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Epidemiological studies, with virological confirmation,
have convincingly demonstrated that the majority of
acute asthma exacerbations, in both children and adults,
follow upper respiratory infections (1, 2). On some
occasions, particularly young children, common colds
are unique precipitants of wheezing and associated
symptoms (3). However, much less is known about the

mechanisms of virus-induced asthma exacerbations, than
the relatively less frequent allergen-induced events.

An integrated response, aimed at the fast and efficient
clearance of the invading pathogen, occurs during a
respiratory viral infection. Elements of this response
include the respiratory, the immune, as well as the
nervous systems (4). The airway epithelium, site of viral
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replication, generates an innate antiviral response, orches-
trating downstream responses involving subepithelial and
immune factors. An immune response is generated both
locally and systemically, in order to preclude further viral
invasion. Neural signals are generated in response to, or in
an attempt to control or coordinate the inflammation.
Several of these elements are altered in asthmatic individ-
uals, resulting in induction of airway hyperresponsiveness
(AHR) and contributing to the development of exacerba-
tions consequent upon the infection (Fig. 1). Although not
proven, mouth breathing or postnasal drip may also
contribute to the clinical presentation of a respiratory viral
infection (5). All respiratory viruses have been associated
with asthma exacerbations; there is very little evidence on
differential effects between these agents in their capacity to
trigger asthma, nevertheless, the majority of relevant
evidence comes from human rhinovirus (RV) studies.

Experimental models of virus-induced asthma

A variety of in vitro and in vivo models has been used for
the study of virus-induced asthma. In vitro systems have
most frequently been based upon continuous cell lines of
bronchial epithelial origin, such as the BEAS-2B, A549,
16HBE and others (6). Cultures of human primary
bronchial epithelial cells, obtained by bronchoscopy
either by brushing or from biopsies, are preferable to
continuous cell lines as they more closely represent in vivo
conditions (7); more recently, differentiated primary
epithelial cells, grown at an air–liquid interface, have
been proposed to represent an optimal model for RV
infection (8). Lung fibroblasts, either primary or con-
tinuous cell lines of embryonic origin (e.g. WI38) have

also been popular, as fibroblasts support viral replication.
Occasionally, smooth muscle cells, peripheral blood
mononuclear cells (PBMC), monocytes, macrophages
and eosinophils have been used either to assess viral
replication or to model the antiviral immune response.

Small animal models of virus infections have been in
use for a long time, with respect to influenza virus,
respiratory syncytial virus, parainfluenza viruses (mostly
Sendai virus in the mouse) as well as coronaviruses.
Unfortunately, no practical small animal model of RV
infection exists; thus for many years experimental RV
infection in humans has been the model used to study
RV infections. Over the past two decades several experi-
mental studies have been carried out in both asthmatic
and normal volunteers, with a good safety record. This
approach offers a number of important advantages over
studies of natural virus-induced asthma exacerbations,
such as the ability to study subjects at baseline before
infection; the selection of subjects according to specific
criteria such as atopy, asthma severity and medication
use; knowledge of the virus type and dose; accurate
timing of investigations relative to the timing of infection;
and the ability to carry out invasive investigations before,
during and after infection, including bronchoscopy for
sampling of the lower airway.

Experimental RV infection of asthmatics leads to an
increase in lower respiratory tract symptoms typical of a
mild asthma exacerbation (9, 10). These are accompanied
by objective measures of increased airflow obstruction
such as reduced peak expiratory flow (PEF) and forced
expiratory volume (FEV)1 and enhanced sensitivity to
histamine (9, 11, 12). Few experimental infection studies
have compared RV infection in asthmatic and normal
subjects; however, to date it has not been demonstrated
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Figure 1. Overview of virus-induced asthma exacerbations: respiratory viruses infect the airway epithelium inducing cellular damage,
proinflammatory mediator production, a local and a systemic immune response and may affect neural homeostasis.
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that experimental RV infection in asthmatics is associated
with greater changes in lung function than in normals (9,
10), as is the case in naturally acquired infections in adults
(13) and infants (14). The lack of a clear difference may be
because of the inclusion of subjects with mild asthma only
and the small number of subjects studied. Furthermore,
the clinical, physiological and inflammatory responses to
experimental RV infection in asthmatics are relatively
mild compared with exacerbations induced by naturally
acquired colds. This may be because of more complex
interactions such as concomitant airway inflammation
occurring in naturally acquired infections and leading to
exacerbations.

Virus-induced airway hyperresponsiveness

Airway wall oedema, goblet cell metaplasia, altered
surfactant function and mucus composition, due to
cellular debris and plasma protein excess, modified
patency of the small airways and increased epithelial
and endothelial permeability, occur during viral infec-
tions and may lead to AHR (15, 16). Virus-induced
epithelial damage causes narrowing through dead epithe-
lial cells dropping into the lumen, decreased mucociliary
clearance, increased exposure of sensory nerves to
irritants, and decreased production of bronchodilating
(PGE2, NO, endopeptidase) and/or decreased metabolism
of bronchoconstricting (substance P, neurokinin A)
substances (17). Proinflammatory mediators, described
below, may also contribute to AHR (18–21).
Viral infection induces greater nonspecific AHR in

patients with respiratory allergy than healthy controls

(22, 23). In addition, following a viral infection the
response to allergen exposure may be exaggerated, as
shown using bronchial provocations with allergen (24,
25). It has been suggested that the defective epithelial
repair cycle, characteristic of asthma and strongly corre-
lating with AHR, is amplified by exposure to Th2
cytokines (26). The duration of postviral AHR is around
7 weeks in children with intermittent asthma, comparable
with studies prospectively evaluating postviral AHR in
experimental animals (27, 28). Although the duration of
AHR after a single cold is not affected by the atopic
status of the patient, an increased number of sympto-
matic colds may cumulatively lead to prolonged AHR in
atopic children (Fig. 2; 28). Taking into account that the
degree of airway responsiveness is indicative of asthma
severity and an indirect marker of airway inflammation
(29), prolongation of virus-induced AHR may reflect
persistent airway inflammation after multiple viral insults
(30).

Structural cells and extracellular matrix

Respiratory viruses enter and replicate in epithelial cells
lining the upper as well as the lower airways. Although
RV in particular was considered in the past as an upper
respiratory pathogen only, studies using polymerase
chain reaction and in situ hybridization have conclusively
shown that RV can also replicate in the lower airways (7,
14). The extent of epithelial cell destruction varies
according to the type of virus. Influenza virus may cause
extensive epithelial necrosis, whereas RV usually causes
little or only patchy epithelial damage; in vitro, RV
becomes cytotoxic under specific conditions (31). Death/
damage of epithelial cells is likely to result in both an
increase in epithelial permeability and an exposure of
sensory nerve fibres to irritants and allergens. These
effects may contribute to the increased AHR induced by
respiratory viral infection. Dead epithelial cells, in addi-
tion to other inflammatory cells, dropping into the lumen
may also contribute to airway obstruction (32).

Nevertheless, the lower airway epithelium does not
simply act as a physical barrier but has an essential role in
immune/inflammatory responses. Bronchial epithelial
cells are major determinants of the inflammatory
response through the production of a wide array of
cytokines and chemokines, detailed below.

Adhesion molecules expressed on the surface of
epithelial and endothelial cells are also involved in local
inflammatory cell recruitment. One such molecule is
ICAM-1 (CD54), the receptor for the majority of RVs
and the natural ligand of the b2-integrin CD11a. Viral
infections upregulate the epithelial expression of ICAM-1
both in vivo and in vitro, supporting leucocyte infiltration,
while potentially facilitating RV attachment and entry in
host cells (33). A similar role could be attributed to
vascular adhesion molecule-1 (VCAM-1; CD106), which
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Figure 2. Duration of airway hyperresponsiveness (AHR) in
atopic and nonatopic children with asthma, after an initial
virus-induced exacerbation. An increased number of sympto-
matic infections leads to considerably prolonged AHR in the
atopic group [adapted from Ref. (28)].
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is also upregulated by viral infection and selectively
recruits eosinophils (34).
Epithelial cells may also act as antigen-presenting cells

as they express major histocompatibility complex I and
the costimulatory molecules CD80 (B7.1) and CD86
(B7.2), whose expression are upregulated in vitro by RV
infection (35).
An important characteristic of the epithelium in asthma

is the fact that it is particularly susceptible to injury (36).
The imbalance between cell death and proliferation is
considered crucial in the pathophysiology and pathology
of the disease (37). Viruses may cause or interfere with
such imbalance. For example, RV infection is able to
delay epithelial repair (Fig. 3; 31). The degree of viral
cytotoxicity not only depends upon the type of viral
pathogen, but is also affected by the host epithelial cells.
RV becomes highly cytotoxic only in sparsely cultured
cells, a condition that may resemble the already disrupted
epithelium occurring in asthma (31). When epithelial cells
from patients with asthma were infected with RV in vitro,
they were found to be resistant to early apoptosis, an effect
caused by lack of the pro-apoptotic interferon (IFN)-b
(38). Reduced apoptosis was associated with increased
viral proliferation within the epithelial cells, resulting into
increased cytotoxicity (38). Similar effects were observed
when an epithelial cell line was conditioned by exposure to
PBMC supernatants: immune cells deriving from atopic
asthmatic individuals were unable to protect epithelial
cells from RV-induced cytotoxicity (M. Xatzipsalti,
unpublished data). Type I IFNs limit virus spread and
prime neighbouring cells to an antiviral state. Recently,
similar and even stronger effects were shown to occur
through the newly described type III, or k-interferons (39).
In addition to epithelial cells, RVs are capable of

infecting airway smooth muscle (ASM) cells in vitro,
inducing constrictor responsiveness and reducing b-
adrenoceptor-mediated relaxation, although the clinical
significance of this finding is uncertain (40). Submucosal
gland (SMG) hypertrophy and mucus metaplasia with
increased expression of the MUC5AC gene are seen in the
asthmatic airways. Human SMG cells infected with RV
produce IL-8, contributing to neutrophil inflammation
and also augment eosinophil transmigration across the
airway epithelium through the secretion of eosinophil
chemotactic factors (RANTES, GM-CSF; 41). Increased

numbers of mucus-producing goblet cells and increased
staining for MUC5AC have also been observed in mice
infected with Sendai virus (42) and RSV (43).

The major structural components of the airways,
epithelium, underlying fibroblasts but also the matrix,
interact dynamically. These structures (constituting the
epithelial mesenchymal trophic unit) are physiologically
active during lung morphogenesis in the fetus; it has been
suggested that they are reactivated in asthma to drive
pathological remodelling, in which the epithelium enters a
chronic wound response, accompanied by production of
profibrogenic growth factors (36). Virus-infected cells
secrete increased amounts of fibroblast growth factor
(FGF)-2 (44, 45) and vascular endothelial growth factor
(VEGF; 46, 47). RV-induced VEGF was able to augment
angiogenesis in an in vitro model (47). Furthermore,
imbalance of matrix metalloproteinases regulating the
deposition of collagen may also affect remodelling. Virus-
induced proinflammatory cytokines stimulate the pro-
duction and release of matrix metalloproteinase (MMP)-9
and MMP-2 by epithelial cells (48). This increase may
allow extracellular matrix damage, possibly followed by
abnormal mucosal repair in asthma.

Immune cells and function

Neutrophils

Neutrophils are among the predominant cell types
participating in virus-induced asthma through generation
of superoxide and/or release of cytokines. In nasopha-
ryngeal aspirates and bronchial lavages, neutrophils are
the main cells recruited during the acute stage of natural
colds (49), probably via IL-8 or leukotriene B4 (50).

Adult patients, presenting to the emergency depart-
ment with acute asthma and concomitant virus infection,
had increased neutrophils and neutrophil elastase in
sputum (51). Neutrophil proteases are potent secreta-
gogues for airway SMGs (52) and can increase mucus
production contributing to airway obstruction.

Neutrophils comprise the majority of nonepithelial
cells in sputum during acute exacerbations of asthma
(53). Experimental RV infection results in an increase in
neutrophils in BAL (54) and sputum (55). In this model,
peripheral blood neutrophil counts correlate with cold

Figure 3. Rhinovirus (RV) infection delays epithelial wood healing. BEAS-2B cells were mechanically damaged and then infected or
not with RV. Cells were stained with DAPI 24 h later, revealing a defect in epithelial repair in RV-infected cells (31).
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and asthma symptom scores (11), or signs in animals (56).
Viruses can also activate neutrophil functions upregulat-
ing chemotaxis, adhesion and superoxide production (57).

Eosinophils

Viral infections can also trigger increased recruitment and
activation of eosinophils, contributing to AHR (58–60).
Rhinovirus experimental infections increase allergen-

induced eosinophil numbers in bronchial lavage fluid in
rhinitic adults (24) and eosinophil products in sputum
supernatants in asthmatic adults (18). In vitro experi-
ments indicate that RVs do not activate eosinophils
directly (61), but probably through the activity of virus-
induced mediators, adhesion molecules (33, 34) or
cytokines secreted by T cells, epithelial cells or other
airway cells (62).
A marked bronchial eosinophil infiltration has been

observed during colds in both normal and asthmatic
adults. However, the eosinophil infiltrate was more
prolonged in asthmatic patients and still present 6–
8 weeks after infection (59). Such differences have not,
however, been confirmed in induced sputum (10).
Eosinophil granular proteins (e.g. major basic protein)

have been detected in nasal secretions of asthmatic
children with wheezing illness caused by RV or RSV
(63, 64). In these children, RANTES and GM-CSF,
factors affecting eosinophil recruitment, survival, degran-
ulation and superoxide production, were also significantly
increased (65).

Basophils and mast cells

In vitro incubation of basophils with viruses does not in
itself cause release of mediators; however, some viruses
(e.g. RSV, adenovirus and influenza) have been shown to
enhance anti-immunoglobulin (Ig)E-mediated histamine
release (66). These effects were shown to occur ex vivo
with basophils from asthmatic volunteers during the
acute phase compared with the convalescent phase of
symptomatic colds, the increase in histamine and leuko-
triene release occurring in response to cross-linking of
VLA 4 (67). Basophil activation could be mediated by
interferons resulting from upper respiratory tract infec-
tion and enhancing histamine release (68). Nevertheless,
systemic activation has not been confirmed in vivo during
common colds (69).
The effect of viruses on mast cells have not been subject

of much study, possibly because of the difficulty of
obtaining adequate number of cells. Some animal studies
on rat and calf are available (70, 71).

Dendritic cells

Pulmonary dendritic cells (DCs) express several �patho-
gen recognition receptors�, such as C-type lectins, man-
nose receptors and Toll-like receptors (TLRs), for

efficient sensing and sampling of a wide variety of
microbial organisms, including viruses. Whereas human
plasmacytoid DCs express TLR7, which binds to single-
stranded RNA (72) and TLR9, binding to CpG-rich
DNA (73), CD11c+ human myeloid DCs express TLR3,
a ligand for double-stranded (ds) RNA and TLR7 (74,
75). TLR 3, 7 and 9 specialize in viral detection and
recognize nucleic acids in late endosomes-lysosomes, as
these TLRs are localized to intracellular compartments
(76).

Stimulation of human myeloid DCs and plasmacytoid
DCs with synthetic TLR7 or TLR9 agonists induces the
secretion of IL-12 and large amounts of IFN-a, respect-
ively (75, 77). Toll-like receptor-mediated induction or
modulation of type-1 interferons occurs in vitro after
exposure of plasmacytoid DCs to RSV and influenza
viruses, or epithelial cells to RV (78–80).

T and B lymphocytes

In the absence of infection, DCs isolated from the lungs
express inducible costimulatory ligand (ICOSL) and
secrete IL-10, selectively inducing regulatory T cells
(81). After viral infections such as influenza, an optimal
T-helper 1 (Th1) response is induced by lung DCs,
leading to antigen-specific effector T cells producing IFN-
c and tumour necrosis factor (TNF). Virus-infected cells
in the airway are thus recognized by Th1 CD4+ T cells
and cytotoxic Tc1 CD8+ T cells. This recognition leads
to killing of the infected cell and release of effector cell
cytokines (such as IFN-c), which further enhance the
antiviral activities of the innate immune defence.

Indeed, bronchial biopsies have demonstrated increases
in CD4+ and CD8+ T cells within the epithelium and
submucosa of both healthy subjects and asthmatic
patients following experimental RV infection (59). IFN-
c, together with type I interferons (IFN-a and IFN-b),
play an important role in establishing a paracrine
antiviral state. Whereas cytotoxic CD8+ T cells are a
crucial player in protective cell-mediated immunity in
response to respiratory viruses, a dysregulated CD8+ T-
cell response in the context of a viral infection may place
individuals with asthma at risk of severe asthma exacer-
bations, and even asthma death (82, 83).

The balance between Th1 and Th2 cytokine production
can be crucial to viral clearance. It is well established that
increased viral replication occurs under the influence of
Th2 cytokines (84). Gern et al. found that the IFN-c/IL-5
sputum mRNA ratio during infection was inversely
related to peak cold symptom scores and time to virus
clearance, suggesting that a strong Th1 response in the
airway plays an important role in limiting the cold
severity and viral replication (55). Exposure of PBMCs
from normal and atopic asthmatic individuals to RV
leads to the production of high levels of IFN-c.
Nevertheless, the levels are significantly lower in atopic
asthmatic individuals; furthermore IL-4 production is
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upregulated only in these individuals, leading to consid-
erable reduction of the IFN-c/IL-4 ratio (85). In the same
in vitro model, reduced expression of costimulatory
molecules B7.1 and B7.2 and increased expression of
the suppressor molecule CTLA-4 in CD4 T cells were
observed in RV-exposed cells of atopic asthmatic indi-
viduals, suggesting that virus presentation may be
suboptimal in these subjects (86).
The antiviral B cell immune response, as evidenced by

immunoglobulin production, follows a tight time sched-
ule (87). Mucosal IgA may be detected at day 3 after
experimental virus infection, serum IgM at days 5–6 and
IgG at days 7–8; all immunoglobulins increase in amount
and avidity during the ensuing 2–3 weeks; their role
seems to be less in direct virus eradication and more in the
prevention of re-infection. However, it is not clear
whether B-cell responses to respiratory virus infection
are modified in the context of asthma.

Monocytes–macrophages

Alveolar macrophages make up the majority of cells seen
in BAL from healthy individuals and asthmatic patients
(88, 89). These residential macrophages are ideally placed
for early phagocytosis and destruction of virus particles;
moreover, human monocytes and macrophages express
the major RV receptor ICAM-1. Entry of RV into
monocytes leads to activation and production of TNF-a
and IL-8 (90, 91). An earlier study reported that RV
RNA synthesis was not detected in macrophages (90);
however, recent study indicates that limited replication
does take place in monocyte-derived macrophages (92),
suggesting that macrophages may serve as permissive
host cells during infection in vivo.

Mediators

Mediators produced by structural and immune cells upon
a viral infection have regulatory and effector functions
shaping the inflammatory response, both locally and
systemically (Fig. 4). The epithelium alone is able to
produce a broad range of mediators, including IL-1, IL-6,
IL-8 (CXCL8), IL-11, TNFa, GM-CSF, eotaxins
(CCL10, 11, 24), RANTES (CCL5) and IP10 (CXCL10)
(6, 93–101).
Interleukin-8 (IL-8) and granulocyte colony-stimula-

ting factor (G-CSF) have been detected in nasal lavage
and sputum after RV infection and correlate with nasal,
sputum and blood neutrophils (55). One study has
reported that IL-8 is increased in nasal lavage after RV
infection in asthmatics but not in normals (102),
although there is evidence of IL-8 upregulation during
a natural RV infection in healthy students (M. Mäkelä,
personal communication). In subjects with allergic
rhinitis, RV infection increases production of the eosi-
nophil chemokine eotaxin (103), together with eosino-

phil peroxidase and myeloperoxidase in nasal lavage
(104). In normal subjects, experimental RV infection
upregulates enzymes in the 5-lipoxygenase and cyclo-
oxygenase pathways in the bronchial mucosa (105).
Conversely RV infection increases exhaled nitric oxide
(NO) levels in asthmatics and this is inversely correlated
with the change in PC20, suggesting that NO may have a
protective effect against virus-induced bronchial hyper-
reactivity (106). Overexpression of human b-defensin 2
in RV-infected epithelium suggests a potential mechan-
ism linking the innate and specific immunity to the virus
(107).

Although most of the above mediators are also found
at elevated levels in allergic rhinitis and asthma (108),
they are not unique to these diseases. Furthermore, many
other processes (e.g. exposure to environmental smoke or
diesel exhaust particles, wounding) that target or affect
the integrity of the epithelium induce a similar response
(109–112). Nevertheless, it is clear that through such
mediators, viruses are able to potentiate inflammation as
well as aggravate an underlying allergic response (11, 94,
113–116). Influx and activation of recruited or already
present effector cells such as mast cells, eosinophils or
neutrophils would lead to increased release of toxic
components-like histamine, major basic protein, eosino-
phil cationic protein, eosinophil peroxidase and myelop-
eroxidase (117, 118). Tissue damage through these
proteins may in itself contribute to the exacerbation.
Furthermore, effector molecules, such as kinins (119)
affect neural pathways inducing bronchoconstriction, as
described below.

Viral infections are also able to induce systemic effects
mediated by circulating cytokines, indicated by changes
in leucocyte numbers following the infection. It is
possible that through systemic effects upper airway
infection may interfere with the bronchial allergic
inflammation, as has been shown for allergen-induced
inflammation through IL-5 (120). Nevertheless, the
major inducible mediators after a respiratory viral
infection are interferons (8). Interferon-mediated innate
responses to viral infection are differentially regulated in
normal or atopic asthmatic individuals and these differ-
ences may prove to be crucial in the development of
acute exacerbations (38, 39, 85).

Neural mechanisms

Airway patency depends highly on smooth muscle
constriction, mucosal oedema and mucus secretion,
controlled by the adrenergic, cholinergic and the non-
adrenergic noncholinergic (NANC) neural pathways.

Postviral alterations in neural control of the airways
have been shown mainly in animal models, either through
dysfunction of prejunctional M2-muscarinic inhibitory
receptors, which normally inhibit acetylcholine release
both directly and indirectly through production of IFN-c
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(121), or through the release of bronchoconstricting
neuropeptides (Fig. 5; 122–124).
Through the absence of the physical barrier, environ-

mental irritants may directly stimulate unmyelinated
sensory nerves. Released kinins may directly induce
contraction of smooth muscle cells or lead to a parasym-
pathetically induced bronchoconstriction. This effect may
be aggravated by major basic protein that interferes with
an M2 receptor-mediated autoinhibitory feedback loop
that would normally keep this possible constriction in
check. Enhanced neuronal activity will also lead to
histamine release from mast cells that can be found in
close proximity to nerve synapses. In addition, RSV
infection induces changes in the mast cell-nerve synapses
resulting in NK1 receptor upregulation and exacerbation
of SP-induced bronchoconstriction and SM contraction
(125, 126). Furthermore, it resulted in the release of

cysLTs, which in turn amplified the release of tachykinins
and potentiated their effects.

Increased NANC excitatory and decreased inhibitory
responses have been noted after viral infections (56,
127). Parainfluenza and influenza viruses are cytotoxic
to the epithelium, causing loss of neutral endopeptidase
(NEP), the major tachykinin metabolizing enzyme,
activity and hence loss of tachykinin-mediated control
and consequent potentiation of their activities (121,
128). This is also the case for histamine methyltransf-
erases. These enzymes would normally reduce tissue
levels of histamine and kinins (129) and so dampen a
given response.

In humans, normalization of the airway responses to
challenges after atropine treatment suggests that sensory
reflexes are abnormal after viral infections (130). Fur-
thermore, effects of viral infection on the adrenergic

Figure 4. Upon a viral infection, epithelial and immune cells produce a wide variety of mediators, including interferons, proinflam-
matory cytokines, chemokines and pro-fibrogenic growth factors, shaping the inflammatory response. Abbreviations: CCL, CC
chemokine ligand; CCL5, RANTES (Regulated on Activation Normal T-cell Expressed and Secreted); CCL11, eotaxin; CCL24,
eotaxin-2; CXCL, CXC chemokine ligand; CXCL10, IP-10 (IFN-c-inducible protein 10); FGF-2, fibroblast growth factor-2; GM-
CSF, granulocyte macrophage-colony stimulating factor; ICAM-1, intercellular adhesion molecule-1; IFN, interferon; IL, interleukin;
mDC, myeloid dendritic cell; NE, neutrophil elastase; pDC, plasmacytoid dendritic cell; RV, rhinovirus; TC1, cytotoxic CD8+ T-
lymphocyte type 1; TH1, T-helper 1 CD4+ T lymphocyte; TLR, Toll-like receptor; TNF-a, tumour necrosis factor-a; VEGF, vascular
endothelial growth factor.
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receptor have been suggested (131, 132). However, the
above pathways have not been further elucidated.

Molecular pathways

A considerable number of genes are upregulated upon
viral infection of epithelial, immune or other cell types.
Early events at the epithelial level, studied by use of a
gene chip, include upregulation of many interferon-
related genes (8). Subsequently, proinflammatory medi-
ator genes are induced. Activation can be initiated by
either receptor contact (e.g. ICAM-1) or virus replication,
through the production of dsRNA and a dsRNA-
dependent protein kinase pathway, as well as an IFN-b-
mediated JAK-STAT pathway (8). None of these
pathways is able to comprehensively explain all the
observed effects at a cellular level, suggesting that
multiple pathways are involved in a complex network.
In this respect, poly-IC, a synthetic dsRNA analogue and
TLR3 agonist, is not able to completely reproduce RV
infection-mediated effects, although these are in part also
mediated by TLR3 (78). From another perspective,

dsRNA is also a potent stimulus of nitric oxide synthase
2 (NOS2) expression (133).

The ability of viral infections to activate transcription
factors, notably NF-jB, seems to be a central event in the
inflammatory response of the epithelium to infection.
Adhesion molecules such as ICAM-1 and VCAM-1 (33,
34) or proinflammatory mediators including IL-1, IL-6,
IL-8, IL-11 and GM-CSF have NF-jB sites in their
promoter regions and have been shown to be upregulated
through virus induction of this transcription factor (134).
Nevertheless, NF-jB-independent pathways are also
involved (135). Additional transcription factors such as
AP-1 and GATA may be involved (33, 34). In human
lymphocytes, NF-jB as well as NF-AT2 activation
regulates IL-4 production, inducing a Th2 response after
exposure to dsRNA. Transcriptional activation could be
either direct, or mediated by other virus-induced events
such as oxidative stress (136).

Upstream events required for cytokine transcription
include phosphatidylinositol (PI)-3 kinase activation,
required for IL-8 production, relating at least partly to
viral endocytosis (137). Activation of p38 MAP kinase
also seems to be a key event, as its blockage resulted in
extensive inhibition of RV-induced production of mul-
tiple cytokines (138). Stimulation of p38 is mediated by
the small G-protein RhoA through membrane rafts (139).

Genetic polymorphisms affecting the course or suscep-
tibility to respiratory syncytial virus bronchiolitis are
gaining attention (140, 141). As there are differences
between acute bronchiolitis and asthma (142), further
such studies in respect to asthma exacerbations are
needed.

Interactions between viral infections and other factors

Viral infections, atopy and allergens

It is still uncertain if and to what extent asthmatic
patients are more susceptible than normal individuals to
airway infections. In a recent longitudinal study RV
infections were similarly common in healthy and asth-
matics; however, the degree of lower respiratory tract
symptoms induced by the infection was more severe and
prolonged in the asthmatic group (13). It had previously
been suggested that the degree of antibody-mediated
protection from RV infection is suboptimal in atopic
subjects (143). Interestingly, the degree of worsening of
asthma seems to be more pronounced in children with
high IgE levels vs those with lower (144). Moreover, the
odds ratio for wheezing is greater in children with RSV
infection if they have evidence of atopy, supporting the
theory of detrimental interaction between viruses and an
allergic status in the infected patient (145). Nevertheless,
it is now clear that the atopic/asthmatic condition may
influence the outcome of viral infections independent of
the presence of allergen (4, 85). On the other hand,
epidemiological studies have shown that sensitized

Figure 5. Nervous system involvement in virus-induced exac-
erbations of asthma. (Top) Virus-induced epithelial damage
may permit irritant and allergen penetration and contact with
nerve endings. (Middle) Epithelial damage may also affect the
metabolism of neuropeptides, such as substance P and neu-
rokinin-A, which are implicated in cell activation in asthma.
(Bottom) Viruses may damage the M2 muscarinic receptor that
regulates cholinergic responses by a negative feedback loop,
leading to increased cholinergic responsiveness.
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allergic patients suffering from a viral infection have a
very pronounced risk of developing a severe asthma
worsening if they were concomitantly exposed to the
relevant allergen, with an odds ratio of over 8 in adults
(146) and almost 20 in children (147; Fig. 6). It is well
established that when patients with mild rhinitis and/or
asthma are experimentally infected with RV, a concom-
itant allergen challenge causes greater recruitment of
eosinophils, more pronounced histamine release,
enhanced bronchial hyperresponsiveness as well as
increased risk of developing late asthmatic responses
(25). Interestingly, when patients were exposed to RV
after allergen exposure, no additive or synergistic effect
on several inflammatory parameters was observed (148,
149). It seems therefore that timing of exposure may be
important in a synergistic outcome, supported by recent
in vitro (150) and animal findings (151).

Viral infections and air pollutants

Interactions between viral infection and air pollution
have also been demonstrated. A recent study in Kenya
monitoring exposure to indoor air pollution and health
status of individuals showed a relationship between
indoor pollution by biomass combustion and acute
respiratory infections in adults and children (152). NO2

has received attention, as it can be emitted from both gas
cooking appliances and motor vehicle exhausts, thus
representing both an indoor and an outdoor pollutant.
The Air Pollution on Health: European Approach
(APHEA) project with data from 15 European cities
has shown that an increase of 50 lg/m3 NO2 for 1 h was
associated with a 2.6% increase in asthma admissions
(153). Children exposed to increased levels of NO2 in
school and home showed a significant increase in sore
throat, colds and absences from school (154). When
personal NO2 exposure and virus presence were assessed

in a cohort of asthmatic children, high NO2 exposure was
associated with higher infection rates and increased
severity of virus-induced asthma symptoms (155). Fur-
thermore, diesel particle exposure increases susceptibility
to RSV infection (156) and upregulate RV receptors
ICAM-1 and LDL (157).

Smokers have an increased risk for more frequent
common colds with longer duration, as shown in epide-
miological (158) and experimental infection studies (159).
In children, environmental tobacco smoke (ETS) increa-
ses the risk of wheezing with colds (160), and asthma
hospitalizations (161), possibly by an additive effect on
atopic inflammation (162).

Conclusion and need for further research

Knowledge of the mechanisms of virus-induced asthma
exacerbations has increased substantially in the last few
years, although significant gaps still exist. Detailed studies
of the molecular pathways that underlie virus-induced
inflammation may help identify new therapeutic targets.
While information on different aspects of the antiviral
response is increasing, integration of the diverse elements
and their interactions into a global model is still missing.
In this respect, the role of neural elements in humans
requires further attention. Further studies are also needed
in order to differentiate between the response of normal
and asthmatic individuals to viruses and to clarify the
mechanisms that lead to increased severity and/or pre-
clude resolution of infection in the latter. Furthermore,
differentiation between atopic and nonatopic responses in
asthma is still required, as the majority of studies have
focused on atopic asthma. Finally, interactions between
multiple triggers and their mechanisms, as well as the
impact of virus-induced inflammation on subsequent
tissue remodelling are only starting to be unravelled.
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Figure 6. Synergistic effect of allergic sensitization, allergen exposure and viral infection in increasing the risk of hospitalization for
asthma in children. Combined exposure and viral infection in sensitized children increased almost 20-fold such risk, while individual
risk factor had weaker effects [adapted from Refs (146, 147)].
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