679.
38. Feitzinger JV, Galinski T: The fractal dimension of star-forming in galaxies. Astron Astrophys 1987, 179:249-254.
39. El Naschie ME: A review of E infinity theory and the mass spectrum of high energy particle physics. Chaos, Solitons

and Fractals 2004, 19:209-236.
40. Liebovitch LS, Todorov AT: Using fractals and nonlinear dynamics to determine the physical properties of ion

channel proteins. Crit Rev Neurobiol 1996, 10:169-87.
41. Vélez PE, Garreta LE, Martínez E, Díaz N, Amador S, Tischer I, Gutiérrez JM, Moreno PA: The Caenorhabditis elegans

genome: a multifractal analysis. Genet Mol Res 2010, 9:949-65.
42. Mathur SK, Doke AM, Sadana A: Identification of hair cycle-associated genes from time-course gene expression

profile using fractal analysis. Int J Bioinform Res Appl 2006, 2:249-58.
43. Shaw S, Shapshak P: Fractal genomics modeling: a new approach to genomic analysis and biomarker discovery.

Proc IEEE Comput Syst Bioinform Conf 2004, 9-18.
44. Jelinek HF, Fernandez E: Neurons and fractals: how reliable and useful are calculations of fractal dimensions? J

Neurosci Methods 1998, 81:9-18.
45. Waliszewski P, Konarski J: Tissue as a self-organizing system with fractal dynamics. Adv Space Res 2001, 28:545-8.
46. Weibel ER: Fractal geometry: a design principle for living organisms. Am J Physiol 1991, 261(6 Pt 1):L361-9.
47. Landini G, Misson GP, Murray PI: Fractal analysis of the normal human retinal fluorescein angiogram. Curr Eye Res

1993, 12:23-7.
48. Karshafian R, Burns PN, Henkelman MR: Transit time kinetics in ordered and disordered vascular trees. Phys Med Biol

2003, 48:3225-37.
49. Phillips CG, Kaye SR: Diameter-based analysis of the branching geometry of four mammalian bronchial trees. Respir

Physiol 1995, 102:303-16.
50. West GB, Woodruff WH, Brown JH: Allometric scaling of metabolic rate from molecules and mitochondria to cells

and mammals. Proc Natl Acad Sci USA 2002, 99(Suppl 1):2473-8.
51. Savage VM, Allen AP, Brown JH, Gillooly JF, Herman AB, Woodruff WH, West GB: Scaling of number, size, and

metabolic rate of cells with body size in mammals. Proc Natl Acad Sci USA 2007, 104:4718-23.
52. West GB, Brown JH: The origin of allometric scaling laws in biology from genomes to ecosystems: towards a

quantitative unifying theory of biological structure and organization. J Exp Biol 2005, 208(Pt 9):1575-92.

Tiraihi et al. Theoretical Biology and Medical Modelling 2011, 8:17
http://www.tbiomed.com/content/8/1/17

Page 22 of 24

http://www.ncbi.nlm.nih.gov/pubmed/11291845?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18983966?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18983966?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18270562?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18270562?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15826672?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10757071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18553388?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18553388?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17341161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17341161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20150939?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9449455?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17988868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17702912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17702912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9624035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9624035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19416527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6834861?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6834861?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11396846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17173925?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17173925?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10792049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10356399?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8971128?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8971128?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20506082?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20506082?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18048164?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18048164?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9696304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11799986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1767856?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8436007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14579862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8904021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11875197?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11875197?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17360590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17360590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15855389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15855389?dopt=Abstract


53. Gillooly JF, Charnov EL, West GB, Savage VM, Brown JH: Effects of size and temperature on developmental time.
Nature 2002, 417(6884):70-3.

54. Gillooly JF, Londoño GA, Allen AP: Energetic constraints on an early developmental stage: a comparative view. Biol
Lett 2008, 4:123-6.

55. Mahmood I: Theoretical versus empirical allometry: Facts behind theories and application to pharmacokinetics. J
Pharm Sci 2010, 99:2927-33.

56. Mahmood I: Evaluation of a morphine maturation model for the prediction of morphine clearance in children:
how accurate is the predictive performance of the model? Br J Clin Pharmacol 2011, 71:88-94.

57. Goteti K, Garner CE, Mahmood I: Prediction of human drug clearance from two species: a comparison of several
allometric methods. J Pharm Sci 2010, 99:1601-13.

58. Grandison S, Morris RJ: Biological pathway kinetic rate constants are scale-invariant. Bioinformatics 2008, 24:741-3.
59. Ogasawara O, Okubo K: On theoretical models of gene expression evolution with random genetic drift and natural

selection. PLoS One 2009, 4:e7943.
60. Furusawa C, Kaneko K: Zipf’s Law in Gene Expression. Phys Rev Lett 2003, 90:088102.
61. Halley JM, Hartley S, Kallimanis AS, Kunin WE, Lennon JJ, Sgardelis SP: Uses and abuses of fractal methodology in

ecology. Ecology Lett 2004, 7:254-271.
62. Milosevic NT, Ristanovic D: Fractal and nonfractal properties of triadic Koch curve. Chaos, Solitons and Fractals 2007,

34:1050-1059.
63. Yochem J, Herman RK: Investigating C. elegans development through mosaic analysis. Dev 2003, 130:4761-8.
64. Labouesse M, Mango SE: Patterning the C. elegans embryo: moving beyond the cell lineage. Trends Genet 1999,

15:307-13.
65. Goldstein B, Hird SN, White JG: Cell polarity in early C. elegans development. Dev Suppl 1993, 279-87.
66. Irle T, Schierenberg E: Developmental potential of fused Caenorhabditis elegans oocytes: generation of giant and

twin embryos. Dev Genes Evol 2002, 212:257-66.
67. Jaensch S, Decker M, Hyman AA, Myers EW: Automated tracking and analysis of centrosomes in early Caenorhabditis

elegans embryos. Bioinformatics 2010, 26:i13-20.
68. Bao Z, Murray JI, Boyle T, Ooi SL, Sandel MJ, Waterston RH: Automated cell lineage tracing in Caenorhabditis elegans.

Proc Natl Acad Sci USA 2006, 103:2707-12.
69. Bischoff M, Schnabel R: A posterior centre establishes and maintains polarity of the Caenorhabditis elegans embryo

by a Wnt-dependent relay mechanism. PLoS Biol 2006, 4:e396.
70. Tiraihi A, Tiraihi T: Early onset of regionalization in EMS lineage of C. elegans embryo: a quantitative study.

Biosystems 2007, 90:676-86.
71. Simi Reality Motion Systems GmbH. [http://www.simi.com].
72. The Welcome Trust Sanger Institute at Cambridge, UK. [http://www.sanger.ac.uk/Software/Angler/].
73. Moatamed F, Sahimi M, Naeim F: Fractal dimension of the bone marrow in metastatic lesions. Hum Pathol 1998,

29:1299-303.
74. Gisiger T: Scale invariance in biology: coincidence or footprint of a universal mechanism? Biol Rev Camb Philos Soc

2001, 76:161-209.
75. Nottale L: Scale relativity and fractal space-time: theory and applications. In: the evolution and development of the

universe. In In The first international conference on the evolution and development of the universe, 8-9 October 2008,
Ecolenormalesupérieure, Paris Edited by: Vidal C 2008, 1-65.

76. Wu YT, Shyu KK, Chen TR, Guo WY: Using three-dimensional fractal dimension to analyze the complexity of fetal
cortical surface from magnetic resonance images. Nonlinear Dynamics 2009, 58:745-752.

77. Schaffner AE, Ghesquiere A: The effect of type 1 astrocytes on neuronal complexity: a fractal analysis. Methods 2001,
24:323-329.

78. Parsons-Wingerter P, Elliott KE, Farr AG, Radhakrishnan K, Clark JI, Sage EH: Generational analysis reveals that TGF-
beta1 inhibits the rate of angiogenesis in vivo by selective decrease in the number of new vessels. Microvasc Res
2000, 59:221-32.

79. Meakin P: Fractal structures. Prog Solid St Chem 1990, 20:135-233.
80. Foroutan-pour K, Dutilleul P, Smith DL: Advances in the implementation of the box-counting method of fractal

dimension estimation. Appl Math Comput 1999, 105:195-210.
81. Buczkowski S, Kyriacos S, Nekka F, Cartilier L: The modified box-counting method: Analysis of some characteristic

parameters. Pattern Recognition 1998, 31:411-418.
82. Mola MM, Haddad R, Hill S: Fractal flux jumps in the organic superconducting crystal. Solid State Commun 2006,

127:611-614.
83. Elert G: The Chaos Hypertextbook™ 1995-2007[http://hypertextbook.com/chaos/33.shtml].
84. Cajueiro DO, de A Sampaio VA, de Castilho CMC, Andrade RFS: Fractal properties of equipotentials close to a rough

conducting surface. J Phys Condens Matter 1999, 11:4985-4992.
85. Jiang Y, Tanabashi Y, Li B, Xiao J: Influence of geometrical distribution of rock joints on deformational behavior of

underground opening. Tunnel Underground Space Technol 2006, 21:485-491.
86. Costa LdF, Barbosa MS, Manoel ETM, Streicher J, Muller GB: Mathematical characterization of three-dimensional gene

expression patterns. Bioinform 2004, 20:1653-1662.
87. Peng T, Feng Z: The box-counting measure of the star product surface. Intl J Nonlinear Sci 2008, 6:281-288.
88. Wegman EJ, Solka JL: On some mathematics for visualising high dimensional data. Indian J Statistics 2002, 64(Series

A, 2):429-452.
89. Goodall N, Kisiswa L, Prashar A, Faulkner S, Tokarczuk P, Singh K, Erichsen JT, Guggenheim J, Halfter W, Wride MA: 3-

Dimensional modelling of chick embryo eye development and growth using high resolution magnetic resonance
imaging. Exp Eye Res 2009, 89:511-21.

90. Blazsek I, Innate chaos I: The origin and genesis of complex morphologies and homeotic regulation. Biomed
Pharmacother 1992, 46:219-35.

91. Tsonis AA, Tsonis PA: Fractals: a new look at biological shape and patterning. Perspect Biol Med 1987, 30:355-60.
92. Fleury V: Branching morphogenesis in a reaction-diffusion model. Phys Rev E 2000, 61:4156-4160.

Tiraihi et al. Theoretical Biology and Medical Modelling 2011, 8:17
http://www.tbiomed.com/content/8/1/17

Page 23 of 24

http://www.ncbi.nlm.nih.gov/pubmed/11986667?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17999943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20127826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21143504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21143504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19827101?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19827101?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18238786?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19936214?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19936214?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12633463?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10431192?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12111210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12111210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20529897?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20529897?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16477039?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17121454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17121454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17467890?dopt=Abstract
http://www.simi.com
http://www.sanger.ac.uk/Software/Angler/
http://www.ncbi.nlm.nih.gov/pubmed/9824111?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11396846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11465997?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10684728?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10684728?dopt=Abstract
http://hypertextbook.com/chaos/33.shtml
http://www.ncbi.nlm.nih.gov/pubmed/19540232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19540232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19540232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1467450?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3588239?dopt=Abstract


93. Baish JW, Jain RK: Fractals and cancer. Cancer Res 2000, 60:3683-8.
94. Baish JW, Jain RK: Cancer, angiogenesis and fractals. Nat Med 1998, 4:984.
95. Sander LM, Deisboeck TS: Growth patterns of microscopic brain tumors. Phys Rev E Stat Nonlin Soft Matter Phys 2002,

66(5 Pt 1):051901.
96. Hatzikirou H, Deutch A: Mathematical modeling of glioblastoma tumor development: a review. Math Mod and

MethAppl 2005, 15:1779-1794.
97. Stein AM, Demuth T, Mobley D, Berens M, Sander LM: A mathematical model of glioblastoma tumor spheroid

invasion in a three-dimensional in vitro experiment. Biophys J 2007, 92:356-65.
98. Flores-Ascencio S, Perez-Meana H, Nakano-Miyatake M: A three dimensional growth model for primary cancer. The

Fourth International Kharkov Symposium on Physics and Engineering of Millimeter and Sub-Millimeter Waves: 4-9 June 2001;
Kharkov, Ukraine 241-243.

99. Dobrescu R, Ichim L, Mocanu S, Popa S: A fractal model for simulation of biological growth processes. 9th WSEAS Int.
Conf. on Mathematics and Computer in Biology and Chemistry (MCBC 2008): June 24-26, 2008; Bucharest, Romania 2008,
88-93.

100. Engelberg JA, Ropella GE, Hunt CA: Essential operating principles for tumorspheroid growth. BMC SystBiol 2008,
2:110-119.

101. Blazsek I: Innate chaos: I. The origin and genesis of complex morphologies and homeotic regulation. Biomed
Pharmacother 1992, 46:219-35.

102. Caserta F, Hausman RE, Eldred WD, Kimmel C, Stanley HE: Effect of viscosity on neurite outgrowth and fractal
dimension. Neurosci Lett 1992, 136:198-202.

103. Vilela MJ, Martins ML, Boschetti SR: Fractal patterns for cells in culture. J Pathol 1995, 177:103-7.
104. Ryabov AB, Postnikov EB, Loskutov AYu: Diffusion-Limited Aggregation: A Continuum Mean Field Model. J Exp Theort

Phys 2005, 101:253-258.
105. Kajiwara K: Structure of gels. In Gels handbook. Edited by: Kajiwara K, Osada Y. San Deigo: Academic press;

2001:122-171.
106. Peker SM, Helvacı SS, Yener B, İkizler B, Alp A: The Particulate Phase: A Voyage from the Molecule to the Granule. In

Solid-liquid two phase flow. Edited by: Peker SM, Helvacı SS. Amsterdam: Elsevier; 2008:1-70.
107. Zallen JA, Blankenship JT: Multicellular dynamics during epithelial elongation. Semin Cell Dev Biol 2008, 19:263-270.
108. Lee J-Y, Goldstein B: Mechanisms of cell positioning during C. elegansgastrulation. Dev 2003, 130:307-320.
109. Fleury V, Unbekandt M, Al-Kilani A, Nguyen TH: The textural aspects of vessel formation during embryo

development and their Relation to gastrulation movements. Organogenesis 2007, 3:49-56.
110. Tabony J: Historical and conceptual background of self-organization by reactive processes. Biol Cell 2006,

98:589-602.
111. Schulze J, Schierenberg E: Embryogenesis of Romanomermisculicivorax: an alternative way to construct a

nematode. Dev Biol 2009, 334:10-21.
112. Moskal A, Payatakes AC: Estimation of the diffusion coefficient of aerosol particle aggregates using Brownian

simulation in the continuum regime. Aerosol Sci 2006, 37:1081-1101.
113. Wong A, Wu L, Gibbons PB, Faloutsos C: Fast estimation of fractal dimension and correlation integral on stream

data. Inform Process Let 2005, 93:91-97.
114. Hadley G: Linear algebra Reading: Addison-Wesley; 1961.

doi:10.1186/1742-4682-8-17
Cite this article as: Tiraihi et al.: Self-organization of developing embryo using scale-invariant approach.
Theoretical Biology and Medical Modelling 2011 8:17.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Tiraihi et al. Theoretical Biology and Medical Modelling 2011, 8:17
http://www.tbiomed.com/content/8/1/17

Page 24 of 24

http://www.ncbi.nlm.nih.gov/pubmed/10919633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9734371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12513517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17040992?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17040992?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1467450?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1641191?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1641191?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7472773?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18343171?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19279700?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19279700?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16968216?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19523940?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19523940?dopt=Abstract

	Abstract
	Background
	Methods
	Results and conclusion

	Background
	Materials and methods
	The concepts of CSSM and BSM
	The scale invariant power law
	Analytical descriptions of CSSM and BSM
	CSSM
	BSM

	Descriptions of the biological data
	Experimental setting
	Straight line
	Koch curve
	Assessment of validity
	Programming languages

	Results
	Straight line
	Koch curve
	Diffusion-limited aggregation
	Developing embryo

	Discussion
	The straight line and Koch curve
	Diffusion-limited aggregation (DLA)
	The developing embryo

	Conclusion
	Appendix
	CSSM generation

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


