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Adult-type granulosa cell tumors (AGCTs) are sex-cord derived neoplasms with a propensity for late re-
lapse. Hormonal modulators have been used empirically in the treatment of recurrent AGCT, albeit with 
limited success. To provide a more rigorous foundation for hormonal therapy in AGCT, we used a multi-
modal approach to characterize the expressions of key hormone biomarkers in 175 tumor specimens and 
51 serum samples using RNA sequencing, immunohistochemistry, RNA in situ hybridization, quantitative 
PCR, and circulating biomarker analysis, and correlated these results with clinical data. We show that 
FSH receptor and estrogen receptor beta (ERβ) are highly expressed in the majority of AGCTs, whereas 
the expressions of estrogen receptor alpha (ERα) and G-protein coupled estrogen receptor 1 are less prom-
inent. ERβ protein expression is further increased in recurrent tumors. Aromatase expression levels show 
high variability between tumors. None of the markers examined served as prognostic biomarkers for 
progression-free or overall survival. In functional experiments, we assessed the effects of FSH, estradiol 
(E2), and the aromatase inhibitor letrozole on AGCT cell viability using 2 in vitro models: KGN cells and 
primary cultures of AGCT cells. FSH increased cell viability in a subset of primary AGCT cells, whereas 
E2 had no effect on cell viability at physiological concentrations. Letrozole suppressed E2 production in 
AGCTs; however, it did not impact cell viability. We did not find preclinical evidence to support the clinical 
use of aromatase inhibitors in AGCT treatment, and thus randomized, prospective clinical studies are 
needed to clarify the role of hormonal treatments in AGCTs.

© Endocrine Society 2020.
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Adult-type granulosa cell tumors (AGCTs) are sex cord stromal tumors representing 3% to 
5% of ovarian malignancies. A defining feature of AGCTs is a somatic mutation (c0.402C > G; 
p.C134W) in the FOXL2 gene, which is thought to play a pivotal role in oncogenesis [1]. 
These tumors are characterized by slow growth and a generally favorable prognosis, with 
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a 10-year survival of 84% [2]. Up to 30% of patients diagnosed with AGCT experience a 
late relapse. The mainstay of treatment for AGCT is surgical resection, but improved med-
ical therapies are needed for advanced and relapsed disease. Current chemotherapeutic 
regimens show limited efficacy [3], and no prospectively validated targeted therapies exist 
for this unique tumor type.

AGCTs secrete estradiol (E2), inhibin B, and anti-Müllerian hormone, and tumor hor-
mone production accounts for many of the signs and symptoms of the disease [4–6]. AGCTs 
are known to express certain hormone receptors [7–9], but the importance of hormonal 
signaling in AGCT progression remains uncertain. Hormonal therapies, such as GnRH-
analogues and aromatase inhibitors, have been used empirically in AGCT with limited ef-
ficacy [10, 11]; however, the biological foundation for these treatments has not been clearly 
established.

Clinically, AGCTs are often diagnosed at perimenopause when gonadotropin levels rap-
idly increase, and FSH signaling has been proposed to be 1 of the main drivers of AGCT 
growth [12]. In normal granulosa cells, FSH promotes cell proliferation by cAMP-mediated 
signaling cascades, leading to increased aromatase (CYP19A1) expression and elevated 
serum E2 levels, essential for normal ovarian function [13, 14]. The gene expression profile 
of AGCTs has been shown to mimic that of FSH-stimulated granulosa cells [15], suggesting 
that this gonadotropin signaling pathway is active in these neoplasms. Regarding CYP19A1, 
FSH is known to increase its mRNA levels via specific transcription factors, and FOXL2 has 
been shown to act as a direct regulator of this gene [16]. Data concerning the expression and 
functionality of CYP19A1 in AGCTs are scarce, although the ability of AGCTs to secrete E2 
implies its increased activity in tumor tissue.

Estrogens are known to exert strong mitogenic effects in breast and endometrial cancers 
[17, 18] and to inhibit apoptosis in normal granulosa cells [19], but their impact on AGCT pro-
liferation is less clear. The effects of E2 are mediated through two distinct nuclear receptors 
estrogen receptor-α (ERα) and -β (ERβ), both expressed in AGCTs [20, 21]. Additionally, E2 
can act through a membrane-bound G-protein linked estrogen receptor (GPER1) that has 
been observed in AGCTs [22]. The expression levels, prognostic implications, and functional 
roles of FSH, CYP19A1, and E2 in AGCTs have not been reported.

Here, using a multimodal approach that combines next-generation sequencing, quan-
titative real-time PCR (qPCR), RNA in situ hybridization, and immunohistochemistry 
(IHC), we profile the expression of the FSH receptor (FSHR), estrogen receptors (ERα, 
ERβ, GPER1), and CYP19A1 in a large cohort of FOXL2 mutation-positive AGCTs with 
rich clinical and follow-up data. We augment this expression profiling with measurements 
of hormone levels in 51 preoperative serum samples. In functional analyses, we show that 
FSH increases CYP19A1 expression and E2 production in an established AGCT cell line 
(KGN) and in primary cultures of AGCT cells. We demonstrate that stimulation with FSH 
increased cell viability in a subset of primary AGCT cells, whereas E2 had a similar effect 
only at high concentrations. Our results thus indicate a specific pattern of hormonal de-
pendency in AGCTs and support the further clinical exploration of hormonal modulators in 
the treatment of AGCT.

1.  Materials and Methods

A.  Patients and Samples

Patient and sample data are shown in Tables 1 and 2. All of the AGCTs tested positive 
for the FOXL2 (c0.402C > G; p.C134W) mutation, and histological diagnoses were verified 
by an expert pathologist (R.B.). We performed RNA sequencing of freshly frozen tissue 
from 6 primary and 4 recurrent tumors. We constructed a tumor tissue microarray (TMA) 
containing quadruple cores from 121 primary and 54 recurrent AGCTs from representative 
formalin-fixed, paraffin embedded samples (Table 1). Nine tumor samples were available 
both as freshly frozen tissue and formalin-fixed, paraffin embedded. For controls, normal 
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ovaries (n = 4) were obtained from women undergoing ovariectomy for benign indications. 
Serum samples from 47 AGCT patients were collected before surgery for either primary or 
recurrent AGCT (Table 2). Short-term primary tumor cell cultures were established from 
fresh AGCT samples from 6 patients (Table 3). Three samples of pooled human granulosa-
luteal (hGL) cells were obtained from women undergoing in vitro fertilization treatment 
at the Department of Obstetrics and Gynecology, Helsinki University Hospital. Informed 
consent was obtained from patients who donated blood or fresh AGCT tumor samples for 
the study. The ethics committee of Helsinki University Central Hospital and the National 
Supervisory Authority for Welfare and Health in Finland approved this study.

B.  Serum Analyses

Preoperative samples were obtained from 47 AGCT patients (Table 2) within a month before 
surgery and prepared and stored at -80°C until the analysis. All the studied serum markers 
(FSH, E2, and inhibin B) were measured in the HUSLAB hospital clinical laboratory: 

Table 1.  Clinicopathologic Data of the (A) Patients and (B) Samples in the Tumor Tissue 
Microarray (TMA)

A Patients n = 138 n (% of Total)

Age at diagnosis, yearsa 53 (26–81)
Tumor stage at diagnosis
  I 126 (91)
  II 8 (6)
  III 1 (1)
  n/a 3 (2)
Follow-up time, yearsa 15.0 (0.7–42.3)
Recurrence
  Yes 51 (37)
  No 87 (63)
Survival
  Alive 91 (66)
  Dead of AGCT 24 (17)
  Dead of other 23 (17)
B Tumor characteristics n = 175 n (% of total)
  Primary 121 (69)
  Recurrent 54 (31)
Microscopic pattern
  Better-differentiated 72 (41)
  Less-differentiated 98 (56)
  n/a 5 (3)
Tumor size
  <10 cm 103 (59)
  ≥10 cm 70 (40)
  n/a 2 (1)
Nuclear atypia
  High 50 (29)
  Low 121 (69)
  n/a 4 (2)
Mitotic index
  High 48 (27)
  Low 123 (70)
  n/a 4 (2)
MP status at sample retrieval
  Premenopausal 50 (29)
  Postmenopausal 124 (71)
  n/a 1 (0.5)

aMedian (range)
MP = menopause; n/a = not available.
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automated immunoassays for FSH [23] and E2 [24] and ELISA for inhibin B [25]. All the 
samples were classified as follows according to the patient’s menopausal status at sample 
retrieval: “premenopausal” if the patient had 1 or 2 ovaries and menopause was not indi-
cated in the medical records and “postmenopausal” if both ovaries had been removed, inde-
pendent of age, or if the patient was postmenopausal according to her medical history.

C.  RNA Sequencing

Freshly frozen AGCT tissue samples (n = 10) were lysed in RP1 lysis buffer and homogenized 
using a Precellys Lysing Kit and tissue homogenizer (Bertin Technologies, France). Total 
RNA was extracted from tumor samples according to the manufacturer’s instructions and 
further purified with RNA purification kit (Nucleospin RNA/protein kit and RNA Clean 
up kit, Macherey-Nagel, Düren, Germany). RNA integrity was verified using Agilent 2100 
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

Poly (A)-containing mRNA molecules were purified from total RNA and fragmented 
into approximately 140- to 160-bp pieces using a standard fragmentation reagent. cDNA 
was generated using a first-strand using random hexamer-primed reverse transcription, 
followed by a second-strand cDNA synthesis and cDNA purification using a standard 
purification kit. The synthesized cDNA was subjected to end repair by adding an “A,” 
followed by the 3′ end adenylation. cDNA fragments were amplified using standard 
PCR and the products were purified. Libraries were quantified and qualified using 
Bioanalyzer 2100 (Agilent Technologies, CA, USA) and the ABI StepOnePlus Real-Time 
PCR System (Applied Biosystems, CA, USA). The libraries were paired-end sequenced 
(read length 100 bp) in a single lane using the Illumina HiSeq X ten system (Illumina, 
Inc, CA, USA). Library construction and sequencing were both performed in BGI Tech 
Solutions (Hong Kong).

The RNA-Sequencing (RNA-Seq) reads were processed and analyzed with SePIA [26] 
on the Anduril framework [27]. After trimming, reads shorter than 20 bp were discarded. 
Reads were quantified with Kallisto (v0.44.0) [28] using GENECODE (v25, GRCh38) [29] 
followed by tximport (v1.6.0) [30]. Limma (v3.38.3) [31] was used for batch correction and 
edgeR (v3.24.3) [32] for differential expression analysis. In differential expression analysis, 
false discovery rate < 0.25 was used as a threshold for statistical significance.

Table 2.  Clinicopathologic Data of the (A) Patients and (B) Samples in the Serum Analysis

A Patients n = 47 n (%)

Age at diagnosis, yearsa 56 (26–80)
Tumor stage at diagnosis
  I 47 (100)
Follow-up time, yearsa 5.3 (0.4–20.9)
  Recurrence
  Yes 19 (40)
  No 24 (51)
  n/a 4 (9)
B Samples n = 51 n (%)
  Primary 31 (61)
  Recurrent 20 (39)
Tumor size
  <10 cm 24 (47)
  ≥10 cm 15 (29)
  n/a 12 (24)
MP status at sample retrieval
  Premenopausal 10 (20)
  Postmenopausal 41 (80)

a Median (range)
MP = menopause; n/a = not available.
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D.  Immunostaining

The AGCT TMA and normal ovary tissue sections were subjected to IHC as described [33]. 
Staining was performed using mouse monoclonal antibody for CYP19A1 [34], rabbit mon-
oclonal antibody for ERα [35], and mouse monoclonal antibody for ERβ [36]. Samples were 
scored by 2 independent researchers (U-M.H. and N.A.) and disagreements were resolved 
by a joint review. Staining intensity was classified from 0 to 3 (0 = negative, 1 = weak, 
2 = moderate, 3 = strong intensity). Images were generated using 3DHISTECH Panoramic 
250 FLASH II digital slide scanner at Genome Biology Unit (Research Programs Unit, 
Faculty of Medicine, University of Helsinki, and Biocenter Finland). The scanning was done 
using 40× objective (Zeiss Plan-Apochromat 40x/NA 0.95) and applying the extended focus 
option using 7 focus layers.

E.  RNA In Situ Hybridization

RNA in situ hybridization was performed on freshly cut 5-μm sections of the TMA using 
RNAscope 2.5 HD detection kit-BROWN (#322310, ACDBio, Milano, IT) for target mRNA 
detection. In short, tissue sections were baked for 1 hour at 60°C, then deparaffinized and 
treated with hydrogen peroxide for 10 minutes at room temperature. Target retrieval was 
performed for 15 minutes at 100°C, followed by protease plus treatment for 15 minutes at 
40°C. The probes Hs-FSHR (#400501), Hs-CYP19A1 (#430861), Hs-GPER (#553361), pos-
itive control probe Hs-PPIB (#313901), and negative control probe DapB (#310043) were 
hybridized for 2 hours at 40°C followed by signal amplification steps. The samples were 
incubated for 60 minutes with AMP 5–reagent. The sections were next treated with DAB for 
10 minutes at room temperature followed by counterstaining with 50% hematoxylin. The 
sections were dipped in ammonium water and dehydrated in ethanol series and UltraClear 
before mounting. Two researchers (U-M.H. and N.A.) performed the scoring independently 
and disagreements were resolved by a joint review. Staining intensity was classified from 0 
to 3 (0 = negative, 1 = weak, 2 = moderate, 3 = high intensity).

Table 3.  Data on Primary Cultured AGCT Samples

Sample 
ID

Primary 
or  

Recurrent 
Tumor

Tumor 
Size  

(in cm)

Age of the Patient at 
Sample Retrieval and 

Menopause Status  
(Age at Primary  

Diagnosis)

Preoperative 
Serum Hor-
mone Levels

Proportional 
Change in Cell 
Number After 
E2 Stimula-

tion

Proportional 
Change in Cell 
Number After 

FSH Stimulation

1 Primary 11 53, postMP E2 0.15  
InhB 625  
FSH 0.1

0.79 0.87

2 Recurrent 4 49, postMP (45) E2 0.17  
InhB 278  
FSH 10.1

1.57 1.05

3 Primary 6,5 48, postMP E2 0.55  
InhB > 1000  
FSH 41

1.40 1.28

4 Recurrent 5 68, postMP (59) E2 0.17  
InhB 61  
FSH 42

1.23 1.43

5 Primary 4 49, postMP E2 0.13  
InhB 223  
FSH 15.4

1.25 1.26

6 Recurrent 2,5 41, postMP (40) E2 0.14  
InhB 221  
FSH 44.3

1.03 0.84

MP = menopause
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F.  Hormone Stimulation in KGN Cell Line and Primary Cultured AGCT Cells

The FOXL2 c0.402C > G mutation-positive KGN cell line [37], originating from a re-
current AGCT, was obtained from the Riken BioResource Center. KGN cells were 
passaged < 6 months following receipt or resuscitation of a frozen cell vial, and tested neg-
ative for mycoplasma infection. The cells were tested positive for the FOXL2 (c0.402C > G; 
p.C134W) mutation. Short-term primary tumor cell cultures were established as described 
[38] from fresh primary (n = 3) or recurrent (n = 3) AGCT samples, all tested positive for the 
FOXL2 (c0.402C > G; p.C134W) mutation. To increase the cell number, primary AGCT cells 
were first cultured for 3 to 4 days in DMEM/Ham’s F-12 medium, supplemented with 10% 
fetal calf serum, penicillin/streptomycin, and L-glutamine in a humidified environment at 
37°C and 5% CO. hGL cells were obtained from women undergoing in vitro fertilization. 
Each of the 3 hGL pools consisted of granulosa-luteal cells derived from 78 to 122 mature 
ovulatory follicles from 4 to 7 different patients. The hGL cells were isolated as previously 
described [39], followed by suspension in DMEM/F12 growth medium, supplemented with 
2.5% Nu-serum I, ITS+ TM Premix (both from BD Biosciences, Bedford, MA, USA), penicillin/
streptomycin, and L-glutamine (Gibco).

Both KGN and primary cultured AGCT cells were grown for 10 or 3 days before hormone 
stimulation, respectively, in phenol red free DMEM:F12 medium supplemented with 10% 
charcoal stripped fetal calf serum, L-glutamine, and antibiotics to deplete the cells from 
external hormones. Next, 10 000 KGN and primary AGCT cells per well were plated on 
96-well plates in hormone-depleted medium for the cell viability assay. For RNA extraction 
and medium collection, 600 000 cells per well were plated on 6-well plates. After the cells 
had attached, they were treated with 100 nM of FSH (#HOR-253, Immuno Diagnostics, 
Hämeenlinna, Finland), 1000 nM of E2 (#E2758, Sigma-Aldrich, St Louis, MO, USA), 2 µM 
testosterone (#86500, Sigma-Aldrich), or 5 µM dose of letrozole (#L6545, Sigma-Aldrich). 
Cell viability was measured after 96 hours using the WST-1 assay (Sigma-Aldrich).

G.  qPCR

Total RNA was extracted using the NucleoSpin RNA/Protein kit (Macherey-Nagel, Düren, 
DE). Reverse transcription was performed using the Reverse Transcriptase Core Kit, and 
qPCR was carried out using the MESA GREEN qPCR MasterMix Plus for SYBR Assay (both 
from Eurogentec, Seraing, BE). ACTB was used as reference gene for mRNA expression.

H.  E2 Measurement

Medium was collected from KGN and AGCT primary cells at 96-hour time point and 
analyzed for E2 concentration using a mass spectrophotometer at HUSLAB. Calibrators 
containing 25 to 1000 pmol/L of estradiol (Cerilliant) were prepared in 50% methanol. Forty 
microliters of sample extracts and calibrators were analyzed on a liquid chromatography 
tandem mass spectometry system equipped with an AB Sciex 5500 triple quadrupole mass 
spectrometer. Data were acquired and processed with the Analyst Software (Ver 1.6.2; AB 
Sciex).

I.  Statistical Analyses

The immunohistochemical data and categorical variables were analyzed with contingency 
tabling (2 × 2) and chi-square or Fisher exact tests. For cell culture data, 1-way ANOVA 
followed by Mann-Whitney U-test, with-control Dunnett or Student t-test was used. The 
comparison between primary and recurrent tumors was performed by matched-pair t-test 
analysis. Serum hormone levels differed from normal distribution even after performing 
logarithmic transformation and thus Spearman´s rho was reported. Survival curves of dif-
ferent groups were illustrated by Kaplan-Meier plots and compared with the log-rank test. 
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Two-sided P value less than 0.05 was considered statistically significant. All data were 
analyzed using JMP pro13.

2.  Results

A.  Primary and Recurrent AGCTs Show Distinct Transcriptional Profiles

To characterize the expression levels of the hormonal pathway genes, we first performed 
RNA sequencing of 6 primary and 4 recurrent AGCTs. Altogether, 1091 genes were differ-
entially expressed between primary and recurrent tumors [40]. Six of these genes were in-
volved in estrogen signaling, including 3 adenylate cyclase genes contributing to formation 
of cAMP in response to G-protein signaling, and CREB3L1, encoding for cAMP-responsive 
element, showing higher expression in primary tumors compared with recurrent tumors 
(Fig. 1A). Among the genes with high expression in both primary and recurrent tumors 
were heat shock protein 90B1 and members of the PI3K/Akt pathway. No significantly dif-
ferentially expressed genes were found between relapsed and nonrelapsed primary tumors 
after multiple testing correction [40]. However, when analyzing the hormonal pathway 
genes (KEGG estrogen biosynthesis hsa04915) using unsupervised hierarchical clustering, 
the primary and recurrent tumors clustered separately, indicating distinct transcriptional 
profiles. Of the key hormonal regulators, FSHR was robustly expressed in all studied 
samples (Fig. 1A-B). Interestingly, CYP19A1 expression was highly variable (range -0.07 
to 9.85 Log2tpm) among the tumors. Of the estrogen receptors, ESR2 was the most highly 
expressed (range 5.75–7.15 Log2tpm), whereas GPER1 expression levels were generally 
low at the mRNA level (range 0.20–2.84 Log2tpm).

B.  AGCT Cells Express Highly Variable Levels of CYP19A1 Gene

To compare the gene expression levels of key hormone receptors in AGCTs to those in pri-
mary granulosa cells, we measured mRNA levels of FSHR, CYP19A1, ESR1, ESR2, and 
GPER1 in hGL cells, an AGCT cell line KGN, and primary AGCT cells by qPCR analysis 
(Fig. 1C-G). FSHR expression levels were higher in hGL cells compared with expression 
in the KGN cell line and the expression levels of ESR2 were higher in both AGCT and 
hGL cells compared with KGN cells (Fig. 1C, F). By contrast, the mRNA expression levels 
for ESR1 were notably higher in hGL cells compared with KGN or primary AGCT cells 
(Fig. 1E). Interestingly, CYP19A1 expression was minimal in hGL and KGN cells, whereas 
the expression in AGCT cells varied widely among the individual samples (Fig. 1D), in line 
with the result of the RNA-Seq analysis. The expression levels of GPER1 in AGCT cells 
were similar to hGL and KGN cells (Fig. 1G).

C.  FSHR Is Widely Expressed in AGCTs

Because gonadotropins are speculated to play a role in AGCT progression, we next 
characterized the expression of FSHR in a larger cohort using RNA in situ hybridization 
on a TMA of 175 AGCTs. FSHR mRNA was detected in 90% of AGCTs (Fig. 2A-D), and the 
signal was strong or moderate in 60% of the tumors (Fig. 2A-D, Table 4). FSHR expression 
was lower in tumors with high mitotic activity (P = 0.01), but expression did not correlate 
with other clinical parameters such as tumor size, stage, or risk of recurrence.

D.  Serum Inhibin B Levels Correlate Inversely With FSH Levels in AGCT Patients

Next, we analyzed FSH, E2, and inhibin B levels in 51 preoperative serum samples. FSH 
levels were generally low in AGCT patients, with median levels of 1.55 IU/l (range 0.05–
15.3 IU/L) and 6.6 IU/L (range 0.1–60.3) in premenopausal and postmenopausal patients, 
respectively. For E2 the median level was 0.125 nmol/L (range 0.01–0.48) in premenopausal 
patients and 0.15 nmol/L (range 0.04–1.05) in postmenopausal patients. Serum FSH levels 
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were significantly lower in patients with large tumors (>10 cm in diameter) when compared 
with patients with smaller tumors (<10  cm in diameter) (P = 0.001). FSH and E2 levels 
did not correlate with each other; however, FSH and inhibin B levels showed a strong in-
verse correlation (Spearman rho -0.75, P < 0.0001), consistent with the suppressive effect 
of circulating inhibin B on FSH secretion from the pituitary. In accordance with previous 
findings [41], inhibin B levels were higher in patients with larger tumors (P = 0.01). Next, 
we assessed the preoperative serum FSH levels from synchronous samples of 36 AGCT 
patients whose tumors were represented in the TMA. We observed significantly increased 

Figure 1.  Transcriptional profiling of 6 primary and 5 recurrent AGCTs using next-
generation mRNA sequencing. (A) Heatmap showing the expression levels of differentially 
expressed estrogen signaling genes between primary and recurrent samples (upper). Genes 
with statistically significant differential expression (P < 0.05, false discovery rate < 0.25) are 
marked with an asterisk. Lower part of the heatmap presents scaled expression levels of key 
hormonal signaling genes in primary and recurrent AGCTs. (B) Violin plots showing the ex-
pression levels of key hormone receptors and CYP19A1 enzyme in the primary and recurrent 
samples. (C-G) qPCR analysis showing the expression levels of key hormone receptors FSHR, 
ESR1, ESR2, GPER1, and CYP19A1 enzyme in human granulosa lutel (hGL) cells, KGN cell 
line and AGCT primary cells. All studied tumors were tested positive for FOXL2 mutation 
and derived from postmenopausal patients. The data are shown as boxplots, where dots 
represent individual samples, the box represents the interquartile range, and the whiskers 
represent the first and fourth quartile. In comparisons between the groups, the asterisks in-
dicate significant statistical difference (P < 0.05).
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Figure 2.  FSHR mRNA expression and the effect of FSH stimulation in AGCTs. RNA  
in situ hybridization was used to quantify FSHR expression in the AGCT TMA. 
Representative images of (A,B) low and (C,D) high staining patterns. Original magnifications 
80 × (scale bar: 20 µm) and 160 × (scale bar: 10 µm). Expression of (E) FSHR, (F) CYP19A1, 
(G) ESR1, (H) ESR2, and (I) GPER1 was quantified in KGN cell line and cultured pri-
mary AGCT cells by qPCR after stimulation with FSH (0 or 100 ng/mL) for 96 hours. Black 
columns: KGN cell line; gray columns: primary AGCT cells. (J) KGN data represents the 
average of 3 independent experiments. Results are shown as mean ± SEM and statistical sig-
nificance (P < 0.05) was assessed by 1-way ANOVA followed by Dunnett test.
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tumor ERα expression in patients with low serum inhibin B levels (P = 0.04), suggesting di-
minished inhibin B–FSH feedback in high ERα expressing AGCTs. We found no significant 
correlations between serum FSH or E2 levels and other estrogen receptors.

E.  FSH Increases CYP19A1 Expression and E2 Production in AGCT Cells In Vitro

To study the functional role of FSH in AGCTs, KGN and primary AGCT cells were stimulated 
with FSH for 96 hours and then gene expression levels and E2 production were measured by 
qPCR and mass spectrometry, respectively. In KGN cells, FSHR expression was increased 
by FSH stimulation (Fig. 2E). Also, CYP19A1 mRNA levels (Fig. 2F) and the amount of E2 
in cell culture supernatants (Fig. 3A) were significantly increased by FSH. Additionally, 
FSH stimulated the expression of ESR1, the gene encoding ERα, whereas no statistically 
significant change in ERβ coding ESR2 or GPER1 levels was seen in KGN cells (Fig. 2G-I). 
FSH stimulation did not have an effect on viability in this cell line (Fig. 2J).

In primary patient-derived AGCT cells, consistent with our findings in KGN cells, FSH 
stimulation significantly increased the expression of CYP19A1 (Fig. 2F) and secretion of E2 
into the culture medium (Fig. 3B). Interestingly, the level of FSH or E2 in patient´s preoper-
ative serum sample did not correlate with the amount of E2 measured in the culture media 
(Table 3). In contrast to the KGN cell line, FSH stimulation increased the mRNA expres-
sion of all the estrogen receptors (ESR1, ESR2, and GPER1) in all 6 of the patient-derived 
primary AGCT cells (Fig. 2G-I). Moreover, FSH stimulation increased cell viability in 3 of 
6 AGCT primary cell cultures by 26% to 43% (Fig. 2J, Table 3). Importantly, these results 
indicate active hormonal signaling in AGCT cells.

F.  CYP19A1 Is Expressed in a Subset of AGCTs

Aromatase inhibitors have been used in the treatment of relapsed AGCT [3]. These drugs 
inhibit the synthesis of estrogens from androgen precursors by binding to aromatase. To 
reveal the expression of CYP19A1 in a larger sample set, we performed RNA in situ hybrid-
ization and IHC on the TMA. CYP19A1 mRNA was detected in 15% of the tumor specimens 

Table 4.  Marker Distributions in AGCT Tissue Microarray

A Immunohistochemical Staining

Marker Negative n (%) Weak n (%) Intermediate n (%) High n (%)

 Primary Recurrent Primary Recurrent Primary Recurrent Primary Recurrent

ERα  
(n = 165)

82 (71) 31 (62) 11 (10) 8 (16) 22 (19) 11 (22) 0 0

ERβ  
(n = 152)

7 (6) 2 (5) 34 (31) 6 (14) 29 (27) 11 (25) 38 (35) 25 (57)

Cyp19A1  
(n = 156)

60 (54) 21 (48) 36 (32) 13 (30) 12 (11) 5 (11) 4 (4) 5 (11)

B RNA in situ hybridization

Marker Negative n (%) Weak n (%) Intermediate n(%) High n (%)

 Primary Recurrent Primary Recurrent Primary Recurrent Primary Recurrent

FSHR  
(n = 165)

11 (9) 6 (13) 31 (26) 18 (38) 60 (51) 21 (44) 15 (13) 3 (6)

Cyp19A1  
(n = 167)

104 (89) 38 (76) 8 (7) 5 (10) 5 (4) 7 (14) 0 0

GPER  
(n = 161)

106 (95) 33 (66) 5 (5) 17 (34) 0 0 0 0
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by RNA in situ hybridization (Fig. 4A-D). CYP19A1 immunoreactivity was detected in 48% 
of the tumors, and 17% showed moderate or strong staining (Fig. 4E-H, Table 4). CYP19A1 
mRNA expression correlated significantly with the moderate/high CYP19A1 protein ex-
pression (P < 0.0001). CYP19A1 protein expression also correlated positively with ERα ex-
pression (P = 0.009). There were no correlations between CYP19A1 expression and clinical 
parameters such as tumor size, stage, or recurrence rate. Also, CYP19A1 expression in the 
tumor tissue did not correlate with circulating E2, FSH, or inhibin B levels.

G.  Aromatase Inhibition With Letrozole Suppresses E2 Production in AGCT Cells

Next, we studied the functional effects of CYP19A1 inhibition in KGN and primary AGCT cells. 
For this purpose, cells were treated with a 5-µM dose of the aromatase inhibitor letrozole and 
a 2-μM dose of testosterone as a substrate for CYP19A1. Testosterone significantly stimulated 
both E2 production and cell viability in both KGN and primary AGCT cells, confirming the 
presence of functional CYP19A1. FSH consistently enhanced the production of E2 in the pres-
ence of testosterone (Fig. 3A-B). Interestingly, letrozole treatment completely suppressed E2 
production in the cell cultures (with and without FSH stimulation), but had no effect on cell 
viability in either KGN or primary AGCT cells (Fig. 3C-D, P values shown in Table 5).
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H.  ERβ Is the Main Estrogen Receptor in AGCTs and Its Expression Is Higher in 
Recurrent Tumors

The expressions for estrogen receptors were further studied in the AGCT TMA using IHC 
or RNA in situ hybridization. ERα immunoreactivity was observed in 33% of the tumors, 
and ERβ protein was detected in 94% (Fig. 5A-H, Table 4). In the ERα-positive tumors, 
the staining pattern was nuclear in 59% and cytoplasmic in 48% of the tumors. ERβ 
immunoreactivity was exclusively nuclear and classified as moderate or strong in 67% of 

Figure 4.  CYP19A1 is expressed in a subset of AGCTs. CYP19A1 expression was assessed in 
the TMA by (A-D) RNA in situ hybridization and (E-H) IHC. Representative images of (A-B, 
E-F) low and (C-D, G-H) high staining of AGCTs. Magnifications: (A-D) 80× (scale bar: 20 µm) 
and (E-H) 160× (scale bar: 10 µm) and 50× (scale bar: 50 µm) and 100× (scale bar: 20 µm). 
Arrows indicate positively stained cells.
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the tumors. GPER1 mRNA expression was detected only in 14% of the tumors by RNA in 
situ hybridization (Fig. 5I-L). Our results are in line with the data from mRNA sequencing 
and thus confirm that ERβ is the predominant estrogen receptor in AGCT.

ERβ expression levels were significantly higher in recurrent AGCTs when compared 
to primary tumors (P = 0.001). Furthermore, paired analysis of primary and recurrent 
samples from same patients demonstrated a significantly stronger ERβ immunoreactivity 
in the recurrent AGCTs (P = 0.0013) compared with the primary tumor (Fig. 6A). A similar 
pattern between primary and recurrent samples was noted for GPER1 mRNA expression, 
although the levels of expression were low (Fig. 6B). There were no significant differences 
in the expression levels of ERα between primary and recurrent samples. We also found no 
correlation between any of the estrogen receptor expression patterns and tumor size, stage 
at primary diagnosis, recurrence rate, or menopause status at the time of sample retrieval. 
None of the estrogen receptors had prognostic significance in terms of disease-free or overall 
survival.

I.  E2 Increases AGCT Cell Viability Only at High Concentrations

Because FSH stimulation increased aromatase expression, E2 production, and AGCT cell 
viability, we next explored whether E2 alone affects AGCT cell viability. We found that ex-
ogenous E2 (0.1-1000 nM) did not affect the viability of KGN cells (Fig. 5P). Also, in primary 
AGCT cells E2 did not increase the cell number at 0.1 to 100 nM concentrations. However, 
the supraphysiological dose (1000 nM) increased the cell number on average by 36% in 4 of 
the 6 studied samples (range 23%–57%) (Fig. 5P, Table 3). This 1000-nM dose reflects the 
E2 concentrations that were seen in the AGCT cell culture supernatants after stimulation 
with FSH, indicating that high local E2 concentrations may exist in AGCTs. In 1 recurrent 
tumor, high E2 had no effect and in 1 primary tumor E2 decreased cell number by 21%. 
Interestingly, the tumors that did not respond to high E2 also did not respond to FSH stim-
ulation, suggesting heterogeneous hormonal dependencies in individual AGCTs. No correla-
tion between the level of FSH or E2 in patient´s preoperative serum sample and response to 
E2 stimulation could be seen (Table 3). We also found that E2 had no effect on the expression 
levels of estrogen receptors ESR1, ESR2, and GPER1 in KGN cells (Fig. 5M-O). However, in 
primary AGCT cells, E2 treatment increased ESR2 expression in all of the cultures indicating 
a positive feedback mechanism of E2 and ESR2 expression in AGCTs (Fig. 5N).

Table 5.  P Values of the Hormone Stimulations (in Fig. 3) Using Student t-Test

A

KGN Control Testosterone FSH
Testosterone  

+ FSH

Testosterone 0.0001 - - -
FSH <0.0001 <0.0001 - -
Testosterone + FSH 0.506 <0.0001 0.061 -
Testosterone + FSH  
+ Letrozole

0.897 <0.0001 0.021 0.591

 B   

pAGCT Control Testosterone FSH Testosterone  
+ FSH

Testosterone <0.0001 - - -
FSH  0.0002 0.473 - -
Testosterone + FSH <0.0001 0.771 0.667 -
Testosterone + FSH  
+ Letrozole

<0.0001 0.447 0.146 0.297
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3.  Discussion

Hormonal activity is one of the hallmarks of AGCTs. Indeed, these tumors are often 
diagnosed in perimenopause because of signs or symptoms of hormone production, such 
as vaginal bleeding caused by estrogen-induced endometrial hyperplasia. As the peak in-
cidence of AGCTs is in perimenopause or early postmenopause, it has been suggested that 
alterations in circulating hormone levels, such as the rise in serum gonadotropin levels, 
contributes to tumor formation. Additional knowledge on the possible hormonal modulation 
of these unique tumors is needed given that anti-hormone therapies are currently used in 
AGCT patient care.

Here, we first characterized the expression of sex hormone receptors at transcriptional 
level using a large set of diagnostically validated AGCTs with an extensive clinical data and 
follow-up time. In the transcriptional profiling, we did not find any significant differences in 
the expression of hormone receptors between primary and recurrent tumors. Even though 
our sample size in this experiment was limited, it supports earlier findings, as a previous 
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transcriptomic analysis reported mainly similar expression patterns between stage I and 
advanced AGCTs [42].

Genes with differential expression between primary and recurrent tumors included 3 
adenylate cyclases, of which ADCY4 expression has earlier been correlated with better sur-
vival in breast cancer patients and ADCY3 has been recognized as a potential biomarker in 
gastric cancer [43, 44]. A lower expression level for gene encoding for transcription factor 
CREB3L1 in recurrent tumors was intriguing as decreased CREB3L1 expression has earlier 
been linked to reduced progression free survival in breast cancer [45]. The high expression 
levels of HSP90B1 in both primary and recurrent tumors were noteworthy as HSP90 chap-
erone proteins have been shown to regulate hormone receptors and have a crucial role in 
normal granulosa cell function [46, 47]. According to an earlier report, increased HSP90B1 
expression levels have been positively associated with ovarian granulosa cell proliferation 
and survival [48]. The herein detected high expression levels of HSP90B1 and members of 
the PI3K/Akt pathway suggest their role as potential targets for therapy. This is further 
supported by the results from our previous work in which we performed unbiased high-
throughput drug screening on AGCT samples demonstrating that both HSP90 and PI3K-
inhibitors reduced the cell viability of AGCT cells [49]. Regardless, that these drugs were 
not selective toward AGCT cells in comparison with normal granulosa cells in the screen, 
our present finding supports the therapeutic potential of HSP90 and PI3K-inhibitors in 
AGCT patients.

Consistent with our findings at the transcriptional level, we confirmed a strong uniform 
expression of FSHR in a large set of AGCTs by using RNA in situ hybridization, a finding 
that has not been shown earlier in more than a few individual AGCTs because of the lack 
of specific IHC-compatible antibodies. Importantly, we observed an increase in cell number 
in 3/6 of the tested primary AGCT samples following FSH stimulation. This FSH effect in 

Figure 6.  ERβ and GPER1 expression levels were increased in recurrent AGCTs compared 
with primary tumors. Paired analysis of the expression of estrogen receptors (A) ERβ and (B) 
GPER1 in 16 patients with matched primary and recurrent tumor samples in the TMA.
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primary AGCT cultures is most likely mediated by P13K/Akt and MAPK pathways [50]. 
Cell viability was not affected in the KGN cell line by FSH, which may be due to the low 
FSHR expression status in these cells. Our data on the low serum FSH levels is in line 
with earlier findings in AGCT patients [51, 52], and the inverse correlation between serum 
FSH and inhibin B levels in this study supports the notion that tumor-derived inhibin B 
regulates pituitary FSH secretion.

The role of FSH in inducing CYP19A1 activity in normal granulosa cells is well es-
tablished [53]. Regardless of the FSH stimulation priming of the hGL cells, the average 
CYP19A1 mRNA expression levels tended to be higher in AGCTs. Further, we found a sig-
nificant increase in expression of CYP19A1 gene after FSH stimulation in both KGN and 
primary AGCT cells, supporting the role of FSH in E2 production in tumor cells. An earlier 
study using primary rat granulosa cells showed that FSH regulates CYP19A1 via GATA4 
[54], a transcription factor known to be overexpressed in AGCTs [55]. Another study re-
ported the direct regulation of aromatase by FOXL2 and proposed that the C134W mutation 
increases this stimulatory effect [16]. Moreover, induction of aromatase activity has been 
observed as a consequence of the interaction of FOXL2C134W with SMAD3, a transcription 
factor widely expressed in AGCTs [56, 57]. We found that CYP19A1 gene expression was 
highly variable among studied AGCT samples both at the transcriptomic and protein level. 
Moreover, the protein expression was positive in 48% of the studied tumors, which is a lower 
proportion than previously reported [58, 59]. This finding might explain the observed var-
iation in the responsiveness to anti-estrogen therapies [3, 10]. Furthermore, CYP19A1 ex-
pression may be dependent on constitutive FSH stimulation, which is suppressed in AGCT 
patients through the downregulation of FSH secretion from the pituitary by tumor-derived 
inhibin B.  Another factor secreted by AGCTs, anti-Müllerian hormone, has been shown 
to attenuate FSH-mediated stimulation of CYP19A1 expression [13]. Thus, the observed 
variability between individual AGCTs may be due to the complex regulatory networks of 
CYP19A1 expression [60].

The role of E2 in AGCT growth and survival has been controversial. Estrogen promotes 
tumor growth in various cancers [61], and the safety of estrogen replacement therapy of 
AGCT patients remains questionable [62]. In a previous study with a long follow-up time, 
postmenopausal estrogen replacement therapy did not negatively impact the prognosis of 
AGCT patients [63]. Furthermore, earlier studies on KGN cells did not support a growth-
stimulating effect of E2 [21, 22, 64]; indeed, it has been shown that E2 may decrease KGN 
cell migration [22]. In line with these reports, we did not find any effect on KGN cell viability 
in response to E2 stimulation. Further, in the primary AGCT cell cultures, no effects on cell 
viability were seen at physiological concentrations. However, an increase in cell number 
was detected in 4/6 of the primary AGCT cell cultures tested when using an extremely high 
estradiol dose. Our results thus confirm the earlier findings of negligible responsiveness of 
AGCTs cells to estradiol and provide further evidence on that estrogen replacement therapy 
can be considered safe in AGCT patients with no evidence of disease.

Consistent with earlier studies [7, 20], we found that ERβ was the principal estrogen 
receptor expressed in AGCTs. ERα expression was markedly lower than ERβ, but its cor-
relation with circulating FSH and tissue CYP19A1 expression and that FSH stimulation 
increased ERα expression suggest that ERα may have a functional role in a subset of 
AGCTs. In other hormone-related malignancies, such as breast and prostate cancer, ERα is 
considered tumorigenic, whereas ERβ mostly functions as a tumor suppressor by blocking 
the proliferation and inducing apoptosis [61, 65, 66]. ERβ effects are also dependent on the 
ERβ-subtype [67, 68]. Increased ERβ expression in recurrent tumors suggests the signifi-
cance of ERβ in this unique slow growing tumor type, but the specific effect of ERβ in tumor 
progression awaits further evidence. It is of note that GPER1 expression was shown to be 
minimal both according to the RNA sequencing and RNA in situ methods, contradicting 
earlier findings reporting its expression in AGCT [22]. We observed robust RNA expres-
sion of FSHR and ESR1 in hGL cells consistent with the FSH-priming associated with 
the IVF protocol. Consistent with previous observations, we confirmed strong expression 
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of CYP19A1, ESR2, and FSHR in AGCT cells. Because of the high variability of expression 
levels, especially in AGCT cells, increased numbers of biological replicates would be needed 
to make further clinical conclusions.

Several case studies report variable responses to divergent hormonal treatments in 
AGCTs, and among these therapies aromatase inhibitors have been the most promising 
[3]. We did not, however, observe any changes in cell viability after letrozole treatment, 
even though the used doses were sufficient to suppress E2 production in AGCT cells. This 
unresponsiveness to letrozole was also noted in our earlier study when the cell viability 
of 7 primary AGCT samples were studied by high-throughput drug screening [49]. In our 
current patient series, a total of 10 patients were treated with letrozole, generally as a 
last therapeutic option when other medical treatments had proven ineffective. Only 1 of 
these patients had stable disease, whereas 9/10 had disease progression during letrozole 
treatment. Our findings on negligible efficacy of aromatase inhibitors in AGCT in vitro are 
thus in keeping with the clinical practice. An increased cell viability in response to testos-
terone stimulation raises questions of the role of testosterone in AGCTs. According to earlier 
reports, testosterone inhibits apoptosis in normal granulosa cells contributing to follicular 
growth and proliferation [69, 70]. A recent study reported moderate staining for androgen 
receptor in AGCT cells, also implicating further studies on the role of androgens in this 
unique tumor type [21]. However, our results highlight a previously unexplored finding 
warranting further studies on the direct effects of androgens on AGCTs by, for instance, 
studying the effects of dihydrotestosterone on the proliferation and survival of AGCT cells.

The present work confirms the wide expression of sex hormone receptors, and active hor-
monal signaling in AGCTs, encouraging further studies on hormonal modulation in AGCT 
treatment. Even though we did not find in vitro evidence to support the use of aromatase 
inhibitors in AGCT treatment, considering the small sample size and variable effects of FSH 
and estradiol in primary AGCT cells, we cannot exclude that some patients may gain benefit 
of these compounds. Future studies should examine whether inhibition of both estrogen and 
testosterone receptors would be more efficient in the treatment of AGCTs. Finally, prospec-
tive, randomized clinical trials, accompanied by careful biomarker analyses, are needed to 
determine the efficacy of hormonal therapies in AGCTs.
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