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Abstract

Exact Bayesian inference can sometimes be performed efficiently for special cases where a function has commutative and
associative symmetry of its inputs (called “causal independence”). For this reason, it is desirable to exploit such symmetry on
big data sets. Here we present a method to exploit a general form of this symmetry on probabilistic adder nodes by
transforming those probabilistic adder nodes into a probabilistic convolution tree with which dynamic programming
computes exact probabilities. A substantial speedup is demonstrated using an illustration example that can arise when
identifying splice forms with bottom-up mass spectrometry-based proteomics. On this example, even state-of-the-art exact
inference algorithms require a runtime more than exponential in the number of splice forms considered. By using the
probabilistic convolution tree, we reduce the runtime to O(k log(k)?) and the space to O(k log(k)) where k is the number of
variables joined by an additive or cardinal operator. This approach, which can also be used with junction tree inference, is
applicable to graphs with arbitrary dependency on counting variables or cardinalities and can be used on diverse problems
and fields like forward error correcting codes, elemental decomposition, and spectral demixing. The approach also trivially
generalizes to multiple dimensions.
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Introduction

In bottom-up mass spectrometry pieces of digested proteins,
which are called peptides, are first matched to observed spectral
evidence, and the quality of the match between the peptide and
the spectrum is scored[1-5]. These scored peptides are then used
to perform inference on the proteins, whose present-absent states
are usually the variables of interest. The computational cost of
inference is non-trivial: some graphs can be processed efficiently,
while performing inference on other graphs can be proven to solve
the NP-hard minimum set cover problem [2]. Performing efficient
but accurate inference on these graphs is important for producing
reliable protein inferences.

Figure 1 depicts a simple graphical view of protein identification
from tandem mass spectrometry experiment. In figure la, the
causal flow of information is described graphically: proteins are
digested and then fragmented to produce observed spectral
evidence. Directed edges between proteins X7,X>, ... and spectral
data D 4,Dp, ... represent causal statistical dependencies: proteins
are connected to the MS/MS spectra matching peptides that can
be produced according to the model of the digest (e.g. peptide
strings resulting from an i sifico digest of protein sequences using
trypsin cleavage rules with up to one missed cleavage). Note that
because peptides are usually paired with spectrum in a one-to-one
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manner (pairing each peptide to its best-matching spectrum and
pairing each spectrum with its best matching peptide to form a
“PSM” or peptide-spectrum match), we simply draw the proteins
producing that spectral evidence, thereby producing a bipartite
graph of proteins (X) to spectral data (D). Note that this one-to-
one mapping between peptides and spectra means that this
bipartite graph can be viewed as a protein-peptide bipartite graph;
however, rather than constrain ourselves to inference with MS/
MS intensities, the data used for inference could just as easily
constitute precursor MS intensities or even spectra resulting from a
top-down experiment.

Proteins with shared spectral data (such as Xj, X, and X3,
which share evidence Dy, which could describe an identified
“degenerate” peptide) introduce new non-causal dependencies: if
the score of the PSM corresponding to spectrum D 4 is very high, it
is tempting to award a high probability to protein X;; however,
proteins X> and X3 compete for this shared evidence, and thereby
have a chance to reduce the probability of X7. This process (called
“explaining away” to describe the fact that the contribution of
evidence to a single hypothesis is reduced by competing
hypotheses) introduces new dependencies between all pairs of
proteins sharing that evidence.

In figure 1b, we illustrate those shared protein-to-protein
dependencies with the moral graph [6] (so called because “parent”

March 2014 | Volume 9 | Issue 3 | 91507


http://creativecommons.org/licenses/by/4.0/

(c) Tree decomposition

(a) Directed graph (b) Moral graph
X1 X1

XllXZlX3lDA

X3,X4,Dp

X4, X5,X6,Dc

Figure 1. Mass spectrometry: a graphical view. (a) Directed edges
between proteins X1,X>, ... Xs and spectral data D,,Dp,D¢ represent
causal statistical dependencies with spectra that can result from
peptides in the adjacent protein. For simplicity, peptide-spectrum-
matches (PSMs) are denoted simply using their spectral evidence,
thereby producing a bipartite graph of proteins (X) to spectral data (D).
Proteins X, X», and X3 share spectral data D4, because they share
peptides that were matched to spectrum D. : if the score of the PSM
corresponding to spectrum D is very high, it is tempting to award a
high probability to protein X;; however, proteins X, and X3 compete
for this shared evidence, and thereby have a chance to reduce the
probability of X;. This process (called “explaining away” to describe the
fact that the contribution of evidence to a single hypothesis is reduced
by competing hypotheses) introduces new dependencies between all
pairs of proteins sharing that evidence. (b) These shared spectral data
introduce new non-causal dependencies between proteins with shared
successors in (a). These dependencies are visualized in the undirected
moral graph. When multiple proteins share spectral evidence, these
undirected edges connect all pairs of predecessors, creating a clique in
the moral graph K(X,X>2,X3,D4). (c) The tree decomposition
(sometimes called the “junction tree” or “clique tree”) merges the
moral graph from (b) without loss of dependencies, so that inference
can be performed using Pearl’s belief propagation algorithm. Belief
propagation starts at the top clique, which only shares variable X, with
its neighbor. Therefore, the top clique can perform inference while
leaving X3 as a symbolic, unknown quantity, so that it can be used to
send information from the cliques below (X3 is an information
bottleneck, through which the cliques below can influence the top
clique). Likewise, the variables X; and X, can be marginalized out
before sending any relevant information to considering the middle
clique. This procedure can significantly reduce the runtime by allowing
inference to be performed on the cliques rather than on all nodes in the
tree; however, each clique represents an inseparable multidimensional
distribution over several variables, and thus the cost of processing a
single clique is more than exponential in the number of variables. When
many proteins share common evidence (i.e. share at least one peptide
identified by spectral evidence), a large clique is formed in the moral
graph and inference becomes intractable in the general case.
doi:10.1371/journal.pone.0091507.g001

nodes, which share a common child are “married by an edge”).
The moral graph displays these latent dependencies between
proteins, as well as the original causal dependencies from (a).
Hence, when multiple proteins share spectral evidence, these
undirected edges create a clique in the moral graph
K(X1,X2,X3,D,4). These cliques can be joined in a tree, which is
known as the tree decomposition [7] (also known as the “junction
tree” or “clique tree”).

In figure lc, we show a tree decomposition formed from the
moral graph in figure 1b. This tree decomposition is performed by
merges nodes in the moral graph so that the resulting graph can be
viewed as a tree without losing any edges (lost edges would
correspond to ignored dependencies). Posterior probabilities on
graphs without cycles (z.e. trees) can be computed by visiting each
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D(S)

Figure 2. Difficult inference: mass spectrometry-based identi-
fication of splice variants. Several proteins X,X>, ... X; matching
unique and shared peptide-level evidence. The peptide-level evidence,
D is partitioned into unique peptide-level evidence (Dy,D,,...Dy) as
well as a collection of shared peptide level evidence shared by all
proteins (D®). Graphs of this form are typical when searching mass
spectra against protein databases containing substantial redundancy
(e.g. databases with many splice variants or close homologs), because
these types of proteins share core similarities but also have unique
regions that distinguish them from one another. Inference on this type
of graph cannot be performed efficiently through protein clustering,
protein pruning, or junction tree decomposition; to date, exact Bayesian
protein inference on such splice variant graphs has only been
performed in super-exponential time.
doi:10.1371/journal.pone.0091507.9g002

clique only twice using Pearl’s belief propagation algorithm;
however, each clique represents an inseparable multidimensional
distribution over several variables, and thus the cost of processing a
single clique is more than exponential in the number of variables
(its state space is the Cartesian product of the contained variables’
outcomes). Therefore, the runtime of junction tree inference is
more than exponential in the size of the largest clique (the “tree
width” of the graph is the size of the largest clique minus one).

For this reason, when many proteins share common evidence
(i.e. in tandem mass spectrometry, at least one shared peptide
matching spectra), a joint dependency between all of those
proteins is created, and the large resulting clique formed in the
moral graph can make inference intractable in the general case.
Without modifying it after tree decomposition, exact inference on
the graph is more than exponential (that is, it is not in O(2")) in the
number of proteins joined by such evidence [8]. And because these
large cliques represent a full joint distribution of dimension 7, even
sampling procedures like Monte Carlo and Markov chain Monte
Carlo (MCMC), which have been successfully applied to protein
inference[8-10], cannot saturate the space with samples, and are
thus insufficient.

In particular, Bayesian networks similar to the one shown in
figure 2 can occur in mass spectrometry-based proteomics when
attempting to identify homologous (or, more generally, proteins
with sequence similarity). Specifically, these challenges occur in
practice when attempting to distinguish between antibodies and
other closely related splice variants [11], searching large databases
containing non-canonical variants to find aberrant gene products
(e.g. from samples of cancerous tissue), and in proteomic studies of
organisms for which little or low-quality genomic information is
available [12]. The entirety of spectral data for this graph, D, is
partitioned into two categories: First, all proteins X7,X5,... Xx in
the weakly connected subgraph are adjacent to a collection of
shared evidence (eg. degenerate peptides matching observed
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Figure 3. lllustration of the enumeration approach. Super-exponential enumeration is illustrated using a simple digraph. The protein prior for
protein X; is denoted using the vector P; (written using Python dictionary notation), where P;[0] = Pr (X;=0) and P;[1] = Pr (X;=1). Likelihoods due
to unique evidence for protein X; are denoted L;, and the likelihood due to shared evidence is shown using LS, both using the same notation. The
scores populating the L; and LS vectors comes from the peptide-level likelihoods indicating the quality of the match between the peptide and any
matching spectra (i.e. these scores come from the conditionally independent product of PSM scores for that peptide). For example, the prior
probability on protein X is 0.8, and a unique peptide corresponding to protein X has the score 0.35 (indicating the relative likelihoods are 0.35
versus 0.65 for the respective hypotheses that the peptide matching spectrum D; is created by protein X; versus the hypothesis that the peptide is
not created by protein X)). The inset shows the table produced by enumerating all distinct protein configurations, and the resulting joint probability
with all data (both unique and shared). This computational cost of this enumeration is in O(k2¥) for k proteins.

doi:10.1371/journal.pone.0091507.g003

spectra). These shared data, denoted D, produce a large clique
in the moralized graph, which indicates that computing and
passing the messages will be computationally infeasible on large
problems without considering the form of the conditional
probability function for the shared data. Second, each protein
also has any number of unique evidence, which are found only in a
single protein. The evidence (e.g. peptides) unique to protein X; are
denoted D;.

A Previous Model for Bayesian Protein Inference

Previous work on exact Bayesian inference for protein
identification [2,13] models every protein with an independent
identically distributed prior probability y that the protein is truly in
the sample, a conditional probability o that a present protein
would generate a constituent peptide, and a noise model where
incorrect peptide identifications were modeled with probability f.
Lastly, the event that one present protein is successfully digested
into one of its shared constituent peptides does not influence the
event that another protein is successfully digested into the same
peptide.

Optimizations for more Efficient Protein Inference

Using this model, exact inference can sometimes be performed
more efficiently using two optimizations: clustering and pruning.
These two optimizations are used in conjunction with factoriza-
tion, which separates and performs inference individually on
weakly connected subgraphs, to perform exact inference more
quickly.

PLOS ONE | www.plosone.org

The first optimization, clustering, merges together any collec-
tion of k protein nodes Xj ,Xj,...X; that contain identical
peptide sets. Because the probability that a peptide is absent is the
probability that it came from neither the noise model nor from any

proteins:

(1 _ﬁ)j:)l;lzl(l —o)=(1-p)1 —O()Hj:Xf'izl}‘
i

X;.

—(—f)1—a)

These proteins were clustered because they share dentical
peptide sets, such that all spectral evidence depending on these
proteins actually depends on the number of protein present
N =|{j : Xj; =1}| rather than on the actual set of present proteins.
This is because addition is a commutative and associative
operation, and so rather than enumerate the power-set of proteins,
marginalization can instead be performed on the number of
proteins present:

Pr(DaXl :.Xl)
= ZZZPr(D,Xl :x1,X2=x2’...Xk:xk)
2 X3 X)

= Pr(D|N=n)Pr(N=n)Pr(X;=x1|N=n),
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Figure 4. A quadratic dynamic programming approach and its generalization. (a) A dynamic programming approach to solving the
problem from figure 2. In this approach all values of N, the information on which D' depends, are computed after successively including every next
variable X;. This allows paths in the exponential tree generated by the power-set to be merged when they result in the same value N =n, and thus
allows a forward-backward algorithm to compute inference in quadratic time and space. (b) A general path graph can be constructed whenever the
operation performed by the node N, on which the shared data D depends, can be decomposed as a series of consecutive operations that
aggregate X; one at a time. This corresponds to operators with commutative and associative properties. The resulting transformation resembles
Heckerman'’s temporal transformation, which also uses quadratic time and space.

doi:10.1371/journal.pone.0091507.9g004

clustering cannot be performed unless the proteins clustered are
adjacent to udentical sets; the graph in figure 2 does not have this
property, because proteins are potentially distinguishable by their
unique evidence D1,Dy, - - Dy.

where Pr(N=n)= ( ]; ) p(1—=9)*=" and the conditional

probability for an arbitrary protein i in the cluster

n
Pr(X;=x;|N=n)= = Thus enumeration, which has a computa-

tional cost that exceeds 2%, is reduced to k+1 steps. However,

D, D, D,

The second optimization, pruning, exploits the fact that this
type of protein-peptide emission model (sometimes referred to as a

Dy

X1
L®={0:0.1, 1:0.3, 2:0.35, 3:0.2, 4:0.05}
N D(S)

No N,

Prno=10:1}

Puali+l«Py,[j] Pyli] Lylil=
{0:0.13, 1:0.28}

Pu,Li+j1xPy,[j] Pi] Lolil=
{0:0.0105, 1:0.307, 2:0.612}

Pu,li+1xPy,[j] Psil Ls[il=
{0:6.14E-5, 1:1.09E-2, 2:2.70E-1, 3:5.31E-1}

Puli+jlecPy,[j1 Plil Lylil=
{0:2.63E-6, 1:1.41E-3, 2:4.11E-2, 3:5.50E-2, 4:4.68E-3}

Figure 5. lllustration of the quadratic dynamic programming approach. The quadratic dynamic programming approach is illustrated using
the digraph from figure 3: One by one, each protein is added to the initially empty total number of present proteins, represented by the random
variable N©, Thus, the probability distribution for each partial sum N; = X + X5+ - - - X; is computed and stored in the vector Py;,. Finally, the shared
evidence D' is included, as it depends exclusively on the number of present proteins N =X| +X,+ .... Inference for a particular protein (e.g.
protein X)) could be performed easily by performing another forward pass with the constraint that X; =1, and all protein posteriors would thus be
computed in cubic time with the number of proteins (k proteins x O(k?) steps per protein); however, a subsequent right-to-left pass could be used
to compute all protein posteriors in O(k?) time via the forward-backward algorithm.

doi:10.1371/journal.pone.0091507.g005
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Figure 6. Faster dynamic programming using the convolution tree. (a) An alternate transformation for efficiently computing posteriors for
all proteins. Instead of unrolling the commutative and associative operator one protein at a time as performed by the quadratic dynamic
programming algorithm, variables are paired successively, resulting in a tree with depth log,(k) (when k is a power of 2). (b) Inference on this tree can
be performed by solving a minimal ternary node structure and then proceeding inductively: all nodes (except for the proteins themselves) have two
parent subtrees, (L,D) and (R,D'®), and one child. The parent subtrees connect the node of interest to all data reachable through the parents
above (partitioned into D' and D®), respectively), and the child subtree connects to all data reachable below, (denoted D). The joint probability
with all data above can be passed as messages from parents to children, and the likelihoods given data below (that is, all data reachable through a
downward edge out of a given node) can be passed upward from child to parents. Each of these three messages turns out to be a convolutions
(shown in inset). For example, all ways that N =5 can be computed by a shifted and reflected dot product, which finds all L and R with a sum of 5.
Thus the prior probability for N can be seen as a vector equal to the convolution of the prior probabilities of prior probabilities for L and R. These
convolutions can be performed with fast Fourier transform (FFT) in i log(i) time (where i is the size of the possible state space of N). If the vectors are
very sparse, then a standard discrete Fourier transform-based (DFT) convolution may be faster.

doi:10.1371/journal.pone.0091507.g006

“noisy-or” model with symmetric parameters) produces indepen-
dent nodes when a peptide is not observed (i.e. when a peptide has a
zero probability of matching any observed spectra). Thus, these
zero-score shared peptides found in D) can be copied so that

L,={0:0.65,
1:0.35}

L,={0:0.01,
1:0.99}

D,

L,={0:0.25, D,
1:0.75}

P,={0:0.2, 1:0.8}
X1

P,={0:0.1, 1:0.9}
X2

P;={0:0.4, 1:0.6}
X3

PN(1)1°((P1 L)*(P; Ly)=
{0:00325, 1:0.0948, 2:0.189}

PN“(PN(I) * PN(Z)) L=
{0:3.32E-7, 1:1.77E-4, 2:5.18E-3,
3:6.92E-3, 4:5.89E-4}

DS

D;

each protein has its own unique copy. If all shared peptides from
D have zero scores, the resulting graph can thus be solved in
linear time because all proteins are now independent. Unfortu-
nately, as was the case with clustering, this optimization fails on

L,={0:0.85, D,
1:0.15}

P,={0:0.3, 1:0.7}
X4

PPy (Py Ly)*(P; Ly)=
{0:0.00102, 1:0.152,
2:0.0624}

L®={0:0.1, 1:0.3, 2:0.35, 3:0.2, 4:0.05}

Figure 7. lllustration of the probabilistic convolution tree. The convolution tree is illustrated using the digraph from figure 3 and figure 5:
Messages are passed down the tree (via step 1). A subsequent pass would send messages up the tree (step 2), computing the protein posteriors in
sub-quadratic time. Note that the normalized vector Py is equivalent to the distribution Vn, Pr (D,N =n), and is identical to the normalized vector of
the same name computed by the quadratic algorithm illustrated in figure 5.

doi:10.1371/journal.pone.0091507.9g007
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Figure 8. Runtime comparison between the algorithms. (a) A comparison of power-set enumeration and the quadratic dynamic programming
approach on small problems of the form from figure 2. Note that axes are log-scaled, and so a widening gap between the curves indicates a super-
linear speedup for the algorithm producing the lower curve. (b) A comparison of quadratic dynamic programming and the convolution tree
approach on larger problems of this form. The convolution tree achieves a super-linear speedup and a super-linear reduction in memory
consumption, making it applicable to much larger problems than either the quadratic dynamic programming approach or power-set enumeration.
On very small problems (requiring substantially less than one second of runtime), the more sophisticated dynamic programming approaches have

higher overhead, and are therefore slightly slower.
doi:10.1371/journal.pone.0091507.g008

figure 2 except in the rare case when all peptides in D have zero
scores (in practice, it is rare that all such peptides will have zero
scores on a large problem). Approximations of the posterior
probabilities can be computed by pruning or removing some select
peptides that have nonzero scores; however, this can result in
lower accuracy when searching spectra against complex protein
databases, which have many more such shared peptides [3].

As noted above, the junction tree algorithm, clustering
optimization, and pruning optimization do not solve the problem
from figure 2 in sub-exponential time; on the contrary, the most
efficient exact Bayesian algorithm that has been demonstrated for
this type of splicoform graph enumerates the power-set [8].
Furthermore, clustering relies heavily on the assumptions in the
original model, and requires that the protein prior y must be the
same for all proteins, and the peptide emission probability o must
be the same for all peptides (and the method used to duplicate
pruned peptides in the supplement of [13] assumes the noise
model f is identical for all peptides). In a similar manner, pruning
is tied to the use of noisy-or peptide nodes. Likewise, other
optimizations are rigidly tied to specific graph topologies. For
example, inference can be performed in linear time on polytrees
that exclusively use noisy-or nodes by decomposing the noisy-or

(b)

nodes in an iterative fashion and performing belief propagation
[6,14]; however, the graph from figure 2 is a polytree only when
there is exactly one node of shared evidence in D (for
completeness, when there are zero nodes of shared evidence, the
graph can also be solved efficiently by partitioning it into a
collection of disjoint polytrees).

The Need for Further Optimization of Inference

Because the optimization strategies mentioned above are limited
to certain graphs or require all peptides to use identical parameters
o and f, it can be difficult to use these optimization techniques to
realize efficient inference using a modified or extended protein
inference model: for example, the next generation of models could
include arbitrary categorical priors on how many proteins are
present or peptide-specific emission and noise models, which may
even depend on the number of present predecessor proteins
(rather than constraining that predecessors contribute in a simple
multiplicative manner as modeled by noisy-or nodes). These more
general priors and emission models can be used to more
objectively model the process by which splice variants data are
produced by mass spectrometric analysis, and thus permit
inference techniques that more accurately model the manner

Figure 9. A graph and its cascaded equivalent. (a) A Bayesian network with probabilistic adder nodes N;, and N, 3. (b) The resulting
cascaded graph of probabilistic adder nodes transforms the graph into an equivalent Bayesian network that can be solved efficiently as a convolution
tree. Graphs that do not cascade into polytrees (i.e. graphs that have loops even after cascading nodes as shown here) can be solved with a slightly
modified junction tree inference algorithm: junction tree clique nodes that consist of a single probabilistic adder node and its inputs can pass
messages through convolution tree nodes (without realizing the full conditional probability distribution).

doi:10.1371/journal.pone.0091507.9g009
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Figure 10. Runtime benefit of convolution tree-based junction tree over HUGIN-based junction tree on Hela data. (a) Distribution of
log runtimes for different connected subgraphs (24 fractions). A HUGIN-based junction tree implementation is compared to a probabilistic
convolution tree-based junction tree implementation. The cost of inference will be dominated by a few outlier graphs, which do not decompose
effectively using the junction tree. As a result, some connected subgraphs would require an impractical number of steps when using the HUGIN
algorithm. This runtime can be improved by using probabilistic convolution trees, while still achieving the exact result. (b) One difficult connected
subgraph from panel (a). Proteins are shown as red squares, probabilistic adders are shown as blue inverted triangles (these are the nodes can make
use of probabilistic convolution trees), spectral evidence is shown as green circles. This subgraph would require 2'362% steps using the HUGIN

junction tree. In contrast, the probabilistic convolution can solve this same subgraph in 212045 steps (and achieve an exact result).

doi:10.1371/journal.pone.0091507.g010

with which proteins compete for shared peptide data. For instance,
perhaps a sixth present predecessor protein does not substantially
increase the peptide’s chances compared to five present proteins,
or perhaps genetic or biochemical analysis has demonstrated that
it is improbable for the gene in question to express more than 7
splice forms in a short period of time. Such extensions can be
implemented with probabilistic adder nodes, which add two
probabilistic quantities. As we demonstrate in this paper, these
probabilistic adder nodes can be more flexible and general than
symmetric noisy-or nodes (symmetric noisy-or nodes can be
trivially emulated using probabilistic adder nodes, but the converse
is not true). Generalizing to probabilistic adder models offers a
substantial increase in model flexibility. Because they are more
general than noisy-or nodes, more problems can be decomposed
into a polytree of probabilistic adder nodes (e.g. the graph in
figure 2, even when using peptide-specific emission and noise
parameters).

In this paper we present a dynamic programming method for
computing exact posteriors for efficiently solving the problem in
figure 2 using a more flexible probabilistic adder model. The first
algorithm presented performs inference in quadratic time and
quadratic space, which is compatible with a peptide-specific
emission model, with a peptide-specific noise model, and with non-
identical protein priors. We then generalize the algorithm we use
to reveal it is an instance of the transform proposed by
Heckerman[15-17].

Lastly, we propose the probabilistic convolution tree, a data
structure which uses dynamic programming to perform exact
inference on polytrees of probabilistic adder nodes in O(k log(k)*)
time and O(k log(k)) space, and compare performance of the three
algorithms, power-set enumeration, quadratic dynamic program-
ming, and the probabilistic convolution tree, on problems of the
form shown in figure 2. The probabilistic convolution tree is
applicable to more general graphs, can be combined with junction
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tree inference, and can even used to efficiently compute posteriors
when using an arbitrary categorical prior on the number of present
variables.

Materials and Methods

Using graphs of the type shown in figure 2, we compare the
three exact inference methods described in this paper that can be
applied with peptide-specific probabilities: power-set enumeration,
quadratic dynamic programming, and the proposed probabilistic
convolution tree approach.

For each problem of a given size k, each protein is adjacent to a
unique peptide and all proteins are adjacent to between 1 and 9
shared peptides (chosen using uniform integers in {1,2,...9}).
Each unique peptide j has its own o; and f8; chosen uniformly
€[0.1,0.9] and a random probability score (i.e. the probability it
matched an observed spectrum) chosen uniformly €[0.1,0.9]. Each
protein i has a protein-specific prior 7; chosen uniformly
€[0.01,0.99] (this is useful to test the numeric stability of the
algorithm, because the only division operation is based on this
collection of protein priors). Lastly, the shared data D has an
arbitrary categorical distribution in the number of present proteins
N=3",X; (cach entry chosen randomly in [0,1] and normalized
to sum to 1).

Runtimes were compared using python implementations of
each of the three algorithms on a Core 13 laptop. For all problems
timed, the three methods achieve identical results (to the 8 decimal
points that by default are printed out by python’s numpy package).

Results

The Brute-force Algorithm: Power-set Enumeration
Power-set enumeration is quite simple: the likelihood is
computed for every possible joint state for all proteins X =x.
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Figure 11. Decomposition of a spectrum into its constituent compounds. (a) A probabilistic demixing (a problem highly related to
deconvolution) problem from mass spectrometry. An observed chimeric spectrum with data D is composed of a linear combination of four different
compounds and with unknown relative abundances W,X,Y,Z, which we want to infer. Three m/z values that can receive contributions from
multiple compounds are labeled with the background colors red, green, and blue. (b) The resulting cascaded graph of probabilistic adder nodes. The
variables W ,X,Y,Z are discretized into relative abundances of interest. Conditional probabilities individually treat each intensity as proportional to
the abundance of the compound that produces it. Data unique to each compound are labeled Dy, ,Dy,Dy,D, and are conditionally independent
given W,X,Y,Z. Shared evidence nodes are colored to correspond to the background colors from (a). Probabilistic adder nodes are cascaded to

build a tree for probabilistic inference, enabling the computation of a posterior distribution for the relative abundance of each compound.

doi:10.1371/journal.pone.0091507.g011

PI‘(X[ =)C1‘D)OC PI‘(D,X] ZX])
Pr(D,X;=x))

= ZZ.“ZPI‘(DaXl:x],Xzzxz’...Xk:xk)

x2 XS xk
Pr(D.X\=x1,X2=x3, - Xie=x¢)
=PrDPIN =3 Il Pr (D)X =x)

Ilustrative example of the exponential enumeration
algorithm. Figure 3 illustrates this super-exponential inference
algorithm on the small graph of the type shown in figure 2. Four
proteins with different prior probabilities and unique spectral
evidence are marginalized via brute force: for each of the 2*
protein configurations, Pr (X =x,D) (the joint probability of the
protein configuration x and all observed data) can be enumerated
in super-exponential time (z.e. it takes exponential time for each
protein multiplied by the number of proteins involved). The
values in the column containing Vx, Pr(X =x,D) can then be
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used to compute marginals for a particular protein (z.e. protein
X1). This is accomplished by separately computing the denom-
mator and then the numerator from equation 1. The denom-
inator can be computed by summing over all values in the
column (i.e. Pr(D)= ", Pr(X =x,D)), and then the numerator
for the protein X; can be found by computing the sum of
values in the same column, but only where X;=1 (e
Pr(D,X,=1)=3_ Pr(X=x,D)). A small
achieved by passing over the table one time to compute the
total sum, (Pr (D) used in the denominator of equation 1), as well
as the constrained sum (i.e. the numerator) for each protein,
thereby computing each value in the column Vx,Pr(X =x,D)
only once. Thus the cost of computing posterior probabilities for

X =1 savings 18

k proteins is in O(k2F) time (k proteins x 2% steps per protein).

Time and space requirements. Power-set enumeration can
be performed in O(2¢k) time: there are 2% protein configurations,
each of which is applied to a running total of joint probabilities for
k variables. Despite its inefficient runtime, power-set enumeration
requires only O(k) space (enumeration of the power-set can be
performed by incriminating a large base-2 number, and therefore
does not require storing the entire power-set).
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A Quadratic Dynamic Programming Algorithm for Exact
Inference

Figure 4a demonstrates the idea behind the quadratic dynamic
programming algorithm: Each protein is added (with its state still a
random distribution) one at a time, resulting in layers of partial
sums. These partial sums work toward building the sum of the
present proteins N= Y, X;. At each layer i in the table, we
compute the distribution on the random variable N; (the random
variable for the partial sum defined by N; = Zj ~; Xj). Because the
variable X; is still unknown, every possible values of X; is
associated with edges connecting cells in layer i—1 to the
appropriate cell in layer i. For example, the an edge labeled
X1=1 connects the 0 row of Ny (i.e. the event that the random
variable No=0) to the 1 row of Nj (i.e. the event that the random
variable Nj=1), because N;=N;_1 + X;. Each edge for X;=Xx; is
weighted by the product between the prior that the protein has
that assignment and the unique likelihood contribution that arises
from that protein taking that assignment:

Cixiy1 = Pr(Xjy1=xi41) Pr(Dit1|Xis1=xi41).

These layers are built so that the final layer is the cumulative
sum of all proteins: Ny=Ni_1+Xp=N_2+ X1+ Xk
=..- =3, X;=N. In this manner, all possible paths to arrive
at every possible cumulative sum N =n,0<k <n are available in
the graph shown in figure 4a.

After the graph is initialized, two passes are performed: one
from the left and one from the right (these passes are sometimes
denoted a “forward-backward” algorithm, a special class of
junction tree message passing on a path graph commonly used
by hidden Markov models (HMMs). Denote row j of layer i as
N;[j], which indicates that ), _; X;,=/. The pass from the left
computes the marginal probability of arriving at this given cell
through all possible weighted left-to-right paths, denoted
N;[j].fromLeft for row j of layer i. The algorithm starts with
Ny[0].fromLeft—1, because Ny has a 100% probability that it is 0
(the outcome for the layer is indicated by the row number). These
values are used to fill the entire table by propagating left-to-right in
the following manner:

N,[j].fromLeft« Z

mx;m+x;=j

i1 x;Ni—1[m] fromLeft.

The second pass, from right to left, is performed in an almost
identical manner. For each value in the table, we compute the
marginal probability of arriving at this cell through all possible
weighted right-to-left paths. Before starting the right-to-left pass,
every node in layer k is initialized with the appropriate likelihood
due to the shared data: Ni[j]« Pr(D®|N =j). Then the same
propagation is performed, but from right to left:

Nilj] fromRight Z eix, . Niv1[m].fromRight.

MXj M= XGy ] =j

The result is that every cell in the table computes the marginal
probability of all paths passing through it from left to right and
from right to left (this is a standard ‘“forward-backward”
algorithm). The likelihood of being in a given node can be
computed by N;[j].likelihood = N;[j|.fromLeft x N;|j|.fromRight.

PLOS ONE | www.plosone.org

A Convolution Tree for Efficient Exact Inference

Thus, the posterior that any variable is in a certain state X;=Xx; is
computed by the total weight of all paths that pass through edges
assigning X; = x;:

Pr (X;=x;|D)oc Z N;_1lj].fromLeft e; 1, Ni[j+xi].
J

For the three preceding equations, out-of-bound indices (e.g.
querying Nj[—1].fromLeft and N,[—1].fromRight) should
return zero.

Note that figure 4a is drawn in a way that underscores its
applicability to inference problems where each variable has more
than two possible states (as indicated by more than two edges
radiating out of each node, and with labels not limited to binary
states).

Figure 4b generalizes this approach and merges each layer
N;[0],N;[1] ... into a single variable N;. The result is a graph with
a tree decomposition that is visibly simple; in fact, it closely
resembles a hidden Markov model (HMM), for which the tree
decomposition is trivial using a similar forward-backward algo-
rithm [18]. This graph generalizes the dynamic programming
performed in figure 4a so that it can be applied to similar problems
by transforming the graph and then performing junction tree
inference. The generalized algorithm is an instance of Hecker-
man’s transform [15,15,17], which is sometimes referred to as a
“temporal transform”.

From the generalized figure 4b, it is easy to understand the
algorithm described above: in figure 4a, passing through the node

Ni(I) indicates that the partial sum N;=Y_, _; Xiy=j. For this
reason, we can see that propagation from the left accumulates the
priors and unique likelihood contributions that would lead to

Ni=j.

Pr(D1,D;,...D;,N;=n;)=
Z ZPr(Ni:ni|Ni—l =n;_1,Xi=x;)
nlil Xl‘
Pr(Dy,D,,...Di_(,Ni_1=n;_1) Pr (D] X; = x;) Pr (X; =x;)

Likewise, propagation from the right computes the remaining
likelihood terms, along with the shared likelihood:

Pr(Dis1,Dis2,. .. .Di, D \Ni=n;) =
Z Z Pr(Ni=ni|Ni—1=n_1,.X;=x;)

Mt 1 Xit1
Pr(Di+27 . aDkaD(S)aNi+1 :ni+1)
Pr(Di1|Xiv1=xi ) Pr(Xip1=xi11).

For both equations above, we exploit the fact that
Pr (N,‘Il’l,'|Ni,1 =I’li,1,)(,‘=.xl') is 1 if and only if ni=n;_1+x;
(and is otherwise 0). For each of the two equations above, this
allows us to collapse the nested sum into a single sum over the
variable with a smaller domain (if all variables X; are binary, as in
the case of distinguishing splice variants, then x; will be have a
smaller domain than ;).

Lastly, we see that the posterior for a protein, which is always
proportional to its joint probability with the data, is computed by
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the forward-backward probability passing through edges labeled
A/,' =X;:

Pr(X;=x;,D)=
Z Pr(Ni:ni‘Ni—l =n_1,X;=X;)

mj—11

Pr(D1,Dy,...Di_1,N;i_1=n;_1)

Pr(Dis1,Di+2, - .Di,D ,Ni=n;)
Pr (D;|X;=x;) Pr (X;=Xx;),

which is given by the algorithm.

Ilustrative example of the quadratic algorithm. Figure 5
illustrates the forward pass of the quadratic inference algorithm on
the small graph shown in figure 3. The posterior probability for an
arbitrary protein (egn Xij) can be easily found by passing the
messages left-to-right once (to compute the denominator of
equation 1), and then by passing passing messages left-to-right
once more with the constraint that Xj=1 (to compute the
numerator of equation 1); however, by using right-to-left pass (i.e.
the “forward-backward” algorithm), the marginal probabilities of
all proteins can be computed in roughly the same amount of time
required to compute one protein posterior in this manner (i.e.
quadratic time).

Time and space requirements. This approach (and, in
general, Heckerman’s transform) reduces the runtime to O(k?),
but the table used for dynamic programming uses O(k?) space.
This time-space trade-off’' can be considered almost universally
favorable compared to power-set enumeration: for problems when
k? would become too large to store in the RAM of a modern
computer, k would be so large that 2°k would result in an
astronomically large runtime for power-set enumeration; however,
space will likely be the limiting factor in applying Heckerman’s
transform, and so like other O(k?) algorithms, it cannot be applied
as-is to very large problems as mentioned in [19]; for completeness
it should also be noted that the VEI algorithm [19] is not well-
suited to the problem in figure 2 because it is query based,
meaning that it performs best when only a small subset of the
variables need to be solved.

The Probabilistic Convolution Tree: a more Efficient

Dynamic Programming Algorithm
The probabilistic convolution tree, shown in figure 6 is similarly
motivated to the dynamic programming shown in figure 4;

however, ~where the quadratic dynamic programming
algorithm constructs a chain No=0,N; =X+ Ny,
Noy=Ni+Xs,...,Ny=Ni_1+ Xj, the probabilistic convolution

tree proposes a divide-and-conquer approach. First we present an
algorithm applicable when k is a power of 2, and then generalize
it. For this reason, all logarithms are base 2: log =log>.

Probabilistic adder nodes are partitioned into multiple layers:
NO=(N{".NY....), where NP’ =N§_)+ Ny~ In this man-
ner, every node in the tree from layer 1.../Jog(k) has exactly one
child and two parents. Layer 0 is composed of the parent-free
variables X7,X,...Xk; each nodes X; in this layer has two
children: their unique data D' and the probabilistic adder node in
layer one, N{f/lz)w, which depends on them.

Because of this consistent structure after layer 0, the entire tree
can always be viewed from a single probabilistic adder node N as
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having two parents L and R as parents. These parents, along with
the data reachable through them, constitute subtrees (L,DD) and
(R,D™). Each node has a single child subtree containing all data
below D™ (Figure 6). DY) includes the shared data D' as well as
any other data nodes reachable through the edge down from the
node. For instance, the tree as seen from the perspective of
node N has L=X,, R=Xy,DP=D;, DR =D, and
D(N)=(D3,D4, ... Dk,D(S)). Because this ternary structure is
ubiquitous in the tree, a message passing algorithm can be
constructed by using only the subtree from figure 6b.

Example: computing prior probabilities. As an example
of the motivating idea behind the probabilistic convolution tree,
first observe that the prior probability of a node can be constructed
easily using the prior probabilities of its parents:

Pr(N =n)
=Y Pr(L=0Pr(R=r)Pr(N=n|L={R=r).
14 r

And because N=L+R, this can be condensed to a single
summation:

Pr(N=n)=)Y Pr(L=0)Pr(R=n—10)
l

Priors are known for all nodes in layer 0, and so it is clear by
induction that a prior can be computed for every node (layer O is
the base case and every prior in the next layer can be computed
given the priors from the previous layer).

However, as written above, computing the prior for every node
in the tree would be at best a constant speedup over the quadratic
dynamic programming approach, because the two nodes in second
to last layer will have state space k/2 and k/2, and all pairs must
be combined to form the prior on the final node, N{logzk)
(enumerating these combinations requires quadratic time). How-
ever, we can now employ convolution at each node (see figure 6b
inset), and so it can be computed in m log(m) time, where m is the
state space of the node N being updated. Note that when the
vectors are very sparse, the convolution can be performed more
efficiently using a standard discrete Fourier transform (DIT)
rather than a fast Fourier transform (FF'T). Also note that a vector
that can easily be decomposed into a sum of dense vectors whose
nonzero indices do not overlap, then Fourier transformation can
be performed using a hybrid approach on the results of the
decomposition. If a probabilistic statement with a single
unassigned variable (e.g. Pr(N), Pr(L), or Pr(R)) is considered
as a vector (with all outcomes of that variable enumerated in
order), then the summation described in the equation above is
equivalent to

Pr(N)= Pr(L) * Pr(R),

where * is the vector convolution operator.

We now proceed to outline the convolution tree algorithm,
which operates in a similar manner as this example.

Step 1: passing messages down. [Iirst, the convolution tree
algorithm computes the joint probability of each node with the
data above it. This can be performed almost identically to
computation of prior probabilities in the example above. Also, like
above, the base case is known for all nodes in the layer O (it is
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simply the element-wise product between the node’s prior and its
likelihood from unique data). Thus in the same manner presented
in the example above, the joint probability of the node’s state with
all data above, Pr(D®,D® N) can be computed using a
convolution:

Pr(D®, DR, N)=" "Pr(D"|L=0)
I

Pr(D®P|R=n—0)Pr(L={,R=n—{,N =n)
=> Pr(DP|L=0)Pr(DP[R=n—1)
l

Pr(L=¢)Pr(R=n—1Y)
=> Pr(DV,L=0)Pr(D® R=n—1)
14

= Pr(D'P,L) « Pr(D'® R).

Like the example above where prior probabilities are computed,
each node in layer 0 has a known joint probability with the data
above. And so, proceeding layer-by-layer, for each node we
compute the joint probability of that node with data above it.

Step 2: passing messages up. The second part of the
convolution tree algorithm is to pass messages upward through the
tree after all messages have been propagated downward (.. after
completion of step 1). Where step 1 passes down the joint
probability of each node with the data above it, step 2 computes
the likelihood given all data that can be reached below: for the left
parent, we compute Pr (D®,DM|L) and for the right parent we
compute Pr(DY DWM|R). Note that we only need values
proportional to these probabilities, and so they can be normalized
before proceeding to the next layer in the tree for better numeric
stability. These messages can be defined thus:

Pr(D®, DML =1)
=Y Pr(DV|N=n)Pr(D®|R=n—{)Pr(R=n—1)

Pr(D'Y,.D™M|R=r)
= ZPr(D(N)\N=n)Pr(D(L)\L=n—r)Pr(L=n—r).
n

Where the forward pass (in step 1) represents addition, this
backward pass represents subtraction, which presents also
convolution, but because one operand is negated, its indices are
reversed. Also, the result of the convolution will not start at zero,
but will instead start at the minimum value achieved by the
subtraction. In this case, we do not want the negative values
because they are impossible in the source variable. Thus the above
equations can be written as convolutions where one vector is
reversed and where a slice is taken from the result (to undo the
shift and remove impossible outcomes). So the final results can be
computed

Pr(D®, DM|L)= (Pr (DP,R)[:: — 1] Pr(DV|N))
[len(R)—1 : len(R)—1+len(L)]
Pr(DY,D™M|R)= (Pr(D'",L)[:: —1] * Pr(DV|N))
[len(L)—1 : len(L)—1+len(R)],
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where len(R) and len(L) depict the number of states for R and L,
vector[:: —1] the vector (ie. it reflects it), and
v[a : b]=VaVat1,---Vp—1) slices the vector to remove the
unwanted shift mentioned in the paragraph above.

As messages were propagated downward before, these messages
can be passed back up the tree to form the likelihood given data
below for the left and right parent nodes. For example, for the left
parent L, its likelihood given all data below will be initialized by
the message passed back, Pr (D™, DW)|L). Now that the node L
has its likelihood given the data below, it can pass messages up the

reverses

tree. This process continues until all messages have been passed up
to layer 0, which contains the proteins themselves.

The posterior for node N =n can be computed by multiplying
the joint probability with data above by the likelihood given data
below that node:

Pr (D,N = }’l) =Pr (Dabove(N)aN = n) Pr (Dbelaw(N) ‘N = }’l)

Similarly, the posterior for protein X;=x; can be computed by
multiplying the joint probability with data above (for each protein
Xi, the data above consists only of its unique spectral evidence D))
by the likelihood given data below:

Pr (D:»A/l :xi) =Pr (Diszi :xi) Pr (DbL’IGW(Xi)|A/[)7

which is proportional to Pr (X;=x;|D). Note that when a value is
proportional to the posterior probability, then the posterior
proportionality can be computed by dividing by the sum:

Pr (D,X,‘ = .X,‘)

Pr(X;=x;|D)= i =)
r( x‘ ) ZX{PI'(D,/Y,‘:X;-)

(1)

Like the quadratic dynamic programming algorithm, the convo-
lution tree algorithm described here is applicable to variables with
more than two states. It also does not require that the left and right
parents of a probabilistic adder node have identical state space,
although of course an FFT-based convolution will be faster when
this is the case, because it will not need to pad the shorter vector
with zeros.

Illustrative example of the probabilistic convolution tree
algorithm. Figure 7 illustrates the convolution-based inference
algorithm on the a small graph of the type shown in figure 2.
Messages are passed down (via step 1). The posterior probability
for an arbitrary protein (e.g.n Xi) can be easily found by passing
the messages down once (to compute the denominator of equation
1), and then by passing messages downward once more with the
constraint that X; =1 (to compute the numerator of equation 1).
however, step 2, which subsequently passes messages back up the
tree, reuses the shared computations for these proteins, and
computes the posterior for every protein in roughly the time
necessary to compute the posterior for any single protein (sub-
quadratic time).

Time and space requirements.
runtime of the convolution tree
O(k log(kY), and the space requirement can be shown to be
O(log(k)). Sparse vectors can be convolved more quickly by using
the discrete Fourier transform (DFT).

A fixed number of convolutions are performed at all nodes.

As implemented, the
can be shown to be

k
Layer i will have 5 nodes, and the length of the state space for that
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convolution is <2!. Thus the cost of FFT convolution for a node
at layer i is 2/log(2). The entire runtime can then be computed

easily using the expansion »  i= w:

log(k)

Z ;= klog(k)(;—l—log(k))’

i=1

log®) 1 )
> 5 2og(2) =k
i

i=1

which is on the order of k log(k)z.
The memory consumption is computed with a similar strategy.

The simple implementation of the convolution tree method
described here requires O(k log(k)) space to store the two vectors

Pr (Da;,(,ve,N;i) ) and Pr (Dhelow|N;i) ) for each node N, /-(i) in the tree,
because at layer 7, the length of the vector storing each of these is
<2', and there are 5 such nodes in that layer. Thus the total

space requirement is

) log(k)
2 =k > 1 =k log(k).

i=1

log(k) k
2

i=1

The method can be easily extended when k is not a power of
two by simply adding dummy variables Xji1,Xk42,... with
100% prior probability of being absent (thus they do not influence
the sum) and with no unique evidence). These variables are added
until the total number of variables is a power of 2. Using a 0 prior
is important for this approach, because it prevents »_; X;, and
subsequently Pr(D®|X), from being altered by including these
dummy variables. Even though this approach is inelegant, it can
be easily seen to produce the same order runtime when k is not a
power of 2, because in the worst case, k must be roughly doubled
to perform inference, which would simply change the constant, but
not the order of the runtime.

Extension to linear functions on the integers. The special
case of computing posteriors where D depends on N with
N=Xi+Xo+ -+ +X; (as described in this paper), can be
easily generalized to compute posteriors when N=s51X]+
$2X2+ -+ Xy for fixed integer scaling factors s1,52, ... Sk.
First observe (without loss of generality) that for any positive
integer S, $1 X1 simply creates a new vector X{ with s; — 1 zeros
padded between every entry of Xj:

X1,
Oa

. .
— 18 an integer
X! [i/s1]= 1 &

else

Second, observe that for any two nodes L and R, the
subtraction L—R can be accomplished by reversing R before
convolution with L (and recording the fact that the zero index of
the resulting array no longer refers to N =0, but instead refers to
the minimum value achievable by the subtraction). For this reason,
scaling X by a negative integer s1 can be performed by reversing
the vector X and then padding with zeros as mentioned above,
and then adding normally with the convolution tree (again, in this
case, each node in the convolution tree would would also keep
track of the minimum integer summation value corresponding to
the zero index). For completeness, when s; =0 (and is thus neither
positive nor negative), then the scaled vector X [ = [1.0], indicating
a 100% probability that X/: is zero; however, if the fixed value s is
known to be zero ahead of time, then there is effectively no edge
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connecting Xj to the scaled summation N, and that input can be
ignored with no consequence.

Thus scaling X by s1 can be accomplished by simply permuting
the indices of X7 (into a potentially larger result vector): the vector
X1 is first reversed if s <0 and is then padded with zeros as
described above.

For simple implementation, single-input single-output scaling
nodes (with input X7 and output X] and a fixed parameter ;) can
be used to first transform any Xj into X] 1 , and then fed into a
convolution tree node with N=X1/ +X5 4+ -+ Xi. Thus we
can model an integer-scaled sum without any modification to the
convolution tree data structure. Messages passed backward
through these scaling nodes simply undo the deterministic
permutation of indices mapping X; to Xj.

Discussion

Performance on Randomly Generated Problems

Figure 8 shows a runtime comparison between the three
algorithms using a more general model, which is not restricted to
noisy-or nodes and instead uses probabilistic adder nodes.
Figure 8a compares power-set enumeration with the quadratic
dynamic  programming method on smaller problems
(ke{2,4,6,8,...,20}). Figure 8b compares quadratic dynamic
programming with the convolution tree method on larger
problems (ke{32,64,128,256,...,2048}). Note that both axes
are log-scaled and so a growing gap between the two series
represents a super-linear speedup in the runtime. On larger
problems (e.g. 4096 proteins), the quadratic dynamic programming
runs out of memory on a 4 GB computer.

Both the quadratic dynamic programming and the convolution
tree have runtimes far superior to power-set enumeration. But
moreover, the convolution tree offers scalability to substantially
larger problems than the quadratic dynamic programming
approach. For example, computing exact posteriors for 32768
proteins takes only 28.03 seconds, while the quadratic dynamic
programming cannot even be run.

Cascading Trees for more General Application
It should be noted that the convolution tree method can easily

be applied when including node-specific data D;-i), which depends

only on the node N;i) in the tree (as long as the resulting graph is
still a tree): The modified method would simply multiply (element-
wise) the likelihood given data below Pr (Dpejon| N, }i)) by the unique
likelihood Pr(D](i)|]\’j(i)) when passing messages up and multiply
(element-wise) the joint probability with data above
Pr (Dasore:N\”) by the unique likelihood Pr(D{’|N\") when
passing messages down. This allows nearly identical runtime
(point-wise multiplication is cheaper than convolution, which is
already performed by the algorithm). On graphs where data is
shared in a manner such that it is cascaded (i.e. Dy1 ) depends on
the sum of X;+Xs, and Dyjp35 depends on the sum of
X1+X>+ X3, and so forth), the sums can be arranged by a
simple greedy algorithm so that a probabilistic adder node Nj»
has predecessors X7,X> and then a second probabilistic adder
node Nj» 3 has predecessors Ny, X3 (Figure 9). Thus, cascading
makes it possible to use the convolution tree even when the shared
data D do not have identical predecessors as shown in figure 2.
Furthermore, more general cascading can factor out shared
computation so that data Dy 33y, which depends on X+ X5+ X3
and D33 4y, which depends on X + X3 + X4 can be factored into
N3y =X2+ X3 and where D{;34) depends on Ny33)+ X4 and
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D153, depends on Xj+ Ny3;. Cascading probabilistic adder
nodes allows inference in the same runtime and memory usage
derived in this manuscript when the cascaded nodes form a tree.

Compatibility with Belief Propagation and Junction Tree
Inference

When the graph contains loops (z.e. when the cascaded graph
does not form a tree), variables can be merged into larger joint
variables, and then the sum of these variables can then be fed into
a convolution tree. Essentially, this demonstrates the potential to
use convolution trees as specialized cliques within classic junction
tree inference [8]: When inference is performed, the full joint
conditional probability table would not be generated for any clique
node in the junction tree with two properties: 1) The clique node
contains only a probabilistic adder node and all of the probabilistic
adder node’s predecessors. 2) The edges connecting the specialized
clique node to other clique nodes in the junction tree would also
need to carry messages of a single variable only, because the
convolution tree does not allow arbitrary joint distributions of its
inputs as messages passed in. 3) Messages sent along edges into the
specialized clique node have disjoint variable sets (z.e. each variable
occurs along only one message). This last criterion can always be
satisfied by inserting a temporary clique node containing only the
variable X as an intermediary between the specialized clique node
and any other clique nodes that send messages containing the
variable X.

Posterior probabilities and messages passed out of a specialized
convolution tree clique node would be computed using the
convolution tree, and would simply pass the likelihood of all data
preceding the edge along which the message is passed (z.e. all data
found by moving backward against the direction of message
passing). For the “head” node (i.e. the adder), the message out
would be the joint probability above. For any “input” node, the
message out would be the likelihood below.

Such “intelligent” junction trees can likewise feature approxi-
mation clique nodes for use when large cliques do not meet the
requirements to be specialized convolution tree clique nodes, e.g.
clique nodes that perform mathematical approximations similar to
pruning or clique nodes that use sampling methods like Monte
Carlo or Markov chain Monte Carlo (MCMC). In this manner,
protein inference could be performed using the benefits of three
approaches: junction tree inference (which can break apart large
connected graphs), convolution tree clique nodes (which can allow
the junction tree to perform efficient exact inference when large
probabilistic adder cliques are encountered), and approximations
(available as a last resort to prevent a single remaining large clique
from prohibiting inference on the entire junction tree). Approx-
imations (which can be inaccurate and slow) would thus be
avoided when exact answers can be computed efficiently. Such
junction trees are examples of the recommended extensions to the
collapsed Gibbs sampler mentioned in [8]. In a similar manner,
pruning may be performed by first finding expensive cliques in the
junction tree (ie. large cliques that cannot be solved using the
convolution tree) and pruning only the peptides that depend on
them. This is an enhancement of the score-driven pruning
algorithm defined in [13], which needed to prune all peptides at
or below the score of the peptides responsible for computational
expense.

In addition to easy compatibility with collapsed Gibbs sampling,
the probabilistic convolution tree can be also be easily used with
iterative approximation methods that pass messages in the original
graph rather than in the junction tree: these methods include
loopy belief propagation [20], variational methods [21], and
expectation propagation [22]. Networks that employ a large

PLOS ONE | www.plosone.org

13

A Convolution Tree for Efficient Exact Inference

number of probabilistic adder nodes can pass these messages very
rapidly and thus arrive at an approximation very quickly, even on
graphs whose tree decompositions contain large cliques, which
thus do not offer significant speedup compared to brute force.
Importantly, the probabilistic convolution tree can efficiently pass
messages forward and backward through nodes with many
predecessors, enabling these iterative approximation procedures
to not longer be limited by the maximum number of predecessors
from any node.

Performance Improvement for Junction Tree Inference
on a High-coverage Hela Sample

As stated above, junction tree inference allows the belief
propagation algorithm to be applied to generalized from trees to
graphs by first performing a tree decomposition of a graph and
then passing messages through the tree decomposition. Here we
show the runtime speedup introduced by using probabilistic
convolution trees within the message passing step of junction tree
inference.

Figure 10 demonstrates the practical benefit of using a junction
tree that utilizes probabilistic convolution trees to perform belief
propagation. This is demonstrated using a high-coverage (24
fractions) HeLa SILAC data set [23]. Proteins were digested with
trypsin and searched against the highly redundant International
Protein Index (IPI) database (using a precursor mass tolerance of
10 ppm and a fragment mass tolerance of 0.6 Da). Identified
spectra were then processed with Percolator using a maximum
delta Cn of 0.05.

Protein identification was performed using FidoC'T' (Fido with
convolution trees) in the alpha release of Proteome Discoverer 2.0.
Low-scoring PSMs (those with score <1%) were pruned to reduce
graph connectivity as described in [13]. The resulting graph was
factorized into separate connected subgraphs, and each connected
subgraph was processed using two variants of exact junction tree
inference: first, the state-of-the-art HUGIN [24] junction tree
algorithm and second a novel junction tree approach that passes
messages by using probabilistic convolution trees. The HUGIN
junction tree algorithm, as described for mass spectrometry-based
proteomics in [8], performs tree decomposition by merging
variables into cliques (illustrated in figure 1), and then performs
message passing between these clique nodes. Note that the
HUGIN junction tree inference cliques require time and space
that grows super-exponentially with the size of (i.e. the number of
variables contained in) the clique. Thus the size of the largest
clique dominates the computational cost; however, when proba-
bilistic convolution trees are used, cliques formed by probabilistic
adders have sub-quadratic rather than super-exponential time.

Figure 10a shows the distribution of (log-scaled) runtimes for
each connected subgraph when using a standard HUGIN
algorithm versus using the probabilistic convolution tree-based
approach. One particular connected subgraph requires 210362
steps using the HUGIN junction tree, but requires only 2'%043
steps when using probabilistic convolution trees within the
junction tree inference algorithm. This connected subgraph is
depicted in figure 10b; even though its treewidth is high, exact
inference can be easily performed using probabilistic convolution
trees.

Potential Impact of Convolution Trees on Protein
Inference

In proteomics, the convolution tree could make it feasible to
query protein databases with much greater sequence similarity
than is currently possible, due to the large number of shared
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dependencies introduced (as shown in figure 10). Moreover, the
convolution tree could be used to iteratively perform protein
inference and model peptide detectability, because it can offer
substantially better runtimes on large or highly complex data sets;
on such data sets, iterative numeric methods (e.g. ProteinProphet
[25]) have been demonstrated to be unstable [2,13,26], heuristics
and human intuition can break down [27], approximations (such
as pruning peptides with nonzero scores) may be forced to yield
inaccurate results [3], and sampling on its own (without
exploitation of d—separation and mathematical properties like
those introduced in this paper) cannot yield accurate probabilities
in a feasible amount of time [2,3,8].

The convolution tree can also be used to efficiently place
arbitrary categorical priors on the number of present variables or
on the sum of variables. Without this advance, such priors would
not be considered because they are too inefficient for large data
sets: by creating a dependency between all proteins, such a prior
would render factorization impossible. Without factorization,
even a runtime quadratic in the number of variables (e.g. using
the quadratic dynamic programming approach) could potentially
become the factor limiting efficiency (not to mention the
limitations of the quadratic space requirement). A sub-quadratic
method with low space complexity could be used to bring the
applicability of such priors to many graphical inference
problems.

Application to Probabilistic Generating Functions for
Partition Combinatorics and Linear Diophantine
Equations

The convolution tree can also be trivially applied to classic
partition problems from combinatorics [28]. Given some target
value ¢ and elements vi,v2,..., compute the total number of
distinct integer tuples (N1,Na,...) that satisfy Njvi+Nava+ ...
=1. Traditionally, generating functions have been used to great
success for such problems; however, converting the generating
function solution to the desired result involves computing a
particular polynomial coefficient from generating function, and
can be time-consuming. Furthermore, the probabilistic convolu-
tion tree framework relaxes the strict equality required by
generating function variants: the probabilistic convolution tree
would not require the sum be exactly the target value. Instead, it
would be compatible with an arbitrary likelihood function that
weights values by the quality of the approximation between the
target ¢ and the sum Njv; + Nava+ .. .. In practice, this problem
can be used to compute the total number of unique ways to make
change for a given amount of money, and can also be applied to
deciding if an observed target mass ¢ can be made from specified
set of elements (or, more generally, components) with respective
masses V1,2, . .. (and to compute the marginal distribution on the
quantity of each element). A generalized two-dimensional variant
could also constrain the total valence of the elements employed
used.

Likewise, the probabilistic convolution tree can be applied to
the highly related problem of linear Diophantine equations, which
seek integers Ni,Na,... such that Nyvi+Ny+v+ ... =t for
some target value 7. The probabilistic convolution tree can decide
if the equation is feasible (using integers Ni,N,...), as well as to
compute marginal probabilities for each integer coefficient
Ni,Ns,.... Although the problem of finding whether such an
integer solution exists is known to be polynomial, the full problem
of computing a joint solution in the integers (N1,Na,...) is NP-
complete [29].
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Generalization to Multiple Dimensions and Applicability
to Knapsack Problems

The convolution tree trivially generalizes to multidimensional
problems where there is an additive behavior in all dimensions.
For instance, as mentioned above when mentioning the applica-
bility to elemental decomposition, we can consider all variables
X1, X2, . X, NO N NP N ) to have two dimen-
sions. In the case of elemental decomposition, each variable can
store a two-dimensional random distribution as a matrix where the
row index maps to the discretized mass, the column maps to the
discretized valence, and the value in the matrix cell at row r and
column c is the joint probability that the variable simultaneously
has the mass corresponding to r and the valence corresponding to
¢. Note that the algorithm is identical with two exceptions: First,
when adding two parent variables L and R during a forward pass
(step 1), the result will now be computed via a two-dimensional
convolution. Second, after two-dimensional convlution is per-
formed during the backward pass (in step 2), a contiguous
submatrix is retrieved via a two-dimensional slice (rather than a
one-dimensional slice).

As i3 the case for the univariate algorithm, the resulting
convolutions can be performed using two alternative approaches:
First, in the case when matrices are sparse, convolution can be
performed efficiently using direct convolution when the joint
distribution of L and the joint distribution of R. Alternatively,
when the matrices representing these two-dimensional distribu-
tions are dense this two-dimensional convolution can be
performed by using more sophisticated approaches [30]. The
algorithm is the same in any number of dimensions as long as
multidimensional convolution is used throughout, and as long
multidimensional slices are taken in step 2. In this manner, it can
be thought of as a polynomial time approximation scheme (PTAS)
for a probabilistic generalization of the NP-hard knapsack
problems. Likewise, it can efficiently solve other combinatorics
problems (where counting is used probabilistically or non-
probabilistically). The multidimensional variant can also be used
to merge variables and remove loops from cascaded graphs that
are not trees.

Application to using Truncated Sums in Forward Error
Correction

Because the convolution tree method can be used with any
cascaded graph of probabilistic adder nodes, then it can be applied
to myriad other problems. One simple example is the extension of
probabilistic forward error correcting codes to efficiently utilize a
greater variety of error correcting information. Using the notation
from [31] the unique data D; would correspond to y;, and a subset
of those probabilistic adder nodes in the tree could influence node-
specific Dj(-i), which would allow inclusion of data that depends on
the sum of nodes above, or optionally, a truncated sum, from
which a probabilistic adder node can compute multi-bit summary
statistics about the bit string (parity is an example of such a single-
bit summary statistic). For certain coding schemes that use
moderate block sizes, this method could be used to infer an
optimal (i.e. maximum a posteriort) estimate for the input binary
bitstring, as well as probabilistic confidence estimates for each bit
in the bitstring. Turbo decoding and low-density parity-check
codes (LDPC), which are both popular inference methods for
forward error correction, have been shown to be instances of
Pearl’s loopy belief propagation [31,32] (loopy belief propagation
is described above). Because convolution trees can be used within
belief propagation (see “Compatibility with belief propagation and
junction tree inference” above), they can also be used with loopy
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belief propagation to perform more efficient message passing of
probabilistic information related to cardinality, parity, sums, and
other probabilistic adder structures that cannot be efficiently
accomplished with noisy-or nodes. And because the operations
performed in the probabilistic convolution tree are basic digital
signal processing operations (FI'T, element-wise product, etc.), and
thus could potentially be implemented efficiently as an integrated
circuit.

Application to Probabilistic Demixing of Chimeric Mass

Spectra

The convolution tree can also be applied to demixing problems.
Figure 11 depicts a classic example from mass spectrometry: four
compounds of unknown relative abundance contribute to a
chimeric spectrum. By discretizing the possible relative abundanc-
es (in the future it also may be possible to extend some of the ideas
presented in this manuscript to continuous problems), probabilistic
adder nodes can be cascaded to compute posterior probability
distributions on the relative abundances of each compound
without jointly enumerating the four-dimensional space of all
possible relative abundances. This graph could even be augmented
with an arbitrary prior on the number of compounds present. A
simplification would threshold peaks in the chimeric spectrum into
two categories (“intense” and “not intense”) and then perform
inference using a convolution tree whose base variables are binary,
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similar to the formulation for protein inference. Regardless of
whether binary variables or binned continuous variables are used,
an arbitrary likelihood model could then be used to evaluate the
match between the observed peak (observed from the actual data)
and the latent abundance variable for that peak (note that these
likelihood functions can be peak-specific).
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