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IntraCranial pressure prediction AlgoRithm 
using machinE learning (I-CARE): Training and 
Validation Study
OBJECTIVES: Elevated intracranial pressure (ICP) is a potentially devastating 
complication of neurologic injury. Developing an ICP prediction algorithm to help 
the clinician adjust treatments and potentially prevent elevated ICP episodes.

DESIGN: Retrospective study.

SETTING: Three hundred thirty-five ICUs at 208 hospitals in the United States.

SUBJECTS: Adults patients from the electronic ICU (eICU) Collaborative 
Research Database was used to train an ensemble machine learning model to 
predict the ICP 30 minutes in the future. Predictive performance was evaluated 
using a left-out test dataset and externally evaluated on the Medical Information 
Mart for Intensive Care-III (MIMIC-III) Matched Waveform Database.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: Predictors included age, assigned 
sex, laboratories, medications and infusions, input/output, Glasgow Coma Scale 
(GCS) components, and time-series vitals (heart rate, ICP, mean arterial pressure, 
respiratory rate, and temperature). Each patient ICU stay was divided into succes-
sive 95-minute timeblocks. For each timeblock, the model was trained on nontime-
varying covariates as well as on 12 observations of time-varying covariates at 
5-minute intervals and asked to predict the 5-minute median ICP 30 minutes after 
the last observed ICP value. Data from 931 patients with ICP monitoring in the 
eICU dataset were extracted (46,207 timeblocks). The root mean squared error 
was 4.51 mm Hg in the eICU test set and 3.56 mm Hg in the MIMIC-III dataset. 
The most important variables driving ICP prediction were previous ICP history, 
patients’ temperature, weight, serum creatinine, age, GCS, and hemodynamic 
parameters.

CONCLUSIONS: IntraCranial pressure prediction AlgoRithm using machinE 
learning, an ensemble machine learning model, trained to predict the ICP of a 
patient 30 minutes in the future based on baseline characteristics and vitals data 
from the past hour showed promising predictive performance including in an ex-
ternal validation dataset.

KEYWORDS: artificial intelligence; brain injury; intracranial pressure; machine 
learning; prediction

Elevated intracranial pressure (ICP) is a potentially devastating complica-
tion of neurologic injury. The 2016 guidelines (1) for the management 
of patients with severe traumatic brain injury recommend using ICP 

monitoring to reduce in-hospital and 2-week post-injury mortality (level IIb). 
The same guidelines recommend treating ICP greater than 22 mm Hg because 
values above this level are associated with increased mortality (level IIb).

Unfortunately, the treatments available to decrease the ICP and optimize 
the cerebral perfusion pressure take time to be effective. The intensity and 
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duration of episodes of intracranial hypertension (in-
tracranial hypertension dose) was found to be inde-
pendently associated with mortality and long-term 
functional outcome in severe brain injuries from 
different origins such as traumatic brain injury (2) 
or subarachnoid hemorrhage (3). Hence, successful 
management of patients with elevated ICP requires 
early recognition and therapy directed at both re-
ducing ICP and reversing its underlying cause. 
Furthermore, predicting the evolution of ICP could 
help the clinician to proactively adjust treatments 
and interventions to potentially prevent intracranial 
hypertension.

We have previously demonstrated that machine 
learning can be used to accurately predict the evo-
lution of physiologic parameters (4, 5) using super-
vised ensemble machine learning methods that were 
proven to be superior to any single machine learn-
ing approaches in many situations (5). The goal of 
the present study is to use an ensemble learning 
approach to train and validate IntraCranial pres-
sure prediction AlgoRithm using machinE learning 
(I-CARE), an ICP prediction algorithm to predict 
the ICP value 30 minutes in the future in patients 
hospitalized in the ICU with an acute brain injury 
and an ICP monitor.

METHODS

This study was based on retrospective data and is 
reported according to the Transparent Reporting 
of a multivariable prediction model for Individual 
Prognosis Or Diagnosis guidelines (6).

Data Source

Two separate data sources were used for this study. The 
first one, electronic ICU (eICU) Collaborative Research 
Database, was used to train the model. The second one, 
the Medical Information Mart for Intensive Care-III 
(MIMIC-III) Matched Waveform Database, was used 
to externally validate the performance of the algo-
rithm. There is no overlap between the two databases.

The eICU Collaborative Research Database is a 
multicenter publicly and freely accessible ICU da-
tabase with high granularity data for over 200,000 
admissions to ICUs monitored by eICU programs, a 
telehealth system developed by Philips Healthcare 
(Cambridge, MA) to support management of criti-
cally ill patients across the United States (7). Data in 
eICU are deidentified to meet the safe harbor provi-
sion of the U.S. HIPAA. Data in eICU were generated 
from over 130,000 unique patients admitted between 
2014 and 2015 to one of 335 units at 208 hospitals in 
the United States. The deidentified data are publicly 
available after registration, including completion of a 
training course in research with human subjects and 
signing of a data use agreement mandating responsible 
handling of the data and adhering to the principle of 
collaborative research.

MIMIC-III (8) is a publicly and freely available database 
associating medico-administrative data, physiologic mea-
surements and treatment administration prospectively 
and consecutively collected at the bedside between 2001 
and 2012 from five ICUs in Boston’s Beth Israel Deaconess 
Medical Center. Data were de-identified; data collec-
tion was approved by the Institutional Review Boards of 
Beth Israel Deaconess Medical Center (Boston, MA) and 
Massachusetts Institute of Technology (Cambridge, MA). 
We used the subset of patients in the MIMIC-III data-
set that also have ICP data in the MIMIC-III Waveform 
Database Matched Subset (9) for the validation set.

Participants

From the eICU database, we selected all adult (≥ 18 yr 
old) patients with recorded ICP monitoring for at least 
4 consecutive hours.

Outcome

The outcome was defined as the median ICP measure-
ment within a 5-minute interval 30 minutes after the 
last observed ICP value (Fig. 1).

 
KEY POINTS

Question: Given historical intracranial pressure 
(ICP) values, vitals, and laboratory values, can ma-
chine learning be used to predict the ICP value 30 
minutes in the future?

Findings: The ICP value can be predicted 30 
minutes in the future with encouraging predictive 
performance.

Meanings: Clinicians may be able to proactively 
adjust treatments and interventions to potentially 
prevent intracranial hypertension episodes.
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Study Periods

Each included ICU admission in the eICU dataset 
was divided into successive 95-minute timeblocks. 
Each 95-minute period was divided into three con-
secutive time windows of 60 (“observation window” 
to define predictors), 30 (“gap window”), and 5 min-
utes (“prediction window”; Fig. 1). The 30-minute 
“gap window” was motivated by the fact that ICP 
prediction is helpful only if the predicted value is far 
enough into the future that there is sufficient time 
for therapeutic adjustment. In the eICU dataset, vital 
signs were internally collected at 1-minute interval, 
and 5-minute medians were archived in the dataset. 
Consequently, there are 12 time-varying measure-
ments in each observation window, six measure-
ments in the gap window, and one measurement in 
the observation window.

Predictors

Predictor selection was based on clinical expertise and 
data availability. Variables with more than 20% missing 
values were not considered as predictors. Predictors 
in the model included baseline demographics (age, 
assigned sex), reason for ICU admission, laboratories 

(arterial blood gases, sodium, creatinine, hematocrit, 
hemoglobin, platelets, glucose, fibrinogen, and in-
ternational normalized ratio), medications and infu-
sions (sedatives, vasopressors, hypertonic solutions, 
benzodiazepines, neuromuscular blockers, and opi-
oids), input/output, Glasgow Coma Scale (GCS) com-
ponents, and time-series vitals (heart rate, ICP, mean 
arterial pressure [MAP], respiratory rate, and temper-
ature) from the observation window only. For each 
timeblock, the model was trained on nontime-varying  
covariates as well as on the 12 values of the time-
varying covariates at 5-minute intervals and asked to 
predict the 5-minute median ICP 30 minutes after the 
last observed ICP value. In the MIMIC-III Waveform 
Database Matched Subset dataset, vital signs were col-
lected at 1-minute intervals with all data archived in 
the dataset, so data was post-processed to take the 
5-minute median to match the eICU data format.

Sample Size

The eICU database includes 200,859 ICU encounters 
for 139,367 unique patients admitted between 2014 
and 2015. From 931 ICU encounters that met inclusion 
criteria, 46,207 timeblocks were extracted from the 
database; 698 patients (75%, 35,128 timeblocks) were 

Figure 1. Illustration of the composition of the definition of a timeblock. For each patient, their time in the ICU is divided into 95-min 
blocks. Each 95-min block is subdivided into a 60-min observation period, a 30-min gap period, and a 5-min prediction period. The model 
is given data from the observation period and is asked to predict the median intracranial pressure during the 5-min prediction period.
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randomized to the training set and 233 patients (25%, 
11,079 timeblocks) were randomized to the test set. To 
avoid any risk of data leakage, the same patient could 
not contribute time periods to both training and test-
ing sets. The MIMIC III Waveform Database Matched 
Subset Version 1.0 contains 22,317 high frequency 
waveform and 22,247 numeric records corresponding 
to ICU stays from 10,282 patients also included in the 
MIMIC III Clinical Database.

Missing Data and Outliers Filtering

ICP values that were less than 0 or greater than the 
MAP were considered invalid and consequently treated 
as missing. Timeblocks with three or more missing 
ICP measurements (i.e. three values missing from the 
source dataset, implying missing ICP data for at least 
three 5-min windows) during the observation window 
or missing ICP measurement during the prediction 
window were excluded from the analysis. For blocks 
with fewer than three missing ICP measurements dur-
ing the observation window, the missing ICP values 
were imputed with the median ICP measurement dur-
ing the observation window. Additionally, a missing 
variable indicator was included in the model for each 
ICP measurement to indicate if the ICP measurement 
was imputed. eFigure 1 (http://links.lww.com/CCX/
B285) depicts the proportion of eICU timeblocks con-
tributed by each institution and the number of time-
blocks with one or two missing ICP values during the 
observation period by institution. Missing non-ICP 
vital signs were imputed by forward filling data when 
previous data in the observation window was available. 
When a previous datapoint from a given time window 
was not available, missing non-ICP vital signs were 
imputed by taking the median of nonmissing data in 
the observation window. The other missing variables 
were imputed by taking the median value for the pa-
tient or the median value for the dataset if the patient 
had no valid data. The proportion of missing data in 
observation windows is available in eTable 1 (http://
links.lww.com/CCX/B285).

Statistical Analysis

Algorithm. The model used in this study is a super-
vised ensemble machine learning algorithm called Super 
Learner (10). The Super Learner is a method for selecting 

via cross-validation the optimal regression algorithm 
among all weighted combinations of a set of given can-
didate algorithms, henceforth referred to as the library. 
Thus, the Super Learner algorithm requires the user to 
input a library. Theoretical results suggest that to optimize 
the performance of the resulting algorithm, the inputted 
library should include as many sensible algorithms as 
possible. In this study, the library included ten algorithms 
(eTable 2, http://links.lww.com/CCX/B285). Comparison 
of the algorithms relied on ten-fold cross-validation. In 
this process, the data are first split into ten mutually ex-
clusive and exhaustive blocks of approximately equal size. 
One of these blocks, the validation set, is excluded, and 
all remaining data, referred to as the training set, are used 
to fit each of the algorithms. Each fitted algorithm is used 
to predict the ICP for all patients in the validation set and 
the squared errors between predicted and observed out-
comes are averaged. The performance of each algorithm 
is evaluated in this manner. This procedure is repeated 
exactly 10 times, with a different block used as valida-
tion set every time. Performance measures are aggregated 
over all 10 iterations, yielding a cross-validated estimate 
of the mean-squared error (CV-MSE) for each algo-
rithm. A crucial aspect of this approach is that for each 
iteration not a single patient appears in both the training 
and validation sets. The potential for overfitting, wherein 
the fit of an algorithm is overly tailored to the available 
data at the expense of performance on future data, is 
thereby mitigated, as overfitting is more likely to occur 
when training and validation sets intersect. Candidate 
algorithms are ranked according to their CV-MSE and 
the algorithm with least CV-MSE was identified. This al-
gorithm was then refitted using all available data, lead-
ing to a prediction rule referred to as the Discrete Super 
Learner. Subsequently, the prediction rule consisting of 
the CV-MSE-minimizing weighted convex combination 
of all candidate algorithms was also computed and refit-
ted on all data. The resulting algorithm is referred to as 
the SuperLearner algorithm.

Model Performance. Following recommendations 
from “Guidelines for developing and reporting ma-
chine learning predictive models in biomedical re-
search” (11), we randomly divided the eICU patients 
into a training set (75% of patients) and an internal 
validation dataset (the remaining 25% of the patients), 
and used the MIMIC-III cohort for external validation.

Calibration. Model calibration was graphically 
assessed by plotting the predicted vs. observed ICP 

http://links.lww.com/CCX/B285
http://links.lww.com/CCX/B285
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http://links.lww.com/CCX/B285
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for the internal and the external validation dataset. 
Calibration was also illustrated using Bland-Altman 
plots, accounting for repeated measures (12). The root 
mean squared error (RMSE), bias, and limits of agree-
ment were computed and reported for the internal and 
the external validation dataset.

Thresholds. To assess the ability of I-CARE to de-
tect significant changes in the ICP, performance was 
also specifically studied in a subset of the test and 
the validation sets where the actual ICP value during  
the prediction window increased by at least 20% of the 
mean ICP from the observation window. In addition 
to predicting ICP, we also want to detect clinically sig-
nificant changes in the ICP. Therefore, we looked at the 
accuracy of the I-CARE algorithm in predicting signif-
icant increases in the ICP. Specifically, we assessed the 
area under the receiver operating characteristic curve, 
sensitivity, specificity, accuracy, positive and negative 
predictive values, and positive and negative likelihood 
ratios for: 1) the detection of an ICP increase in the 
next 30 minutes of more than 10%, 20%, and 30% 
compared with the mean ICP value during the obser-
vation window and 2) the detection of an episode of 
intracranial hypertension as defined by a median ICP 
greater than 15, 20, and 22 mm Hg during the predic-
tion window.

Model Interpretability. The contribution of each 
predictor was quantified by computing the SHapley 
Additive exPlanations (SHAP) framework (13). SHAP 
is a game theoretic approach that quantifies the av-
erage expected marginal contribution of one predictor 
after all possible combinations have been considered. 
Using the Interpretable Machine Learning package; 
https://CRAN.Rproject.org/package=iml (14), Shapley 
values were generated for each prediction in the val-
idation set using 100 Monte Carlo simulations. The 
Shapley values provide insights into the relative im-
portance of each predictor variable. By quantifying the 
average expected marginal contribution of a specific 
predictor after considering all possible combinations, 
the Shapley values enable discernment of the exact in-
fluence of individual variables on the likelihood of in-
tracranial hypertension according to the model.

All analyses were performed using statistical soft-
ware R Version 4.2.1 (R Foundation for Statistical 
Computing, Vienna, Austria). The I-CARE Super 
Learner algorithm was trained using SuperLearner R 
package, Version 2.0-24 (R Foundation for Statistical 

Computing, Vienna, Austria). The I-CARE model will 
be made available upon reasonable request.

RESULTS

Participants

The distribution of ICP values in the eICU dataset be-
fore applying exclusion criteria is shown in eFigure 
2 (http://links.lww.com/CCX/B285). Nine hundred 
thirty-one ICU admissions from the eICU dataset met 
our inclusion criteria, for a total of 46,207 timeblocks: 
35,128 timeblocks (corresponding to 698 patients) 
were included in the training set, 11,079 timeblocks 
(corresponding to 233 patients) were included in the 
test set (Fig. 2). Six thousand eight hundred thirty-
five timeblocks from 127 patients from the MIMIC-
III dataset were used for external validation. Patient 
characteristics are provided in eTable 3 (http://links.
lww.com/CCX/B285). The median (Q1–Q3) across 
timeblocks of the average ICP during the observation 
period was 9.83 mm Hg (6.42–14.0 mm Hg), 9.75 mm 
Hg (6.42–13.7 mm Hg), and 9.25 mm Hg (6.63–
12.2 mm Hg) in the training set, test set, and external 
validation set, respectively (eTable 4, http://links.
lww.com/CCX/B285). During the prediction phase, 
the observed median (Q1–Q3) ICP was 10.0 mm Hg 
(6.00–14.0 mm Hg), 10.0 mm Hg (6.00–14.0 mm Hg), 
and 9.00 mm Hg (6.00–12.0 mm Hg) in the training 
set, test set, and external validation set, respectively. 
The number of timeblocks where the actual ICP value 
during the prediction window increased by at least 
20% of the mean ICP from the observation window 
was 8018 (22.8%), 2648 (23.9%), and 1348 (19.7%) in 
the training set, test set, and external validation set, 
respectively.

Model Performance

Model calibration is illustrated in Figure 3. The RMSE 
in the test set was 4.51 mm Hg. As illustrated in the 
Bland-Altman plots (Fig. 3, B and D), systematic bias 
in the test set was –1.15 mm Hg with limits of agree-
ments of –9.92 and 7.63 mm Hg. When the model was 
evaluated on 6835 timeblocks from the external data-
set, the RMSE was 3.56 mm Hg, the systematic bias 
was 0.657 mm Hg with limits of agreements of –6.52 
and 7.83 mm Hg. A subset of the test and validation 
sets where the actual ICP value during the prediction 

https://CRAN.Rproject.org/package=iml
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window increased by at least 20% of the mean ICP from 
the observation window was additionally examined 
(eFigs. 3 and 4, http://links.lww.com/CCX/B285). The 
RMSE was 7.38 and 5.60 mm Hg in this subset of the 
test and the validation set, respectively. I-CARE’s per-
formance to detect an episode of intracranial hyperten-
sion as defined by a median ICP greater than 15, 20, and 
22 mm Hg during the prediction window is provided in 
Table 1. In the external validation dataset, I-CARE was 
able to predict these episodes with an accuracy of 92%, 
97%, and 98%, and a positive likelihood ratio of 22.06, 
69.85, and 104.48, respectively. We also evaluated the 
performance of I-CARE to detect an ICP increase in 
the next 30 minutes of more than 10%, 20%, and 30% 
of baseline, defined as the mean ICP during the ob-
servation window. In the external validation dataset, 
I-CARE was able to predict these increases with 64%, 
73%, and 80% accuracy, with a positive likelihood ratio 
of 2.49, 3.84, and 6.30, respectively (Table 1).

Feature Importance

Plots depicting Shapley values are provided in Figure 4; 
and eFigures 5 and 6 (http://links.lww.com/CCX/B285). 
As illustrated in Figure 4, the most important variable 
driving I-CARE’s prediction of the ICP 30 minutes in 
the future is previous ICP history. Additionally, patients’ 
temperature, weight, serum creatinine, age, GCS, and 
hemodynamic parameters were identified as impor-
tant predictors. eFigure 6 (http://links.lww.com/CCX/
B285) illustrates the breakdown of the top time-varying 

predictors broken down 
by relative time in the ob-
servation window.

DISCUSSION

In this study, the I-CARE 
algorithm was trained to 
predict the ICP 30 min-
utes in the future. In an 
independent external 
dataset, I-CARE was 
able to predict the ICP 
with a RMSE of less than 
4 mm Hg. In addition, 
I-CARE was shown to 
have encouraging pre-
dictive performance for 

the detection of acute changes in the ICP in the next 
30 minutes.

There is a growing interest in the use of machine 
learning techniques to predict the evolution of impor-
tant physiologic parameters, such as the MAP in crit-
ically ill patients (4, 5, 15). However, only few studies 
have described the use of machine learning to predict 
the ICP in patients with a severe brain injury. Most stud-
ies thus far were performed in pediatric patients (16). 
Available studies in adult patients present some limita-
tions (17–20). The algorithm developed by Güiza et al 
(20) was trained in a relatively small population of 178 
neurocritical care patients, only 61% of which present-
ing an episode of elevated ICP. The model by Güiza et 
al (20) was later externally validated (21), confirming 
the model’s ability to detect episodes of increased ICP 
in traumatic brain injury patients (22). However, in this 
study, as in many others, the algorithm detects intra-
cranial hypertension as defined based on a single ICP 
threshold. The definition and the clinical meaningful-
ness of intracranial hypertension depend on the clinical 
context and the patient. Training an algorithm to predict 
the actual ICP value rather than intracranial hyperten-
sion as a binary outcome gives the clinician the oppor-
tunity to tailor the threshold for concern and treatment 
plan instead of applying a one-size-fits-all treatment 
strategy. The same team has recently published a new 
algorithm that predicts the intracranial hypertension 
dose (23). Although interesting, this approach suffers 
the same limitation in terms of relying on a somewhat 
arbitrary binary definition of the outcome of interest.

Figure 2. Flowchart depicting how timeblocks from the electronic ICU dataset were generated from 
the database. ICP = intracranial pressure, W = with.

http://links.lww.com/CCX/B285
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Several studies have used machine learning to predict 
the ICP in patients with no ICP monitor (24–26). This is 
potentially useful at the early stage of brain injury manage-
ment before the insertion of the ICP monitor or in settings 
where ICP monitoring is not available. I-CARE focuses on 
ICP prediction 30 minutes in the future in patients already 
equipped with an ICP monitoring device. This time gap 
of 30 minutes was chosen to give enough time to the cli-
nician to adjust interventions in response to the predicted 
ICP and potentially avoid intracranial hypertension epi-
sodes. By doing so, clinicians may be able to decrease the 
intracranial hypertension dose, which has been shown 
to be associated with increased mortality and poor long-
term functional outcomes (2, 3).

Unsurprisingly, previous ICP values were found to 
be the most important predictors of future ICP values 

(eFig. 6, http://links.lww.com/CCX/B285). This is con-
sistent with other ICP prediction models (23). This 
finding reflects clinical practice in that without know-
ledge of baseline ICP information, prediction of future 
ICP is improbable. Interestingly though, other clinical 
parameters such as age, GCS, weight, temperature, he-
modynamic status (MAP and heart rate), and serum 
creatinine were found to also play some role in the 
prediction.

This study has some limitations. First, patients 
with different types of brain injuries were pooled 
together. The physiology driving the evolution of 
the ICP may differ between injuries, and even bet-
ter performance would be expected if the algorithm 
were trained on a more homogenous patient popula-
tion. However, training I-CARE on a variety of brain 

Figure 3. Calibration and Bland-Altman plots for test and external validation datasets. A, Test set calibration plot; (B) test set Bland-
Altman plot; (C) external validation set calibration plot; (D) external validation set Bland-Altman plot. A and C, The x-axis represents the 
predicted intracranial pressure (ICP), the y-axis the actual ICP. Color represents the patient for which a prediction was made. B and D, 
The x-axis represents the median ICP, the y-axis the difference between the predicted and the observed ICP. LoA = limits of agreement, 
W = with.

http://links.lww.com/CCX/B285


Fong et al

8          www.ccejournal.org	 January 2024 • Volume 6 • Number 1

TA
B

LE
 1

.
M

od
el

 P
er

fo
rm

an
ce

 fo
r 

In
tr

ac
ra

ni
al

 H
yp

er
te

ns
io

n 
P

re
di

ct
io

n 
U

si
ng

 D
iff

er
en

t I
nt

ra
cr

an
ia

l P
re

ss
ur

e 
Th

re
sh

ol
ds

 in
 th

e 
Va

lid
at

io
n 

S
et

M
ea

su
re

m
en

t 

R
el

at
iv

e 
In

cr
ea

se
S

p
ec

ifi
c 

In
tr

ac
ra

n
ia

l P
re

ss
u

re
 T

h
re

sh
o

ld

10
%

 In
cr

ea
se

 
F

ro
m

 B
as

el
in

e 
20

%
 In

cr
ea

se
 

F
ro

m
 B

as
el

in
e 

30
%

 In
cr

ea
se

 
F

ro
m

 B
as

el
in

e 
15

 m
m

 H
g

 
H

yp
er

te
n

si
o

n
 

20
 m

m
 H

g
 

H
yp

er
te

n
si

o
n

 
22

 m
m

 H
g

 
H

yp
er

te
n

si
o

n
 

A
cc

ur
ac

y
0.

6
4 

(0
.6

3–
0.

65
)

0.
73

 (0
.7

2–
0.

74
)

0.
8

0 
(0

.7
9–

0.
81

)
0.

92
 (0

.9
1–

0.
92

)
0.

97
 (0

.9
7–

0.
9

8)
0.

9
8 

(0
.9

8–
0.

9
8)

P
re

va
le

nc
e

0.
3

0
0.

20
0.

14
0.

13
0.

03
4

0.
02

2

P
os

iti
ve

 li
ke

lih
oo

d 
ra

tio
1.

74
 (1

.6
6–

1.
8

4)
2.

3
8 

(2
.2

2–
2.

55
)

3.
22

 (2
.9

5–
3.

53
)

20
.6

3 
(1

7.
5

0–
24

.3
1)

9
4.

37
 (6

1.
5

6–
14

4.
65

)
10

4.
4

8 
(5

9.
4

8–
18

3.
5

4)

N
eg

at
iv

e 
lik

el
ih

oo
d 

ra
tio

0.
6

0 
(0

.5
7–

0.
6

4)
0.

6
0 

(0
.5

7–
0.

6
4)

0.
61

 (0
.5

8–
0.

65
)

0.
4

6 
(0

.4
3–

0.
5

0)
0.

6
4 

(0
.5

9–
0.

71
)

0.
75

 (0
.6

9–
0.

83
)

S
en

si
tiv

ity
0.

61
 (0

.5
9–

0.
63

)
0.

53
 (0

.5
0–

0.
5

6)
0.

4
8 

(0
.4

4–
0.

51
)

0.
55

 (0
.5

2–
0.

5
8)

0.
3

6 
(0

.3
0–

0.
42

)
0.

25
 (0

.1
8–

0.
33

)

S
pe

ci
fic

ity
0.

65
 (0

.6
4–

0.
67

)
0.

78
 (0

.7
7–

0.
79

)
0.

85
 (0

.8
4–

0.
8

6)
0.

97
 (0

.9
7–

0.
9

8)
1.

00
 (0

.9
9–

1.
00

)
1.

00
 (1

.0
0–

1.
00

)

P
os

iti
ve

 p
re

di
ct

iv
e 

va
lu

e
0.

43
 (0

.4
1–

0.
45

)
0.

37
 (0

.3
5–

0.
3

9)
0.

35
 (0

.3
2–

0.
3

8)
0.

76
 (0

.7
2–

0.
79

)
0.

77
 (0

.6
8–

0.
85

)
0.

70
 (0

.5
6–

0.
82

)

N
eg

at
iv

e 
pr

ed
ic

tiv
e 

va
lu

e
0.

79
 (0

.7
8–

0.
81

)
0.

87
 (0

.8
6–

0.
8

8)
0.

91
 (0

.9
0–

0.
91

)
0.

9
4 

(0
.9

3–
0.

9
4)

0.
9

8 
(0

.9
7–

0.
9

8)
0.

9
8 

(0
.9

8–
0.

9
9)

Fa
ls

e 
po

si
tiv

e 
ra

te
0.

35
 (0

.3
3–

0.
3

6)
0.

22
 (0

.2
1–

0.
23

)
0.

15
 (0

.1
4–

0.
16

)
0.

03
 (0

.0
2–

0.
03

)
0.

00
 (0

.0
0–

0.
01

)
0.

00
 (0

.0
0–

0.
00

)

Fa
ls

e 
ne

ga
tiv

e 
ra

te
a

0.
3

9 
(0

.3
7–

0.
41

)
0.

47
 (0

.4
4–

0.
5

0)
0.

52
 (0

.4
9–

0.
5

6)
0.

45
 (0

.4
2–

0.
4

8)
0.

6
4 

(0
.5

8–
0.

70
)

0.
75

 (0
.6

7–
0.

82
)

A
re

a 
un

de
r t

he
 re

ce
iv

er
 

op
er

at
in

g 
ch

ar
ac

te
ris

tic
 

cu
rv

e

0.
63

 (0
.6

2–
0.

6
4)

0.
65

 (0
.6

4–
0.

67
)

0.
6

6 
(0

.6
5–

0.
6

8)
0.

76
 (0

.7
5–

0.
78

)
0.

6
8 

(0
.6

5–
0.

71
)

0.
62

 (0
.5

9–
0.

6
6)

a W
e 

ad
di

tio
na

lly
 c

on
du

ct
ed

 a
 s

en
si

tiv
ity

 a
na

ly
si

s 
ev

al
ua

tin
g 

th
e 

in
tr

ac
ra

ni
al

 h
yp

er
te

ns
io

n 
ep

is
od

e 
pr

ed
ic

tio
n 

pe
rf

or
m

an
ce

 o
f 

In
tr

aC
ra

ni
al

 p
re

ss
ur

e 
pr

ed
ic

tio
n 

A
lg

oR
ith

m
 u

si
ng

 
m

ac
hi

nE
 le

ar
ni

ng
 b

y 
ex

am
in

in
g 

th
e 

m
od

el
’s

 a
bi

lit
y 

to
 p

re
di

ct
 a

n 
in

tr
ac

ra
ni

al
 p

re
ss

ur
e 

(IC
P

) 
th

at
 is

 w
ith

in
 2

 m
m

 H
g 

of
 th

e 
th

re
sh

ol
d 

(e
.g

., 
pr

ed
ic

tin
g 

an
 IC

P
 ≥

 1
8

 m
m

 H
g 

in
 th

e 
2

0
 m

m
 

H
g 

th
re

sh
ol

d)
. W

e 
fo

un
d 

th
at

 th
e 

fa
ls

e 
ne

ga
tiv

e 
ra

te
 d

ro
ps

 b
y 

ar
ou

nd
 2

0
%

. S
pe

ci
fic

al
ly

, t
he

 1
5

 m
m

 H
g 

fa
ls

e 
ne

ga
tiv

e 
ra

te
 is

 0
.2

2
 in

 th
e 

se
ns

iti
vi

ty
 a

na
ly

si
s 

vs
. 0

.4
5

 in
 th

is
 ta

bl
e,

 
2

0
 m

m
 H

g 
is

 0
.4

3
 v

s.
 0

.6
4

, a
nd

 2
2

 m
m

 H
g 

is
 0

.5
7

 v
s.

 0
.7

5
.



Original Clinical Report

Critical Care Explorations	 www.ccejournal.org          9

injured patients increases the generalizability of our 
results; additionally, our feature importance anal-
ysis identified that the etiology of brain injury could 
have a minimal but non-null effect on the predicted 
ICP value. Second, although external validation was 
performed using a completely independent dataset, 
a prospective validation in real-life conditions is still 
yet to be performed. This prospective validation in 
real-life conditions is planned for a follow-up study. 
Third, the ICP of patients included in the training, 
test, and external validation sets were relatively low. 
But more than 20% of the analyzed timeblocks had 
a greater than 20% increase in the ICP between the 
observation and the prediction window. Fourth, al-
though I-CARE uses several time-evolving variables 
as predictors, including vital signs, we did not use 
high-fidelity waveform signals in this first version of 
the algorithm. An updated version of the algorithm, 

trained with vital signs of higher granularity, will 
be released in the future. Fifth, while I-CARE’s false 
positive rate was minimal (Table 1), limiting the risk 
of overtreatment, the false negative rate may appear 
substantial, leading to a potential risk of undertreat-
ment. However, the primary goal of I-CARE is to 
predict the continuous ICP and not whether an ICP 
threshold will be reached. Hence, the algorithm was 
not training to optimize classification, but rather to 
minimize the error in predicting the actual contin-
uous ICP value. Thus, I-CARE should be used to 
predict a trend in the ICP and not as classifier for 
elevated ICP.

I-CARE is the first intracranial prediction algorithm 
allowing to accurately predict the ICP value 30 minutes in 
the future using advanced machine learning, trained on a 
large sample of neurocritical care patients, with external 
validation. More work is still needed to prospectively 

Figure 4. Feature importance for the top predictors based on Shapley values. Color of each SHapley Additive exPlanations (SHAP) 
value corresponds to the relative value of the feature; high values are indicated by red and low values are indicated by blue. Time-varying 
predictors are grouped in this figure; predictors are stratified by time in the observation window in eFigure 6 (http://links.lww.com/CCX/
B285). GCS = Glasgow Coma Scale, ICP = intracranial pressure, MAP = mean arterial pressure.

http://links.lww.com/CCX/B285
http://links.lww.com/CCX/B285
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validate the use of I-CARE in practice and determine the 
impact of treatment strategies to prevent the occurrence of 
ICP in patients with severe brain injury.
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