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Abstract

Exact Bayesian inference can sometimes be performed efficiently for special cases where a function has commutative and
associative symmetry of its inputs (called ‘‘causal independence’’). For this reason, it is desirable to exploit such symmetry on
big data sets. Here we present a method to exploit a general form of this symmetry on probabilistic adder nodes by
transforming those probabilistic adder nodes into a probabilistic convolution tree with which dynamic programming
computes exact probabilities. A substantial speedup is demonstrated using an illustration example that can arise when
identifying splice forms with bottom-up mass spectrometry-based proteomics. On this example, even state-of-the-art exact
inference algorithms require a runtime more than exponential in the number of splice forms considered. By using the
probabilistic convolution tree, we reduce the runtime to O(k log(k) )2 and the space to O(k log(k)) where k is the number of
variables joined by an additive or cardinal operator. This approach, which can also be used with junction tree inference, is
applicable to graphs with arbitrary dependency on counting variables or cardinalities and can be used on diverse problems
and fields like forward error correcting codes, elemental decomposition, and spectral demixing. The approach also trivially
generalizes to multiple dimensions.

Citation: Serang O (2014) The Probabilistic Convolution Tree: Efficient Exact Bayesian Inference for Faster LC-MS/MS Protein Inference. PLoS ONE 9(3): e91507.
doi:10.1371/journal.pone.0091507

Editor: Haixu Tang, Indiana University, United States of America

Received November 29, 2013; Accepted February 12, 2014; Published March 13, 2014

Copyright: � 2014 Oliver Serang. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was created as an employee of Thermo Fisher Scientific (http://www.thermofisher.com/) with no external funding. The funder provided
support in the form of salaries for author OS, but did not have any additional role in the study design, data collection and analysis, decision to publish, or
preparation of the manuscript. The specific roles of this author are articulated in the author contributions section.

Competing Interests: OS is an employee of Thermo Fisher Scientific whose company funded this study. Unrelated to this study, similar research by Thermo
Fisher Scientific includes a pending patent on a specific device implementing this procedure (i.e. it is not a software patent). There are no further patents,
products in development or marketed products to declare. This does not alter the author’s adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: orserang@uw.edu

Introduction

In bottom-up mass spectrometry pieces of digested proteins,

which are called peptides, are first matched to observed spectral

evidence, and the quality of the match between the peptide and

the spectrum is scored[1–5]. These scored peptides are then used

to perform inference on the proteins, whose present-absent states

are usually the variables of interest. The computational cost of

inference is non-trivial: some graphs can be processed efficiently,

while performing inference on other graphs can be proven to solve

the NP-hard minimum set cover problem [2]. Performing efficient

but accurate inference on these graphs is important for producing

reliable protein inferences.

Figure 1 depicts a simple graphical view of protein identification

from tandem mass spectrometry experiment. In figure 1a, the

causal flow of information is described graphically: proteins are

digested and then fragmented to produce observed spectral

evidence. Directed edges between proteins X1,X2, . . . and spectral

data DA,DB, . . . represent causal statistical dependencies: proteins

are connected to the MS/MS spectra matching peptides that can

be produced according to the model of the digest (e.g. peptide

strings resulting from an in silico digest of protein sequences using

trypsin cleavage rules with up to one missed cleavage). Note that

because peptides are usually paired with spectrum in a one-to-one

manner (pairing each peptide to its best-matching spectrum and

pairing each spectrum with its best matching peptide to form a

‘‘PSM’’ or peptide-spectrum match), we simply draw the proteins

producing that spectral evidence, thereby producing a bipartite

graph of proteins (X ) to spectral data (D). Note that this one-to-

one mapping between peptides and spectra means that this

bipartite graph can be viewed as a protein-peptide bipartite graph;

however, rather than constrain ourselves to inference with MS/

MS intensities, the data used for inference could just as easily

constitute precursor MS intensities or even spectra resulting from a

top-down experiment.

Proteins with shared spectral data (such as X1, X2, and X3,

which share evidence DA, which could describe an identified

‘‘degenerate’’ peptide) introduce new non-causal dependencies: if

the score of the PSM corresponding to spectrum DA is very high, it

is tempting to award a high probability to protein X1; however,

proteins X2 and X3 compete for this shared evidence, and thereby

have a chance to reduce the probability of X1. This process (called

‘‘explaining away’’ to describe the fact that the contribution of

evidence to a single hypothesis is reduced by competing

hypotheses) introduces new dependencies between all pairs of

proteins sharing that evidence.

In figure 1b, we illustrate those shared protein-to-protein

dependencies with the moral graph [6] (so called because ‘‘parent’’
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nodes, which share a common child are ‘‘married by an edge’’).

The moral graph displays these latent dependencies between

proteins, as well as the original causal dependencies from (a).

Hence, when multiple proteins share spectral evidence, these

undirected edges create a clique in the moral graph

K(X1,X2,X3,DA). These cliques can be joined in a tree, which is

known as the tree decomposition [7] (also known as the ‘‘junction

tree’’ or ‘‘clique tree’’).

In figure 1c, we show a tree decomposition formed from the

moral graph in figure 1b. This tree decomposition is performed by

merges nodes in the moral graph so that the resulting graph can be

viewed as a tree without losing any edges (lost edges would

correspond to ignored dependencies). Posterior probabilities on

graphs without cycles (i.e. trees) can be computed by visiting each

clique only twice using Pearl’s belief propagation algorithm;

however, each clique represents an inseparable multidimensional

distribution over several variables, and thus the cost of processing a

single clique is more than exponential in the number of variables

(its state space is the Cartesian product of the contained variables’

outcomes). Therefore, the runtime of junction tree inference is

more than exponential in the size of the largest clique (the ‘‘tree

width’’ of the graph is the size of the largest clique minus one).

For this reason, when many proteins share common evidence

(i.e. in tandem mass spectrometry, at least one shared peptide

matching spectra), a joint dependency between all of those

proteins is created, and the large resulting clique formed in the

moral graph can make inference intractable in the general case.

Without modifying it after tree decomposition, exact inference on

the graph is more than exponential (that is, it is not in O(2n)) in the

number of proteins joined by such evidence [8]. And because these

large cliques represent a full joint distribution of dimension n, even

sampling procedures like Monte Carlo and Markov chain Monte

Carlo (MCMC), which have been successfully applied to protein

inference[8–10], cannot saturate the space with samples, and are

thus insufficient.

In particular, Bayesian networks similar to the one shown in

figure 2 can occur in mass spectrometry-based proteomics when

attempting to identify homologous (or, more generally, proteins

with sequence similarity). Specifically, these challenges occur in

practice when attempting to distinguish between antibodies and

other closely related splice variants [11], searching large databases

containing non-canonical variants to find aberrant gene products

(e.g. from samples of cancerous tissue), and in proteomic studies of

organisms for which little or low-quality genomic information is

available [12]. The entirety of spectral data for this graph, D, is

partitioned into two categories: First, all proteins X1,X2, . . . Xk in

the weakly connected subgraph are adjacent to a collection of

shared evidence (e.g. degenerate peptides matching observed

Figure 1. Mass spectrometry: a graphical view. (a) Directed edges
between proteins X1,X2, . . . X6 and spectral data DA,DB,DC represent
causal statistical dependencies with spectra that can result from
peptides in the adjacent protein. For simplicity, peptide-spectrum-
matches (PSMs) are denoted simply using their spectral evidence,
thereby producing a bipartite graph of proteins (X ) to spectral data (D).
Proteins X1 , X2 , and X3 share spectral data DA, because they share
peptides that were matched to spectrum DA. : if the score of the PSM
corresponding to spectrum DA is very high, it is tempting to award a
high probability to protein X1 ; however, proteins X2 and X3 compete
for this shared evidence, and thereby have a chance to reduce the
probability of X1 . This process (called ‘‘explaining away’’ to describe the
fact that the contribution of evidence to a single hypothesis is reduced
by competing hypotheses) introduces new dependencies between all
pairs of proteins sharing that evidence. (b) These shared spectral data
introduce new non-causal dependencies between proteins with shared
successors in (a). These dependencies are visualized in the undirected
moral graph. When multiple proteins share spectral evidence, these
undirected edges connect all pairs of predecessors, creating a clique in
the moral graph K(X1,X2,X3,DA). (c) The tree decomposition
(sometimes called the ‘‘junction tree’’ or ‘‘clique tree’’) merges the
moral graph from (b) without loss of dependencies, so that inference
can be performed using Pearl’s belief propagation algorithm. Belief
propagation starts at the top clique, which only shares variable X4 with
its neighbor. Therefore, the top clique can perform inference while
leaving X3 as a symbolic, unknown quantity, so that it can be used to
send information from the cliques below (X3 is an information
bottleneck, through which the cliques below can influence the top
clique). Likewise, the variables X1 and X2 can be marginalized out
before sending any relevant information to considering the middle
clique. This procedure can significantly reduce the runtime by allowing
inference to be performed on the cliques rather than on all nodes in the
tree; however, each clique represents an inseparable multidimensional
distribution over several variables, and thus the cost of processing a
single clique is more than exponential in the number of variables. When
many proteins share common evidence (i.e. share at least one peptide
identified by spectral evidence), a large clique is formed in the moral
graph and inference becomes intractable in the general case.
doi:10.1371/journal.pone.0091507.g001

Figure 2. Difficult inference: mass spectrometry-based identi-
fication of splice variants. Several proteins X1,X2, . . . Xk matching
unique and shared peptide-level evidence. The peptide-level evidence,
D is partitioned into unique peptide-level evidence (D1,D2, . . . Dk) as
well as a collection of shared peptide level evidence shared by all

proteins (D(S)). Graphs of this form are typical when searching mass
spectra against protein databases containing substantial redundancy
(e.g. databases with many splice variants or close homologs), because
these types of proteins share core similarities but also have unique
regions that distinguish them from one another. Inference on this type
of graph cannot be performed efficiently through protein clustering,
protein pruning, or junction tree decomposition; to date, exact Bayesian
protein inference on such splice variant graphs has only been
performed in super-exponential time.
doi:10.1371/journal.pone.0091507.g002
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spectra). These shared data, denoted D(S), produce a large clique

in the moralized graph, which indicates that computing and

passing the messages will be computationally infeasible on large

problems without considering the form of the conditional

probability function for the shared data. Second, each protein

also has any number of unique evidence, which are found only in a

single protein. The evidence (e.g. peptides) unique to protein Xi are

denoted Di.

A Previous Model for Bayesian Protein Inference
Previous work on exact Bayesian inference for protein

identification [2,13] models every protein with an independent

identically distributed prior probability c that the protein is truly in

the sample, a conditional probability a that a present protein

would generate a constituent peptide, and a noise model where

incorrect peptide identifications were modeled with probability b.

Lastly, the event that one present protein is successfully digested

into one of its shared constituent peptides does not influence the

event that another protein is successfully digested into the same

peptide.

Optimizations for more Efficient Protein Inference
Using this model, exact inference can sometimes be performed

more efficiently using two optimizations: clustering and pruning.

These two optimizations are used in conjunction with factoriza-

tion, which separates and performs inference individually on

weakly connected subgraphs, to perform exact inference more

quickly.

The first optimization, clustering, merges together any collec-

tion of k protein nodes Xi1 ,Xi2 , . . . Xik that contain identical

peptide sets. Because the probability that a peptide is absent is the

probability that it came from neither the noise model nor from any

proteins:

(1{b) P
j:Xij

~1
(1{a) ~(1{b)(1{a)

jfj:Xij
~1gj

~(1{b)(1{a)

P
j

Xij
:

These proteins were clustered because they share identical

peptide sets, such that all spectral evidence depending on these

proteins actually depends on the number of protein present

N~jfj : Xij ~1gj rather than on the actual set of present proteins.

This is because addition is a commutative and associative

operation, and so rather than enumerate the power-set of proteins,

marginalization can instead be performed on the number of

proteins present:

Pr (D,X1~x1)

~
X
x2

X
x3

� � �
X
xk

Pr (D,X1~x1,X2~x2, � � �Xk~xk)

~
X

n

Pr (DjN~n) Pr (N~n) Pr (X1~x1jN~n),

Figure 3. Illustration of the enumeration approach. Super-exponential enumeration is illustrated using a simple digraph. The protein prior for
protein Xi is denoted using the vector Pi (written using Python dictionary notation), where Pi ½0�~ Pr (Xi~0) and Pi ½1�~ Pr (Xi~1). Likelihoods due

to unique evidence for protein Xi are denoted Li , and the likelihood due to shared evidence is shown using L(S), both using the same notation. The
scores populating the Li and L(S) vectors comes from the peptide-level likelihoods indicating the quality of the match between the peptide and any
matching spectra (i.e. these scores come from the conditionally independent product of PSM scores for that peptide). For example, the prior
probability on protein X1 is 0.8, and a unique peptide corresponding to protein X1 has the score 0.35 (indicating the relative likelihoods are 0.35
versus 0.65 for the respective hypotheses that the peptide matching spectrum D1 is created by protein X1 versus the hypothesis that the peptide is
not created by protein X1). The inset shows the table produced by enumerating all distinct protein configurations, and the resulting joint probability

with all data (both unique and shared). This computational cost of this enumeration is in O(k2k) for k proteins.
doi:10.1371/journal.pone.0091507.g003
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where Pr (N~n)~
k

n

� �
cn(1{c)k{n and the conditional

probability for an arbitrary protein i in the cluster

Pr (Xi~xijN~n)~
n

k
. Thus enumeration, which has a computa-

tional cost that exceeds 2k, is reduced to kz1 steps. However,

clustering cannot be performed unless the proteins clustered are

adjacent to identical sets; the graph in figure 2 does not have this

property, because proteins are potentially distinguishable by their

unique evidence D1,D2, � � �Dk.

The second optimization, pruning, exploits the fact that this

type of protein-peptide emission model (sometimes referred to as a

Figure 4. A quadratic dynamic programming approach and its generalization. (a) A dynamic programming approach to solving the
problem from figure 2. In this approach all values of N , the information on which D(S) depends, are computed after successively including every next
variable Xi . This allows paths in the exponential tree generated by the power-set to be merged when they result in the same value N~n, and thus
allows a forward-backward algorithm to compute inference in quadratic time and space. (b) A general path graph can be constructed whenever the
operation performed by the node N , on which the shared data D(S) depends, can be decomposed as a series of consecutive operations that
aggregate Xi one at a time. This corresponds to operators with commutative and associative properties. The resulting transformation resembles
Heckerman’s temporal transformation, which also uses quadratic time and space.
doi:10.1371/journal.pone.0091507.g004

Figure 5. Illustration of the quadratic dynamic programming approach. The quadratic dynamic programming approach is illustrated using
the digraph from figure 3: One by one, each protein is added to the initially empty total number of present proteins, represented by the random
variable N (0). Thus, the probability distribution for each partial sum Ni~X1zX2z � � �Xi is computed and stored in the vector PNi

. Finally, the shared
evidence D(S) is included, as it depends exclusively on the number of present proteins N~X1zX2z . . .. Inference for a particular protein (e.g.
protein X1) could be performed easily by performing another forward pass with the constraint that X1~1, and all protein posteriors would thus be
computed in cubic time with the number of proteins (k proteins | O(k2) steps per protein); however, a subsequent right-to-left pass could be used
to compute all protein posteriors in O(k2) time via the forward-backward algorithm.
doi:10.1371/journal.pone.0091507.g005
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‘‘noisy-or’’ model with symmetric parameters) produces indepen-

dent nodes when a peptide is not observed (i.e. when a peptide has a

zero probability of matching any observed spectra). Thus, these

zero-score shared peptides found in D(S) can be copied so that

each protein has its own unique copy. If all shared peptides from

D(S) have zero scores, the resulting graph can thus be solved in

linear time because all proteins are now independent. Unfortu-

nately, as was the case with clustering, this optimization fails on

Figure 6. Faster dynamic programming using the convolution tree. (a) An alternate transformation for efficiently computing posteriors for
all proteins. Instead of unrolling the commutative and associative operator one protein at a time as performed by the quadratic dynamic
programming algorithm, variables are paired successively, resulting in a tree with depth log2(k) (when k is a power of 2). (b) Inference on this tree can
be performed by solving a minimal ternary node structure and then proceeding inductively: all nodes (except for the proteins themselves) have two
parent subtrees, (L,D(L)) and (R,D(R)), and one child. The parent subtrees connect the node of interest to all data reachable through the parents
above (partitioned into D(L) and D(R), respectively), and the child subtree connects to all data reachable below, (denoted D(N)). The joint probability
with all data above can be passed as messages from parents to children, and the likelihoods given data below (that is, all data reachable through a
downward edge out of a given node) can be passed upward from child to parents. Each of these three messages turns out to be a convolutions
(shown in inset). For example, all ways that N~5 can be computed by a shifted and reflected dot product, which finds all L and R with a sum of 5.
Thus the prior probability for N can be seen as a vector equal to the convolution of the prior probabilities of prior probabilities for L and R. These
convolutions can be performed with fast Fourier transform (FFT) in i log(i) time (where i is the size of the possible state space of N). If the vectors are
very sparse, then a standard discrete Fourier transform-based (DFT) convolution may be faster.
doi:10.1371/journal.pone.0091507.g006

Figure 7. Illustration of the probabilistic convolution tree. The convolution tree is illustrated using the digraph from figure 3 and figure 5:
Messages are passed down the tree (via step 1). A subsequent pass would send messages up the tree (step 2), computing the protein posteriors in
sub-quadratic time. Note that the normalized vector PN is equivalent to the distribution Vn, Pr (D,N~n), and is identical to the normalized vector of
the same name computed by the quadratic algorithm illustrated in figure 5.
doi:10.1371/journal.pone.0091507.g007

A Convolution Tree for Efficient Exact Inference
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figure 2 except in the rare case when all peptides in D(S) have zero

scores (in practice, it is rare that all such peptides will have zero

scores on a large problem). Approximations of the posterior

probabilities can be computed by pruning or removing some select

peptides that have nonzero scores; however, this can result in

lower accuracy when searching spectra against complex protein

databases, which have many more such shared peptides [3].

As noted above, the junction tree algorithm, clustering

optimization, and pruning optimization do not solve the problem

from figure 2 in sub-exponential time; on the contrary, the most

efficient exact Bayesian algorithm that has been demonstrated for

this type of splicoform graph enumerates the power-set [8].

Furthermore, clustering relies heavily on the assumptions in the

original model, and requires that the protein prior c must be the

same for all proteins, and the peptide emission probability a must

be the same for all peptides (and the method used to duplicate

pruned peptides in the supplement of [13] assumes the noise

model b is identical for all peptides). In a similar manner, pruning

is tied to the use of noisy-or peptide nodes. Likewise, other

optimizations are rigidly tied to specific graph topologies. For

example, inference can be performed in linear time on polytrees

that exclusively use noisy-or nodes by decomposing the noisy-or

nodes in an iterative fashion and performing belief propagation

[6,14]; however, the graph from figure 2 is a polytree only when

there is exactly one node of shared evidence in D(S) (for

completeness, when there are zero nodes of shared evidence, the

graph can also be solved efficiently by partitioning it into a

collection of disjoint polytrees).

The Need for Further Optimization of Inference
Because the optimization strategies mentioned above are limited

to certain graphs or require all peptides to use identical parameters

a and b, it can be difficult to use these optimization techniques to

realize efficient inference using a modified or extended protein

inference model: for example, the next generation of models could

include arbitrary categorical priors on how many proteins are

present or peptide-specific emission and noise models, which may

even depend on the number of present predecessor proteins

(rather than constraining that predecessors contribute in a simple

multiplicative manner as modeled by noisy-or nodes). These more

general priors and emission models can be used to more

objectively model the process by which splice variants data are

produced by mass spectrometric analysis, and thus permit

inference techniques that more accurately model the manner

Figure 8. Runtime comparison between the algorithms. (a) A comparison of power-set enumeration and the quadratic dynamic programming
approach on small problems of the form from figure 2. Note that axes are log-scaled, and so a widening gap between the curves indicates a super-
linear speedup for the algorithm producing the lower curve. (b) A comparison of quadratic dynamic programming and the convolution tree
approach on larger problems of this form. The convolution tree achieves a super-linear speedup and a super-linear reduction in memory
consumption, making it applicable to much larger problems than either the quadratic dynamic programming approach or power-set enumeration.
On very small problems (requiring substantially less than one second of runtime), the more sophisticated dynamic programming approaches have
higher overhead, and are therefore slightly slower.
doi:10.1371/journal.pone.0091507.g008

Figure 9. A graph and its cascaded equivalent. (a) A Bayesian network with probabilistic adder nodes N1,2 and N1,2,3. (b) The resulting
cascaded graph of probabilistic adder nodes transforms the graph into an equivalent Bayesian network that can be solved efficiently as a convolution
tree. Graphs that do not cascade into polytrees (i.e. graphs that have loops even after cascading nodes as shown here) can be solved with a slightly
modified junction tree inference algorithm: junction tree clique nodes that consist of a single probabilistic adder node and its inputs can pass
messages through convolution tree nodes (without realizing the full conditional probability distribution).
doi:10.1371/journal.pone.0091507.g009
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with which proteins compete for shared peptide data. For instance,

perhaps a sixth present predecessor protein does not substantially

increase the peptide’s chances compared to five present proteins,

or perhaps genetic or biochemical analysis has demonstrated that

it is improbable for the gene in question to express more than 7

splice forms in a short period of time. Such extensions can be

implemented with probabilistic adder nodes, which add two

probabilistic quantities. As we demonstrate in this paper, these

probabilistic adder nodes can be more flexible and general than

symmetric noisy-or nodes (symmetric noisy-or nodes can be

trivially emulated using probabilistic adder nodes, but the converse

is not true). Generalizing to probabilistic adder models offers a

substantial increase in model flexibility. Because they are more

general than noisy-or nodes, more problems can be decomposed

into a polytree of probabilistic adder nodes (e.g. the graph in

figure 2, even when using peptide-specific emission and noise

parameters).

In this paper we present a dynamic programming method for

computing exact posteriors for efficiently solving the problem in

figure 2 using a more flexible probabilistic adder model. The first

algorithm presented performs inference in quadratic time and

quadratic space, which is compatible with a peptide-specific

emission model, with a peptide-specific noise model, and with non-

identical protein priors. We then generalize the algorithm we use

to reveal it is an instance of the transform proposed by

Heckerman[15–17].

Lastly, we propose the probabilistic convolution tree, a data

structure which uses dynamic programming to perform exact

inference on polytrees of probabilistic adder nodes in O(k log(k) )2

time and O(k log(k)) space, and compare performance of the three

algorithms, power-set enumeration, quadratic dynamic program-

ming, and the probabilistic convolution tree, on problems of the

form shown in figure 2. The probabilistic convolution tree is

applicable to more general graphs, can be combined with junction

tree inference, and can even used to efficiently compute posteriors

when using an arbitrary categorical prior on the number of present

variables.

Materials and Methods

Using graphs of the type shown in figure 2, we compare the

three exact inference methods described in this paper that can be

applied with peptide-specific probabilities: power-set enumeration,

quadratic dynamic programming, and the proposed probabilistic

convolution tree approach.

For each problem of a given size k, each protein is adjacent to a

unique peptide and all proteins are adjacent to between 1 and 9

shared peptides (chosen using uniform integers in f1,2, . . . 9g).
Each unique peptide j has its own aj and bj chosen uniformly

[½0:1,0:9� and a random probability score (i.e. the probability it

matched an observed spectrum) chosen uniformly [½0:1,0:9�. Each

protein i has a protein-specific prior ci chosen uniformly

[½0:01,0:99� (this is useful to test the numeric stability of the

algorithm, because the only division operation is based on this

collection of protein priors). Lastly, the shared data D(S) has an

arbitrary categorical distribution in the number of present proteins

N~
P

i Xi (each entry chosen randomly in ½0,1� and normalized

to sum to 1).

Runtimes were compared using python implementations of

each of the three algorithms on a Core i3 laptop. For all problems

timed, the three methods achieve identical results (to the 8 decimal

points that by default are printed out by python’s numpy package).

Results

The Brute-force Algorithm: Power-set Enumeration
Power-set enumeration is quite simple: the likelihood is

computed for every possible joint state for all proteins X~x.

Figure 10. Runtime benefit of convolution tree-based junction tree over HUGIN-based junction tree on HeLa data. (a) Distribution of
log runtimes for different connected subgraphs (24 fractions). A HUGIN-based junction tree implementation is compared to a probabilistic
convolution tree-based junction tree implementation. The cost of inference will be dominated by a few outlier graphs, which do not decompose
effectively using the junction tree. As a result, some connected subgraphs would require an impractical number of steps when using the HUGIN
algorithm. This runtime can be improved by using probabilistic convolution trees, while still achieving the exact result. (b) One difficult connected
subgraph from panel (a). Proteins are shown as red squares, probabilistic adders are shown as blue inverted triangles (these are the nodes can make
use of probabilistic convolution trees), spectral evidence is shown as green circles. This subgraph would require 2103:629 steps using the HUGIN
junction tree. In contrast, the probabilistic convolution can solve this same subgraph in 212:045 steps (and achieve an exact result).
doi:10.1371/journal.pone.0091507.g010

A Convolution Tree for Efficient Exact Inference
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Pr (X1~x1jD)!Pr (D,X1~x1)

Pr (D,X1~x1)

~
X
x2

X
x3

� � �
X
xk

Pr (D,X1~x1,X2~x2, � � �Xk~xk)

Pr (D,X1~x1,X2~x2, � � �Xk~xk)

~ Pr (D(S)jN~
X

x)P
i

Pr (DijXi~xi)

Illustrative example of the exponential enumeration

algorithm. Figure 3 illustrates this super-exponential inference

algorithm on the small graph of the type shown in figure 2. Four

proteins with different prior probabilities and unique spectral

evidence are marginalized via brute force: for each of the 24

protein configurations, Pr (X~x,D) (the joint probability of the

protein configuration x and all observed data) can be enumerated

in super-exponential time (i.e. it takes exponential time for each

protein multiplied by the number of proteins involved). The

values in the column containing Vx, Pr (X~x,D) can then be

used to compute marginals for a particular protein (i.e. protein

X1). This is accomplished by separately computing the denom-

inator and then the numerator from equation 1. The denom-

inator can be computed by summing over all values in the

column (i.e. Pr (D)~
P

x Pr (X~x,D)), and then the numerator

for the protein X1 can be found by computing the sum of

values in the same column, but only where X1~1 (i.e.

Pr (D,X1~1)~
P

x:x1~1 Pr (X~x,D)). A small savings is

achieved by passing over the table one time to compute the

total sum, (Pr (D) used in the denominator of equation 1), as well

as the constrained sum (i.e. the numerator) for each protein,

thereby computing each value in the column Vx, Pr (X~x,D)
only once. Thus the cost of computing posterior probabilities for

k proteins is in O(k2k) time (k proteins | 2k steps per protein).

Time and space requirements. Power-set enumeration can

be performed in O(2kk) time: there are 2k protein configurations,

each of which is applied to a running total of joint probabilities for

k variables. Despite its inefficient runtime, power-set enumeration

requires only O(k) space (enumeration of the power-set can be

performed by incriminating a large base-2 number, and therefore

does not require storing the entire power-set).

Figure 11. Decomposition of a spectrum into its constituent compounds. (a) A probabilistic demixing (a problem highly related to
deconvolution) problem from mass spectrometry. An observed chimeric spectrum with data D is composed of a linear combination of four different
compounds and with unknown relative abundances W ,X ,Y ,Z, which we want to infer. Three m=z values that can receive contributions from
multiple compounds are labeled with the background colors red, green, and blue. (b) The resulting cascaded graph of probabilistic adder nodes. The
variables W ,X ,Y ,Z are discretized into relative abundances of interest. Conditional probabilities individually treat each intensity as proportional to
the abundance of the compound that produces it. Data unique to each compound are labeled DW ,DX ,DY ,DZ , and are conditionally independent
given W ,X ,Y ,Z. Shared evidence nodes are colored to correspond to the background colors from (a). Probabilistic adder nodes are cascaded to
build a tree for probabilistic inference, enabling the computation of a posterior distribution for the relative abundance of each compound.
doi:10.1371/journal.pone.0091507.g011
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A Quadratic Dynamic Programming Algorithm for Exact
Inference

Figure 4a demonstrates the idea behind the quadratic dynamic

programming algorithm: Each protein is added (with its state still a

random distribution) one at a time, resulting in layers of partial

sums. These partial sums work toward building the sum of the

present proteins N~
P

i Xi. At each layer i in the table, we

compute the distribution on the random variable Ni (the random

variable for the partial sum defined by Ni~
P

jƒi Xj ). Because the

variable Xi is still unknown, every possible values of Xi is

associated with edges connecting cells in layer i{1 to the

appropriate cell in layer i. For example, the an edge labeled

X1~1 connects the 0 row of N0 (i.e. the event that the random

variable N0~0) to the 1 row of N1 (i.e. the event that the random

variable N1~1), because Ni~Ni{1zXi. Each edge for Xi~xi is

weighted by the product between the prior that the protein has

that assignment and the unique likelihood contribution that arises

from that protein taking that assignment:

ei,xiz1
~ Pr (Xiz1~xiz1) Pr (Diz1jXiz1~xiz1):

These layers are built so that the final layer is the cumulative

sum of all proteins: Nk~Nk{1zXk~Nk{2zXk{1zXk

~ � � �~
P

i Xi~N. In this manner, all possible paths to arrive

at every possible cumulative sum N~n,0ƒkƒn are available in

the graph shown in figure 4a.

After the graph is initialized, two passes are performed: one

from the left and one from the right (these passes are sometimes

denoted a ‘‘forward-backward’’ algorithm, a special class of

junction tree message passing on a path graph commonly used

by hidden Markov models (HMMs). Denote row j of layer i as

Ni½j�, which indicates that
P

mƒi Xm~j. The pass from the left

computes the marginal probability of arriving at this given cell

through all possible weighted left-to-right paths, denoted

Ni½j�:fromLeft for row j of layer i. The algorithm starts with

N0½0�:fromLeft/1, because N0 has a 100% probability that it is 0
(the outcome for the layer is indicated by the row number). These

values are used to fill the entire table by propagating left-to-right in

the following manner:

Ni½j�:fromLeft/
X

m,xi :mzxi~j

ei{1,xi
Ni{1½m�:fromLeft:

The second pass, from right to left, is performed in an almost

identical manner. For each value in the table, we compute the

marginal probability of arriving at this cell through all possible

weighted right-to-left paths. Before starting the right-to-left pass,

every node in layer k is initialized with the appropriate likelihood

due to the shared data: Nk½j�/Pr (D(S)jN~j). Then the same

propagation is performed, but from right to left:

Ni½j�:fromRight/
X

m,xiz1:m{xiz1~j

ei,xiz1
Niz1½m�:fromRight:

The result is that every cell in the table computes the marginal

probability of all paths passing through it from left to right and

from right to left (this is a standard ‘‘forward-backward’’

algorithm). The likelihood of being in a given node can be

computed by Ni½j�:likelihood~Ni½j�:fromLeft|Ni½j�:fromRight.

Thus, the posterior that any variable is in a certain state Xi~xi is

computed by the total weight of all paths that pass through edges

assigning Xi~xi:

Pr (Xi~xijD)!
X

j

Ni{1½j�: fromLeft ei{1,xi
Ni½jzxi�:

For the three preceding equations, out-of-bound indices (e.g.

querying N1½{1�:fromLeft and N1½{1�:fromRight) should

return zero.

Note that figure 4a is drawn in a way that underscores its

applicability to inference problems where each variable has more

than two possible states (as indicated by more than two edges

radiating out of each node, and with labels not limited to binary

states).

Figure 4b generalizes this approach and merges each layer

Ni½0�,Ni½1� . . . into a single variable Ni. The result is a graph with

a tree decomposition that is visibly simple; in fact, it closely

resembles a hidden Markov model (HMM), for which the tree

decomposition is trivial using a similar forward-backward algo-

rithm [18]. This graph generalizes the dynamic programming

performed in figure 4a so that it can be applied to similar problems

by transforming the graph and then performing junction tree

inference. The generalized algorithm is an instance of Hecker-

man’s transform [15,15,17], which is sometimes referred to as a

‘‘temporal transform’’.

From the generalized figure 4b, it is easy to understand the

algorithm described above: in figure 4a, passing through the node

N
(j)
i indicates that the partial sum Ni~

P
mvi Xm~j. For this

reason, we can see that propagation from the left accumulates the

priors and unique likelihood contributions that would lead to

Ni~j.

Pr (D1,D2, . . . Di,Ni~ni)~

X
ni{1

X
xi

Pr (Ni~nijNi{1~ni{1,Xi~xi)

Pr (D1,D2, . . . Di{1,Ni{1~ni{1) Pr (DijXi~xi) Pr (Xi~xi)

Likewise, propagation from the right computes the remaining

likelihood terms, along with the shared likelihood:

Pr (Diz1,Diz2, . . . ,Dk,D(S),Ni~ni)~

X
niz1

X
xiz1

Pr (Ni~nijNi{1~ni{1,Xi~xi)

Pr (Diz2, . . . ,Dk,D(S),Niz1~niz1)

Pr (Diz1jXiz1~xiz1) Pr (Xiz1~xiz1):

For both equations above, we exploit the fact that

Pr (Ni~nijNi{1~ni{1,Xi~xi) is 1 if and only if ni~ni{1zxi

(and is otherwise 0). For each of the two equations above, this

allows us to collapse the nested sum into a single sum over the

variable with a smaller domain (if all variables Xi are binary, as in

the case of distinguishing splice variants, then xi will be have a

smaller domain than ni).

Lastly, we see that the posterior for a protein, which is always

proportional to its joint probability with the data, is computed by
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the forward-backward probability passing through edges labeled

Xi~xi:

Pr (Xi~xi,D)~X
ni{1,ni

Pr (Ni~nijNi{1~ni{1,Xi~xi)

Pr (D1,D2, . . . Di{1,Ni{1~ni{1)

Pr (Diz1,Diz2, . . . ,Dk,D(S),Ni~ni)

Pr (DijXi~xi) Pr (Xi~xi),

which is given by the algorithm.

Illustrative example of the quadratic algorithm. Figure 5

illustrates the forward pass of the quadratic inference algorithm on

the small graph shown in figure 3. The posterior probability for an

arbitrary protein (e.g.n X1) can be easily found by passing the

messages left-to-right once (to compute the denominator of

equation 1), and then by passing passing messages left-to-right

once more with the constraint that X1~1 (to compute the

numerator of equation 1); however, by using right-to-left pass (i.e.

the ‘‘forward-backward’’ algorithm), the marginal probabilities of

all proteins can be computed in roughly the same amount of time

required to compute one protein posterior in this manner (i.e.

quadratic time).

Time and space requirements. This approach (and, in

general, Heckerman’s transform) reduces the runtime to O(k2),

but the table used for dynamic programming uses O(k2) space.

This time-space trade-off can be considered almost universally

favorable compared to power-set enumeration: for problems when

k2 would become too large to store in the RAM of a modern

computer, k would be so large that 2kk would result in an

astronomically large runtime for power-set enumeration; however,

space will likely be the limiting factor in applying Heckerman’s

transform, and so like other O(k2) algorithms, it cannot be applied

as-is to very large problems as mentioned in [19]; for completeness

it should also be noted that the VE1 algorithm [19] is not well-

suited to the problem in figure 2 because it is query based,

meaning that it performs best when only a small subset of the

variables need to be solved.

The Probabilistic Convolution Tree: a more Efficient
Dynamic Programming Algorithm

The probabilistic convolution tree, shown in figure 6 is similarly

motivated to the dynamic programming shown in figure 4;

however, where the quadratic dynamic programming

algorithm constructs a chain N0~0,N1~X1zN0,

N2~N1zX2, . . . ,Nk~Nk{1zXk, the probabilistic convolution

tree proposes a divide-and-conquer approach. First we present an

algorithm applicable when k is a power of 2, and then generalize

it. For this reason, all logarithms are base 2: log~log2.

Probabilistic adder nodes are partitioned into multiple layers:

N (i)~(N
(i)
1 ,N

(i)
2 , . . . ), where N

(i)
j ~N

(i{1)
2j{1 zN

(i{1)
2j . In this man-

ner, every node in the tree from layer 1 . . . log(k) has exactly one

child and two parents. Layer 0 is composed of the parent-free

variables X1,X2, . . . Xk; each nodes Xi in this layer has two

children: their unique data Di and the probabilistic adder node in

layer one, N
(1)
i=2

, which depends on them.

Because of this consistent structure after layer 0, the entire tree

can always be viewed from a single probabilistic adder node N as

having two parents L and R as parents. These parents, along with

the data reachable through them, constitute subtrees (L,D(L)) and

(R,D(R)). Each node has a single child subtree containing all data

below D(N) (Figure 6). D(N) includes the shared data D(S) as well as

any other data nodes reachable through the edge down from the

node. For instance, the tree as seen from the perspective of

node N
(1)
1 has L~X1, R~X2,D(L)~D1, D(R)~D2, and

D(N)~(D3,D4, . . . Dk,D(S)). Because this ternary structure is

ubiquitous in the tree, a message passing algorithm can be

constructed by using only the subtree from figure 6b.

Example: computing prior probabilities. As an example

of the motivating idea behind the probabilistic convolution tree,

first observe that the prior probability of a node can be constructed

easily using the prior probabilities of its parents:

Pr (N~n)

~
X
‘

X
r

Pr (L~‘) Pr (R~r) Pr (N~njL~‘,R~r):

And because N~LzR, this can be condensed to a single

summation:

Pr (N~n)~
X
‘

Pr (L~‘) Pr (R~n{‘)

Priors are known for all nodes in layer 0, and so it is clear by

induction that a prior can be computed for every node (layer 0 is

the base case and every prior in the next layer can be computed

given the priors from the previous layer).

However, as written above, computing the prior for every node

in the tree would be at best a constant speedup over the quadratic

dynamic programming approach, because the two nodes in second

to last layer will have state space k=2 and k=2, and all pairs must

be combined to form the prior on the final node, N
(log2k)
1

(enumerating these combinations requires quadratic time). How-

ever, we can now employ convolution at each node (see figure 6b

inset), and so it can be computed in m log(m) time, where m is the

state space of the node N being updated. Note that when the

vectors are very sparse, the convolution can be performed more

efficiently using a standard discrete Fourier transform (DFT)

rather than a fast Fourier transform (FFT). Also note that a vector

that can easily be decomposed into a sum of dense vectors whose

nonzero indices do not overlap, then Fourier transformation can

be performed using a hybrid approach on the results of the

decomposition. If a probabilistic statement with a single

unassigned variable (e.g. Pr (N), Pr (L), or Pr (R)) is considered

as a vector (with all outcomes of that variable enumerated in

order), then the summation described in the equation above is

equivalent to

Pr (N)~ Pr (L) � Pr (R),

where � is the vector convolution operator.

We now proceed to outline the convolution tree algorithm,

which operates in a similar manner as this example.

Step 1: passing messages down. First, the convolution tree

algorithm computes the joint probability of each node with the

data above it. This can be performed almost identically to

computation of prior probabilities in the example above. Also, like

above, the base case is known for all nodes in the layer 0 (it is
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simply the element-wise product between the node’s prior and its

likelihood from unique data). Thus in the same manner presented

in the example above, the joint probability of the node’s state with

all data above, Pr (D(L),D(R),N), can be computed using a

convolution:

Pr (D(L),D(R),N)~
X
‘

Pr (D(L)jL~‘)

Pr (D(R)jR~n{‘) Pr (L~‘,R~n{‘,N~n)

~
X
‘

Pr (D(L)jL~‘) Pr (D(R)jR~n{‘)

Pr (L~‘) Pr (R~n{‘)

~
X
‘

Pr (D(L),L~‘) Pr (D(R),R~n{‘)

~ Pr (D(L),L) � Pr (D(R),R):

Like the example above where prior probabilities are computed,

each node in layer 0 has a known joint probability with the data

above. And so, proceeding layer-by-layer, for each node we

compute the joint probability of that node with data above it.

Step 2: passing messages up. The second part of the

convolution tree algorithm is to pass messages upward through the

tree after all messages have been propagated downward (i.e. after

completion of step 1). Where step 1 passes down the joint

probability of each node with the data above it, step 2 computes

the likelihood given all data that can be reached below: for the left

parent, we compute Pr (D(R),D(N)jL) and for the right parent we

compute Pr (D(L),D(N)jR). Note that we only need values

proportional to these probabilities, and so they can be normalized

before proceeding to the next layer in the tree for better numeric

stability. These messages can be defined thus:

Pr (D(R),D(N)jL~‘)

~
X

n

Pr (D(N)jN~n) Pr (D(R)jR~n{‘) Pr (R~n{‘)

Pr (D(L),D(N)jR~r)

~
X

n

Pr (D(N)jN~n) Pr (D(L)jL~n{r) Pr (L~n{r):

Where the forward pass (in step 1) represents addition, this

backward pass represents subtraction, which presents also

convolution, but because one operand is negated, its indices are

reversed. Also, the result of the convolution will not start at zero,

but will instead start at the minimum value achieved by the

subtraction. In this case, we do not want the negative values

because they are impossible in the source variable. Thus the above

equations can be written as convolutions where one vector is

reversed and where a slice is taken from the result (to undo the

shift and remove impossible outcomes). So the final results can be

computed

Pr (D(R),D(N)jL)~ Pr (D(R),R)½:: {1� � Pr (D(N)jN)
� �

½len(R){1 : len(R){1zlen(L)�

Pr (D(L),D(N)jR)~ Pr (D(L),L)½:: {1� � Pr (D(N)jN)
� �

½len(L){1 : len(L){1zlen(R)�,

where len(R) and len(L) depict the number of states for R and L,

vector½:: {1� reverses the vector (i.e. it reflects it), and

v½a : b�~(va,vaz1, . . . vb{1) slices the vector to remove the

unwanted shift mentioned in the paragraph above.

As messages were propagated downward before, these messages

can be passed back up the tree to form the likelihood given data

below for the left and right parent nodes. For example, for the left

parent L, its likelihood given all data below will be initialized by

the message passed back, Pr (D(R),D(N)jL). Now that the node L

has its likelihood given the data below, it can pass messages up the

tree. This process continues until all messages have been passed up

to layer 0, which contains the proteins themselves.

The posterior for node N~n can be computed by multiplying

the joint probability with data above by the likelihood given data

below that node:

Pr (D,N~n)~ Pr (Dabove(N),N~n) Pr (Dbelow(N)jN~n):

Similarly, the posterior for protein Xi~xi can be computed by

multiplying the joint probability with data above (for each protein

Xi, the data above consists only of its unique spectral evidence Di)

by the likelihood given data below:

Pr (D,Xi~xi)~ Pr (Di,Xi~xi) Pr (Dbelow(Xi )
jXi),

which is proportional to Pr (Xi~xijD). Note that when a value is

proportional to the posterior probability, then the posterior

proportionality can be computed by dividing by the sum:

Pr (Xi~xijD)~
Pr (D,Xi~xi)P

xi
0 Pr (D,Xi~x0i)

: ð1Þ

Like the quadratic dynamic programming algorithm, the convo-

lution tree algorithm described here is applicable to variables with

more than two states. It also does not require that the left and right

parents of a probabilistic adder node have identical state space,

although of course an FFT-based convolution will be faster when

this is the case, because it will not need to pad the shorter vector

with zeros.

Illustrative example of the probabilistic convolution tree

algorithm. Figure 7 illustrates the convolution-based inference

algorithm on the a small graph of the type shown in figure 2.

Messages are passed down (via step 1). The posterior probability

for an arbitrary protein (e.g.n X1) can be easily found by passing

the messages down once (to compute the denominator of equation

1), and then by passing messages downward once more with the

constraint that X1~1 (to compute the numerator of equation 1).

however, step 2, which subsequently passes messages back up the

tree, reuses the shared computations for these proteins, and

computes the posterior for every protein in roughly the time

necessary to compute the posterior for any single protein (sub-

quadratic time).

Time and space requirements. As implemented, the

runtime of the convolution tree can be shown to be

O(k log(k) )2 , and the space requirement can be shown to be

O(log(k)). Sparse vectors can be convolved more quickly by using

the discrete Fourier transform (DFT).

A fixed number of convolutions are performed at all nodes.

Layer i will have
k

2i
nodes, and the length of the state space for that
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convolution is ƒ2i. Thus the cost of FFT convolution for a node

at layer i is 2i log(2i). The entire runtime can then be computed

easily using the expansion
Pn

i i~
n(1zn)

2
:

Xlog(k)

i~1

k

2i
2i log(2i) ~k

Xlog(k)

i~1

i ~
k                                    log(k)(1zlog(k))

2
,

which is on the order of k log(k)2.

The memory consumption is computed with a similar strategy.

The simple implementation of the convolution tree method

described here requires O(k log(k)) space to store the two vectors

Pr (Dabove,N
(i)
j ) and Pr (DbelowjN (i)

j ) for each node N
(i)
j in the tree,

because at layer i, the length of the vector storing each of these is

ƒ2i, and there are
k

2i
such nodes in that layer. Thus the total

space requirement is

Xlog(k)

i~1

k

2i
2i ~k

Xlog(k)

i~1

1 ~k log(k):

The method can be easily extended when k is not a power of

two by simply adding dummy variables Xkz1,Xkz2, . . . with

100% prior probability of being absent (thus they do not influence

the sum) and with no unique evidence). These variables are added

until the total number of variables is a power of 2. Using a 0 prior

is important for this approach, because it prevents
P

i Xi, and

subsequently Pr (D(S)jX ), from being altered by including these

dummy variables. Even though this approach is inelegant, it can

be easily seen to produce the same order runtime when k is not a

power of 2, because in the worst case, k must be roughly doubled

to perform inference, which would simply change the constant, but

not the order of the runtime.

Extension to linear functions on the integers. The special

case of computing posteriors where D(S) depends on N with

N~X1zX2z � � �zXk (as described in this paper), can be

easily generalized to compute posteriors when N~s1X1z
s2X2z � � �zskXk for fixed integer scaling factors s1,s2, . . . sk.

First observe (without loss of generality) that for any positive

integer s1, s1X1 simply creates a new vector X1 with s1{1 zeros

padded between every entry of Xk:

X1
0 ½i=s1�~

X1½i�,
i

s1
is an integer

0, else

8<
:

Second, observe that for any two nodes L and R, the

subtraction L{R can be accomplished by reversing R before

convolution with L (and recording the fact that the zero index of

the resulting array no longer refers to N~0, but instead refers to

the minimum value achievable by the subtraction). For this reason,

scaling X1 by a negative integer s1 can be performed by reversing

the vector X1 and then padding with zeros as mentioned above,

and then adding normally with the convolution tree (again, in this

case, each node in the convolution tree would would also keep

track of the minimum integer summation value corresponding to

the zero index). For completeness, when s1~0 (and is thus neither

positive nor negative), then the scaled vector X1
0
~½1:0�, indicating

a 100% probability that Xk is zero; however, if the fixed value s1 is

known to be zero ahead of time, then there is effectively no edge

connecting X1 to the scaled summation N, and that input can be

ignored with no consequence.

Thus scaling X1 by s1 can be accomplished by simply permuting

the indices of X1 (into a potentially larger result vector): the vector

X1 is first reversed if s1v0 and is then padded with zeros as

described above.

For simple implementation, single-input single-output scaling

nodes (with input X1 and output X1
0

and a fixed parameter s1) can

be used to first transform any X1 into X1 , and then fed into a

convolution tree node with N~X1 zX2 z � � �zXk . Thus we

can model an integer-scaled sum without any modification to the

convolution tree data structure. Messages passed backward

through these scaling nodes simply undo the deterministic

permutation of indices mapping X1 to X1.

Discussion

Performance on Randomly Generated Problems
Figure 8 shows a runtime comparison between the three

algorithms using a more general model, which is not restricted to

noisy-or nodes and instead uses probabilistic adder nodes.

Figure 8a compares power-set enumeration with the quadratic

dynamic programming method on smaller problems

(k[f2,4,6,8, . . . ,20g). Figure 8b compares quadratic dynamic

programming with the convolution tree method on larger

problems (k[f32,64,128,256, . . . ,2048g). Note that both axes

are log-scaled and so a growing gap between the two series

represents a super-linear speedup in the runtime. On larger

problems (e.g. 4096 proteins), the quadratic dynamic programming

runs out of memory on a 4 GB computer.

Both the quadratic dynamic programming and the convolution

tree have runtimes far superior to power-set enumeration. But

moreover, the convolution tree offers scalability to substantially

larger problems than the quadratic dynamic programming

approach. For example, computing exact posteriors for 32768

proteins takes only 28.03 seconds, while the quadratic dynamic

programming cannot even be run.

Cascading Trees for more General Application
It should be noted that the convolution tree method can easily

be applied when including node-specific data D
(i)
j , which depends

only on the node N
(i)
j in the tree (as long as the resulting graph is

still a tree): The modified method would simply multiply (element-

wise) the likelihood given data below Pr (DbelowjN (i)
j ) by the unique

likelihood Pr(D
(i)
j jN

(i)
j ) when passing messages up and multiply

(element-wise) the joint probability with data above

Pr (Dabove,N
(i)
j ) by the unique likelihood Pr(D

(i)
j jN

(i)
j ) when

passing messages down. This allows nearly identical runtime

(point-wise multiplication is cheaper than convolution, which is

already performed by the algorithm). On graphs where data is

shared in a manner such that it is cascaded (i.e. Df1,2g depends on

the sum of X1zX2, and Df1,2,3g depends on the sum of

X1zX2zX3, and so forth), the sums can be arranged by a

simple greedy algorithm so that a probabilistic adder node N1,2

has predecessors X1,X2 and then a second probabilistic adder

node N1,2,3 has predecessors N1,2,X3 (Figure 9). Thus, cascading

makes it possible to use the convolution tree even when the shared

data D(S) do not have identical predecessors as shown in figure 2.

Furthermore, more general cascading can factor out shared

computation so that data Df1,2,3g, which depends on X1zX2zX3

and Df2,3,4g, which depends on X2zX3zX4 can be factored into

Nf2,3g~X2zX3 and where Df2,3,4g depends on Nf2,3gzX4 and
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Df1,2,3g depends on X1zNf2,3g. Cascading probabilistic adder

nodes allows inference in the same runtime and memory usage

derived in this manuscript when the cascaded nodes form a tree.

Compatibility with Belief Propagation and Junction Tree
Inference

When the graph contains loops (i.e. when the cascaded graph

does not form a tree), variables can be merged into larger joint

variables, and then the sum of these variables can then be fed into

a convolution tree. Essentially, this demonstrates the potential to

use convolution trees as specialized cliques within classic junction

tree inference [8]: When inference is performed, the full joint

conditional probability table would not be generated for any clique

node in the junction tree with two properties: 1) The clique node

contains only a probabilistic adder node and all of the probabilistic

adder node’s predecessors. 2) The edges connecting the specialized

clique node to other clique nodes in the junction tree would also

need to carry messages of a single variable only, because the

convolution tree does not allow arbitrary joint distributions of its

inputs as messages passed in. 3) Messages sent along edges into the

specialized clique node have disjoint variable sets (i.e. each variable

occurs along only one message). This last criterion can always be

satisfied by inserting a temporary clique node containing only the

variable X as an intermediary between the specialized clique node

and any other clique nodes that send messages containing the

variable X .

Posterior probabilities and messages passed out of a specialized

convolution tree clique node would be computed using the

convolution tree, and would simply pass the likelihood of all data

preceding the edge along which the message is passed (i.e. all data

found by moving backward against the direction of message

passing). For the ‘‘head’’ node (i.e. the adder), the message out

would be the joint probability above. For any ‘‘input’’ node, the

message out would be the likelihood below.

Such ‘‘intelligent’’ junction trees can likewise feature approxi-

mation clique nodes for use when large cliques do not meet the

requirements to be specialized convolution tree clique nodes, e.g.

clique nodes that perform mathematical approximations similar to

pruning or clique nodes that use sampling methods like Monte

Carlo or Markov chain Monte Carlo (MCMC). In this manner,

protein inference could be performed using the benefits of three

approaches: junction tree inference (which can break apart large

connected graphs), convolution tree clique nodes (which can allow

the junction tree to perform efficient exact inference when large

probabilistic adder cliques are encountered), and approximations

(available as a last resort to prevent a single remaining large clique

from prohibiting inference on the entire junction tree). Approx-

imations (which can be inaccurate and slow) would thus be

avoided when exact answers can be computed efficiently. Such

junction trees are examples of the recommended extensions to the

collapsed Gibbs sampler mentioned in [8]. In a similar manner,

pruning may be performed by first finding expensive cliques in the

junction tree (i.e. large cliques that cannot be solved using the

convolution tree) and pruning only the peptides that depend on

them. This is an enhancement of the score-driven pruning

algorithm defined in [13], which needed to prune all peptides at

or below the score of the peptides responsible for computational

expense.

In addition to easy compatibility with collapsed Gibbs sampling,

the probabilistic convolution tree can be also be easily used with

iterative approximation methods that pass messages in the original

graph rather than in the junction tree: these methods include

loopy belief propagation [20], variational methods [21], and

expectation propagation [22]. Networks that employ a large

number of probabilistic adder nodes can pass these messages very

rapidly and thus arrive at an approximation very quickly, even on

graphs whose tree decompositions contain large cliques, which

thus do not offer significant speedup compared to brute force.

Importantly, the probabilistic convolution tree can efficiently pass

messages forward and backward through nodes with many

predecessors, enabling these iterative approximation procedures

to not longer be limited by the maximum number of predecessors

from any node.

Performance Improvement for Junction Tree Inference
on a High-coverage HeLa Sample

As stated above, junction tree inference allows the belief

propagation algorithm to be applied to generalized from trees to

graphs by first performing a tree decomposition of a graph and

then passing messages through the tree decomposition. Here we

show the runtime speedup introduced by using probabilistic

convolution trees within the message passing step of junction tree

inference.

Figure 10 demonstrates the practical benefit of using a junction

tree that utilizes probabilistic convolution trees to perform belief

propagation. This is demonstrated using a high-coverage (24

fractions) HeLa SILAC data set [23]. Proteins were digested with

trypsin and searched against the highly redundant International

Protein Index (IPI) database (using a precursor mass tolerance of

10 ppm and a fragment mass tolerance of 0.6 Da). Identified

spectra were then processed with Percolator using a maximum

delta Cn of 0.05.

Protein identification was performed using FidoCT (Fido with

convolution trees) in the alpha release of Proteome Discoverer 2.0.

Low-scoring PSMs (those with score ,1%) were pruned to reduce

graph connectivity as described in [13]. The resulting graph was

factorized into separate connected subgraphs, and each connected

subgraph was processed using two variants of exact junction tree

inference: first, the state-of-the-art HUGIN [24] junction tree

algorithm and second a novel junction tree approach that passes

messages by using probabilistic convolution trees. The HUGIN

junction tree algorithm, as described for mass spectrometry-based

proteomics in [8], performs tree decomposition by merging

variables into cliques (illustrated in figure 1), and then performs

message passing between these clique nodes. Note that the

HUGIN junction tree inference cliques require time and space

that grows super-exponentially with the size of (i.e. the number of

variables contained in) the clique. Thus the size of the largest

clique dominates the computational cost; however, when proba-

bilistic convolution trees are used, cliques formed by probabilistic

adders have sub-quadratic rather than super-exponential time.

Figure 10a shows the distribution of (log-scaled) runtimes for

each connected subgraph when using a standard HUGIN

algorithm versus using the probabilistic convolution tree-based

approach. One particular connected subgraph requires 2103:629

steps using the HUGIN junction tree, but requires only 212:045

steps when using probabilistic convolution trees within the

junction tree inference algorithm. This connected subgraph is

depicted in figure 10b; even though its treewidth is high, exact

inference can be easily performed using probabilistic convolution

trees.

Potential Impact of Convolution Trees on Protein
Inference

In proteomics, the convolution tree could make it feasible to

query protein databases with much greater sequence similarity

than is currently possible, due to the large number of shared
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dependencies introduced (as shown in figure 10). Moreover, the

convolution tree could be used to iteratively perform protein

inference and model peptide detectability, because it can offer

substantially better runtimes on large or highly complex data sets;

on such data sets, iterative numeric methods (e.g. ProteinProphet

[25]) have been demonstrated to be unstable [2,13,26], heuristics

and human intuition can break down [27], approximations (such

as pruning peptides with nonzero scores) may be forced to yield

inaccurate results [3], and sampling on its own (without

exploitation of d{separation and mathematical properties like

those introduced in this paper) cannot yield accurate probabilities

in a feasible amount of time [2,3,8].

The convolution tree can also be used to efficiently place

arbitrary categorical priors on the number of present variables or

on the sum of variables. Without this advance, such priors would

not be considered because they are too inefficient for large data

sets: by creating a dependency between all proteins, such a prior

would render factorization impossible. Without factorization,

even a runtime quadratic in the number of variables (e.g. using

the quadratic dynamic programming approach) could potentially

become the factor limiting efficiency (not to mention the

limitations of the quadratic space requirement). A sub-quadratic

method with low space complexity could be used to bring the

applicability of such priors to many graphical inference

problems.

Application to Probabilistic Generating Functions for
Partition Combinatorics and Linear Diophantine
Equations

The convolution tree can also be trivially applied to classic

partition problems from combinatorics [28]. Given some target

value t and elements v1,v2, . . ., compute the total number of

distinct integer tuples (N1,N2, . . . ) that satisfy N1v1zN2v2z . . .
~t. Traditionally, generating functions have been used to great

success for such problems; however, converting the generating

function solution to the desired result involves computing a

particular polynomial coefficient from generating function, and

can be time-consuming. Furthermore, the probabilistic convolu-

tion tree framework relaxes the strict equality required by

generating function variants: the probabilistic convolution tree

would not require the sum be exactly the target value. Instead, it

would be compatible with an arbitrary likelihood function that

weights values by the quality of the approximation between the

target t and the sum N1v1zN2v2z . . .. In practice, this problem

can be used to compute the total number of unique ways to make

change for a given amount of money, and can also be applied to

deciding if an observed target mass t can be made from specified

set of elements (or, more generally, components) with respective

masses v1,v2, . . . (and to compute the marginal distribution on the

quantity of each element). A generalized two-dimensional variant

could also constrain the total valence of the elements employed

used.

Likewise, the probabilistic convolution tree can be applied to

the highly related problem of linear Diophantine equations, which

seek integers N1,N2, . . . such that N1v1zN2zv2z . . . ~t for

some target value t. The probabilistic convolution tree can decide

if the equation is feasible (using integers N1,N2, . . .), as well as to

compute marginal probabilities for each integer coefficient

N1,N2, . . .. Although the problem of finding whether such an

integer solution exists is known to be polynomial, the full problem

of computing a joint solution in the integers (N1,N2, . . . ) is NP-

complete [29].

Generalization to Multiple Dimensions and Applicability
to Knapsack Problems

The convolution tree trivially generalizes to multidimensional

problems where there is an additive behavior in all dimensions.

For instance, as mentioned above when mentioning the applica-

bility to elemental decomposition, we can consider all variables

(X1,X2, . . . Xk,N
(1)
1 ,N

(1)
2 , . . . N

(2)
1 , . . . N

(3)
1 . . . ) to have two dimen-

sions. In the case of elemental decomposition, each variable can

store a two-dimensional random distribution as a matrix where the

row index maps to the discretized mass, the column maps to the

discretized valence, and the value in the matrix cell at row r and

column c is the joint probability that the variable simultaneously

has the mass corresponding to r and the valence corresponding to

c. Note that the algorithm is identical with two exceptions: First,

when adding two parent variables L and R during a forward pass

(step 1), the result will now be computed via a two-dimensional

convolution. Second, after two-dimensional convlution is per-

formed during the backward pass (in step 2), a contiguous

submatrix is retrieved via a two-dimensional slice (rather than a

one-dimensional slice).

As is the case for the univariate algorithm, the resulting

convolutions can be performed using two alternative approaches:

First, in the case when matrices are sparse, convolution can be

performed efficiently using direct convolution when the joint

distribution of L and the joint distribution of R. Alternatively,

when the matrices representing these two-dimensional distribu-

tions are dense this two-dimensional convolution can be

performed by using more sophisticated approaches [30]. The

algorithm is the same in any number of dimensions as long as

multidimensional convolution is used throughout, and as long

multidimensional slices are taken in step 2. In this manner, it can

be thought of as a polynomial time approximation scheme (PTAS)

for a probabilistic generalization of the NP-hard knapsack

problems. Likewise, it can efficiently solve other combinatorics

problems (where counting is used probabilistically or non-

probabilistically). The multidimensional variant can also be used

to merge variables and remove loops from cascaded graphs that

are not trees.

Application to using Truncated Sums in Forward Error
Correction

Because the convolution tree method can be used with any

cascaded graph of probabilistic adder nodes, then it can be applied

to myriad other problems. One simple example is the extension of

probabilistic forward error correcting codes to efficiently utilize a

greater variety of error correcting information. Using the notation

from [31] the unique data Di would correspond to yi, and a subset

of those probabilistic adder nodes in the tree could influence node-

specific D
(i)
j , which would allow inclusion of data that depends on

the sum of nodes above, or optionally, a truncated sum, from

which a probabilistic adder node can compute multi-bit summary

statistics about the bit string (parity is an example of such a single-

bit summary statistic). For certain coding schemes that use

moderate block sizes, this method could be used to infer an

optimal (i.e. maximum a posteriori) estimate for the input binary

bitstring, as well as probabilistic confidence estimates for each bit

in the bitstring. Turbo decoding and low-density parity-check

codes (LDPC), which are both popular inference methods for

forward error correction, have been shown to be instances of

Pearl’s loopy belief propagation [31,32] (loopy belief propagation

is described above). Because convolution trees can be used within

belief propagation (see ‘‘Compatibility with belief propagation and

junction tree inference’’ above), they can also be used with loopy

A Convolution Tree for Efficient Exact Inference

PLOS ONE | www.plosone.org 14 March 2014 | Volume 9 | Issue 3 | e91507



belief propagation to perform more efficient message passing of

probabilistic information related to cardinality, parity, sums, and

other probabilistic adder structures that cannot be efficiently

accomplished with noisy-or nodes. And because the operations

performed in the probabilistic convolution tree are basic digital

signal processing operations (FFT, element-wise product, etc.), and

thus could potentially be implemented efficiently as an integrated

circuit.

Application to Probabilistic Demixing of Chimeric Mass
Spectra

The convolution tree can also be applied to demixing problems.

Figure 11 depicts a classic example from mass spectrometry: four

compounds of unknown relative abundance contribute to a

chimeric spectrum. By discretizing the possible relative abundanc-

es (in the future it also may be possible to extend some of the ideas

presented in this manuscript to continuous problems), probabilistic

adder nodes can be cascaded to compute posterior probability

distributions on the relative abundances of each compound

without jointly enumerating the four-dimensional space of all

possible relative abundances. This graph could even be augmented

with an arbitrary prior on the number of compounds present. A

simplification would threshold peaks in the chimeric spectrum into

two categories (‘‘intense’’ and ‘‘not intense’’) and then perform

inference using a convolution tree whose base variables are binary,

similar to the formulation for protein inference. Regardless of

whether binary variables or binned continuous variables are used,

an arbitrary likelihood model could then be used to evaluate the

match between the observed peak (observed from the actual data)

and the latent abundance variable for that peak (note that these

likelihood functions can be peak-specific).

Availability
The python script demonstrating the power-set enumeration,

quadratic dynamic programming, and convolution tree approach-

es is available at https://bitbucket.org/orserang/convolutiontree.
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