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Abstract: The received signal strength (RSS) based target localization problem in underwater
acoustic wireless sensor networks (UWSNs) is considered. Two cases with respect to target transmit
power are considered. For the first case, under the assumption that the reference of the target
transmit power is known, we derive a novel weighted least squares (WLS) estimator by using
an approximation to the RSS expressions, and then transform the originally non-convex problem
into a mixed semi-definite programming/second-order cone programming (SD/SOCP) problem for
reaching an efficient solution. For the second case, there is no knowledge on the target transmit power,
and we treat the reference power as an additional unknown parameter. In this case, we formulate a
WLS estimator by using a further approximation, and present an iterative ML and mixed SD/SOCP
algorithm for solving the derived WLS problem. For both cases, we also derive the closed form
expressions of the Cramer–Rao Lower Bounds (CRLBs) on root mean square error (RMSE). Computer
simulation results show the superior performance of the proposed methods over the existing ones in
the underwater acoustic environment.

Keywords: underwater acoustic wireless sensor networks (UWSNs); target localization; received
signal strength (RSS); Cramer–Rao lower bounds (CRLBs)

1. Introduction

1.1. Background

The target localization techniques based on an underwater acoustic wireless sensor networks
(UWSNs) have recently attracted much attention due to their wide applications in many areas,
including data collection, pollution monitoring, offshore exploration, disaster prevention, target
tracking, and assisted navigation [1]. In such UWSNs, the sensor nodes are usually classified into
anchor nodes and target nodes, where the locations of anchor nodes are known, and the locations of
target nodes are unknown and need to be determined [2]. The target localization in UWSNs is often
classified as four types based on the measurements: time-of-arrival (ToA), time-difference-of-arrival
(TDoA), angle-of-arrival (AoA), and received signal strength (RSS). However, the measurements based
on the first three types of target localization methods require complicated timing, synchronization,
and line of sight, thus are often difficult to be obtained in underwater acoustic environments [3,4].

Currently, most works are focused on two typical RSS-based target localization methods: the
maximum likelihood (ML) [5] and least squares (LS) [6]. While the ML estimator can achieve high
accuracy and approximate the Cramer–Rao lower bound (CRLB), its performance depends highly on
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the initial point and a poor initialization may lead ML estimator to find a poor solution. To overcome
this problem, the LS estimator with explicit solution is proposed at lower complexity. The weighted
least squares (WLS) approach is more appropriate for estimating the source location and its solution
is closer to the ML estimator. Therefore, the RSS-based LS and WLS estimator have attracted more
attention [6,7].

1.2. Related Work

Recently, convex optimization techniques have been widely applied to the target localization.
The basic idea is to transform the objective function into a new convex problem via semi-definite
programming (SDP) or second-order cone programming (SOCP) relaxations, and then efficiently find
solution which is approaching the globally optimal solution. In [8], to circumvent the non-convexity of
the ML estimation, the ML estimation problem is reformulated by eliminating the logarithmic terms
and relaxed the problem as a SDP optimization problem. In [9], the non-convex ML estimation problem
is converted into an alternative SOCP optimization problem. Furthermore, in [10], a hybrid method
by combining the RSS and AoA measurements is proposed to formulate a non-convex estimator
under the LS criterion, and then transform it into a SOCP optimization problem [11]. However, all the
approaches above are focused on the target localization problem in terrestrial wireless sensor networks.
In [12], a convex optimization method for target localization in UWSNs is investigated, but still under
a terrestrial acoustic wave propagation model. In [13], the ML problem for the RSS-based underwater
target localization are discussed and a class of SDP methods are derived by using the `1 norm instead
of `2 norm. In [14], RSS-based underwater target localization methods are proposed in both known and
unknown transmit power cases, and two fast implementation algorithms are proposed by transforming
the non-convex problems into generalized trust region subproblem frameworks. All of the above
methods are simple to solve the underwater RSS localization problem. However, their results show
that there still exists great room for the estimation accuracy improvement.

1.3. Contributions

In this paper, we propose a new approach to the RSS-based underwater acoustic localization
problem based on the convex relaxation technique in UWSNs. Unlike the SDP method in [13] and WLS
methods in [14], we reformulate the original underwater acoustic path loss measurement model as
the pseudolinear equation, derive a minimum optimization problem, and then directly transform this
optimization problem into a mixed SD/SOCP localization problem for estimating an accurate location
of target. Although the WLS methods in [14] can simply solve the underwater RSS localization problem
with lower complexity, its accuracy cannot be perfect. This paper is to improve the underwater acoustic
RSS localization accuracy. Two cases are considered with respect to the target transmit power. For the
first case, where the reference power is assumed to be known as a measure of the target transmit
power, we derive a novel WLS estimator by using an approximation to the RSS expressions, and then
transform the originally non-convex problem into a mixed SD/SOCP problem for reaching an efficient
solution. For the second case, there is no knowledge on the target transmit power, and we treat the
reference power as an additional parameter to estimate. In this case, we formulate a WLS estimator
by using a further approximation, and present an iterative ML and mixed SD/SOCP algorithm for
solving the WLS problem. For both cases, we also derive the Cramer–Rao Lower Rounds (CRLBs) on
root mean square error (RMSE) to evaluate the performance of the two proposed WLS estimators by
using computer simulations.

The main contributions of our work are summarized as follows:

(1) Based on the convex relaxation, we propose a new approach to the RSS-based underwater acoustic
localization problem in UWSNs.

(2) The correlation between the target node location and transmit power can be removed by using the
separation constant technique which will be helpful for solving the proposed localization method.
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(3) In the unknown target transmit power case, an auxiliary constant is used to establish the
semi-definite constraints., and then an iterative ML and mixed SD/SOCP algorithm is proposed
to estimate both the target location and the transmit power.

(4) The closed form CRLBs of the proposed scheme are derived.

The following notations are adopted throughout the paper. Bold face lower case letters and bold
face upper case letters denote vectors and matrices, respectively. Rn denotes the set of n-dimensional
real column vectors. li denotes the ith entry of the vector l. In addition, ‖ · ‖ denotes the `2-norm.

The remainder of the paper is organized as follows. In Section 2, we first give the ray trajectory
in an underwater medium, and then the RSS models for underwater acoustic node localization are
discussed. In Section 3, we present the proposed localization method. In Section 4, the Cramer–Rao
Lower Rounds are derived for the proposed method. Computer simulation results are presented in
Section 5. Finally, the main conclusions are drawn in Section 6.

2. System Model

In this section, we first given the arc length of tracing a ray between a target node (denoted as T)
and the anchor nodes (denoted as A) in an underwater environment [15,16]. Then, the RSS-based
localization problem in underwater acoustics environment is formulated.

2.1. Ray Trajectory

We consider a target localization problem in a 3D underwater acoustic environment. The main
considered in this paper are the stratification effect of water medium. Aiming at the stratification effect
of underwater environment, in this paper, we propose a new approach to the RSS-based underwater
acoustic localization problem based on the convex relaxation technique in UWSNs. In this approach,
the underwater sound speed profile (SSP) is assumed only linearly depth dependent and can be
approximated as [15–17]

v(z) = b + az, (1)

where z denotes the depth, b indicates the sound speed at the water surface, and a is the steepness
of SSP depending on the environment of the stratification effect of water medium. Let [xA, yA, zA]

and [xT , yT , zT ] denote [rA, zA] and [rT , zT ], respectively, in 3D space. In Figure 1, we can seen that the
UWSNs is 3D, while the ray equations are established on a 2D plane. This is because of the cylindrical
symmetry around the z-axis when the z-axis crosses anchor node A. In this case, we can transfer the
target localization problem to the 2D plane, which includes both nodes and z-axis. When the z-axis
does not cross anchor node A, we still consider it to be a general 3D space.

Equation (1) reveals that the SSP is only a linear function of the depth, but the SSP and horizontal
distance r are nonlinear relations. Ray tracing method is guided by Snell’s law [17]:

cos θ

v(z)
=

cos θA
v(zA)

=
cos θT
v(zT)

= c, (2)

where θA, θT are the ray angles at anchor node and the target node locations, respectively; zA, zT are
the depth of the anchor node and target node, respectively; and c is constant along a ray traveling
between the two nodes. Then, the arc length l of acoustic propagation path between the anchor node
and target node has the following form [15,16]

l = −(b + azT)
θT − θA
acosθT

, (3)



Sensors 2019, 19, 2323 4 of 16

Figure 1. The stratification effect description of a ray between a target node and an anchor node though
two adjacent layers.

In the next section, we suppose that the speed in each layer is assumed to be a constant.
In this case, the arc length l is assumed to be approximated as a straight line, which is used in
the following discussion.

2.2. Underwater Acoustic RSS Model

The main characteristics of underwater acoustic channel are frequency-dependent attenuation,
time-varying multipath propagation, and low speed of sound. Up to now, the underwater acoustic
channel is considered the most difficult communication media. Underwater acoustic transmission loss
experienced by a narrow band acoustic signal centered at frequency f (kHz) traveling over distance l
is given by Urick propagation model, and then it can be transformed into RSS model. In the following,
we describe the signal model considered in this paper.

Consider an UWSNs with N anchor nodes and one target node. For a k-dimensional (k = 2
or 3) localization scenario, we suppose that the target node is located at an unknown position x ∈ Rk,
and the locations of anchor nodes are known as si ∈ Rk, where i ∈ N , {1, 2, . . . , N}. Under a
centralized processing mode, the anchor nodes convey their RSS measurements to the central processor
for estimating x.

By the underwater acoustic propagation log-normal shadowing model, the RSS in dBm at each
anchor node i is given by [13,14,18]

Pi = P0 − 10γ log10
li
l0
− α f (li − l0) + ni, (4)

where P0 is the reference power, d0 is the reference distance, and li is the ray length between the target
node and ith anchor node, which can be calculated by Equation (3). For the same layer of acoustic
speed, the arc length between the target node and ith anchor node is approximated to li = ‖x− si‖, γ

is the path-loss exponent between 2 and 4 depending upon the propagation environment, α f is the
absorption coefficient, and ni is the log-normal shadowing effects [19], which results from degradation
of the acoustic intensity caused by multipath propagation, refraction, diffraction, and scattering
of sound. Note that α f can be obtained in dB/km as a function of signal frequency f by Thorp’s
formula [20,21]
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a f =
0.11 f 2

1 + f 2 +
44 f 2

4100 + f 2 + 2.75× 10−4 f 2 + 0.003. (5)

Let P = (P1, P2, . . . , PN)
T and n = (n1, n2, . . . , nN)

T be the collections of the RSS measurements
and the associated log-normal shadowing effects, respectively. In most studies, the log-normal
shadowing is generally modeled as independent and identical distribution (i.i.d.)zero-mean Gaussian
random variable. Unfortunately, we do not have such a guarantee about ni in underwater acoustic
environment. In this paper, we suppose that the N × N covariance matrix Q of n is symmetric with
elements given by

[Q]ij =

{
σ2, i = j,

ρσ2, i 6= j,
(6)

where 0 ≤ ρ < 1 is the common correlation coefficient between any two different entries.
Given the target location x, the conditional probability density function (PDF) of P is given

by [18,22]

f (P|x) = 1

(2π)
N
2 |Q| 12

e−
1
2 [P−P̄(x)]T Q−1[P−P̄(x)], (7)

where P̄(x) = (P̄1(x), P̄2(x), . . . , P̄N(x))T , and for all i ∈ N,

P̄i(x) = P0 − 10γ log10
‖x− si‖

d0
− α f (‖x− si‖ − d0) . (8)

Then, the ML estimator of x can be formulated as [22]

x̂ = arg min
x

[P− P̄(x)]T Q−1 [P− P̄(x)] . (9)

Clearly, the ML estimation, whether in Equation (9), yields a non-convex problem. In the next
section, we propose a mixed SD/SOCP method for efficiently solving the localization problem by
using appropriate approximations for the RSS expressions.

3. The Proposed Mixed SD/SOCP Methods

3.1. The WLS Estimation by Approximation

Suppose that the noises ni are quite small when compared with the RSS measurements Pi. Let l0 = 1 m
without loss of generality. From Equation (4), we have the following approximation expression

‖x− si‖ ≈ 10
P0−Pi+α f

10γ 10−
α f ‖x−si‖

10γ . (10)

Let u = − α f ‖x−si‖
10γ be the exponent of the second factor term on the right hand side of Equation (10).

It is shown in [13] that 0 < |u| � 1 since α f is relatively minor in UWSNs, as shown in Equation (5).
Therefore, it is reasonable to approximate the factor term 10u to be its first-order Taylor expansion at
the point u = 0, i.e.,

10−
α f ‖x−si‖

10γ ≈ 1−
α f ln 10

10γ
‖x− si‖, (11)

where the higher-order terms are omitted.
Substituting Equation (11) into Equation (10) yields a pseudolinear approximation

λi‖x− si‖ ≈ η, (12)
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where η = 10
P0

10γ , βi = 10
Pi−α f

10γ , and λi = βi +
α f ln 10

10γ η.
Based on Equation (12), the WLS estimation for the target location x can be formulated as

min
x

N

∑
i=1

(λi‖x− si‖ − η)TQ−1(λi‖x− si‖ − η) (13)

where {η, λi}N
i=1 are dependent upon both the reference power P0 and the RSS parameters

{γ, Q, α f , si, Pi}N
i=1. Clearly, the proposed WLS estimation is non-convex.

3.2. Case of Known Target Transmit Power

In this case, we suppose that the transmit power of the target node is known in terms of the
reference power P0. It follows that the parameters {η, λi}N

i=1 in Equation (13) can be determined.
For the sake of presentation, by introducing auxiliary variables l, li, the WLS estimation

(Equation (13)) can be equivalently written as

min
x

(Bl − E)TQ−1(Bl − E)

s.t. l = [l1, . . . , lN ]
T , (14a)

li = ‖x− si‖, i ∈ N, (14b)

where B = diag{λ1, · · · , λN}, E = [η, · · · , η]T, Q is the covariance matrix of log-normal shadowing effect.
Then, by further introducing auxiliary variables {L, r}, and applying the SDP technique, the WLS

estimation (Equation (14)) can be rewritten in the constricted form as

min
x

tr

{
C

[
L l
lT 1

]}
s.t. li = ‖x− si‖, (15a)

l2
i = Li,i, (15b)

Li,i = r− 2sT
i x + ‖si‖2, (15c)[

L l
lT 1

]
� 0, rank{D} = 1, (15d)

‖x‖2 = r, (15e)

for all i ∈ N,

where

C =

[
BTQ−1B −BTQ−1E
−ETQ−1B ETQ−1E

]
. (16)

Furthermore, according to the Cauchy–Schwarz inequality, we have

Li,j ≥ |r− (si + sj)
Tx + sT

i sj|, (17)

for all i, j ∈ N, i > j.

Adding Equation (17) into Equation (15) as a constraint, dropping rank-1 constraint, and applying
the SOCP technique, the Equation (15) can be transformed to be
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min
x

tr

{
C

[
L l
lT 1

]}
s.t. ‖x− si‖ ≤ li, (18a)

l2
i ≤ Li,i, (18b)

Li,i = r− 2sT
i x + ‖si‖2, (18c)

Li,j ≥ |r− (si + sj)
Tx + sT

i sj|, (18d)[
L l
lT 1

]
� 0, (18e)

‖x‖2 ≤ r, (18f)

for all i, j ∈ N, i > j,

where the constraint in Equation (18a) is a second-order cone (SOC), the constraint in Equation (18e) is
a semi-definite cone (SDC), the constraints in Equations (18c) and (18d) are affine and thus SOCs, and
the constraints in Equations (15c) and (18f) need to be reformulated into SOC forms.

It is observed that the constraints in Equations (18b) and (18f) have a unified form of ‖y‖
2

a = b,
which can be expressed in the second-order cone form of ‖[2y; a− b]‖ ≤ a + b, where [y; e] denotes
the concatenation of column vector y and scalar e [23]. Therefore, Equation (15) can be casted into a
mixed SD/SOCP problem with the optimization variables {x, r, L, l} as follows

min
x

tr

{
C

[
L l
lT 1

]}
s.t. ‖x− si‖ ≤ li, (19a)

‖[2li; Li,i − 1]‖ ≤ Li,i + 1, (19b)

Li,i = r− 2sT
i x + ‖si‖2, (19c)

Li,j ≥ |r− (si + sj)
Tx + sT

i sj|, (19d)[
L l
lT 1

]
� 0, (19e)

‖[2x; r− 1]‖ ≤ r + 1, (19f)

for all i, j ∈ N, i > j.

In the sequel, the mixed SD/SOCP problem in Equation (19) is referred to as “SD/SOCP-K”,
which can be solved efficiently by using the standard interior method [24], for example, the MATLAB
CVX package [25]. Since there exist K1 = 5 optimization variables in Equation (19), the worst-case
complexity has order of O((N + K1)

3.5), which is less than that for solving a SDP problem [13].

3.3. Case of Unknown Target Transmit Power

In practice, it is impractical to acquire the knowledge on the transmit power of the target node
in UWSNs. It is thus worth investigating the localization problem with unknown P0. To cope with
the difficulty caused by the unknown parameters, we explore a further approximation in addition to
Equation (12).
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By the definitions of βi and η, using the separation constant technique, the approximation in
Equation (12) can be reorganized as

10γβi
α f ln 10

 1

1− α f ln 10
10γ ‖x− si‖

− 1

 ≈ η. (20)

Let v =
α f ln 10

10γ ‖x − si‖. Following the explanations beneath Equation (10), it also holds that
0 < |v| � 1. It is thus reasonable to approximate the factor in parentheses on the left hand side by
using the first-order Taylor expansion about v = 0 as follows

1

1− α f ln 10
10γ ‖x− si‖

≈ 1 +
α f ln 10

10γ
‖x− si‖. (21)

Substituting Equation (21) into Equation (20) yields a simplified approximation

βi ‖x− si‖ ≈ η. (22)

Hence, instead of solving Equation (13), we obtain a WLS formulation for estimating both x and
P0 in the form

min
x,η

N

∑
i=1

(βi‖x− si‖ − η)TQ−1(βi‖x− si‖ − η). (23)

where again η = 10
P0

10γ , and βi = 10
Pi−α f

10γ .
Clearly, the WLS problem in Equation (23) remains non-convex. To cope with the objective

function, we introduce an auxiliary vector g = (g1, g2, . . . , gN , η + c0)
T , where gi = ‖x− si‖ , gN+1 =

η + c0, c0 is an arbitrary constant, such that the objective function is written as (B̃g−V)TQ−1(B̃g−V).
Then, we transform the WLS problem in Equation (23) into the following constricted form

min
x,η

(B̃g − V)TQ−1(B̃g − V)

s.t. g =
[
g1, g2, . . . , gN , gN+1]

T , (24a)

gi = ‖x− si‖, (24b)

gN+1 = η + c0, (24c)

for all i ∈ N,

where B̃ = [diag(βi),−1N ], V = −c01N , 1N is N × 1 column vector. Q is covariance matrix of
log-normal shadowing effect.

By further introducing auxiliary variables {G, r}, and applying the SDP technique, we transform
the WLS problem in Equation (24) into the following constricted form
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min
x,η

tr

{
C̃

[
G g
gT 1

]}
s.t. gi = ‖x− si‖, (25a)

Gi,i = r− 2sT
i x + ‖si‖2, (25b)

g2
i = Gi,i, (25c)

gN+1 = η + c0, (25d)

g2
N+1 = GN+1,N+1, (25e)[
G g
gT 1

]
� 0, rank{G} = 1, (25f)

‖x‖2 = r, (25g)

for all i ∈ N,

where

C̃ =

[
B̃TQ−1B̃ −B̃TQ−1V
−V TQ−1B̃ V TQ−1V

]
. (26)

Furthermore, according to the Cauchy–Schwarz inequality, we also have

Gi,j ≥ |r− (si + sj)
Tx + sT

i sj|, (27)

for all i, j ∈ N, i > j,

Adding Equation (27) into Equation (25) as a constraint, and dropping rank-1 constraint, by the
reformulations above, the non-convex optimization problem is casted into a mixed SD/SOCP with the
optimization variables {x, η, r, G, g} as follows

min
x,η

tr

{
C̃

[
G g
gT 1

]}
.

s.t. ‖x− si‖ ≤ gi, (28a)

Gi,i = r− 2sT
i x + ‖si‖2, (28b)

Gi,j ≥ |r− (si + sj)
Tx + sT

i sj|, (28c)

‖[2gi; Gi,i − 1]‖ ≤ Gi,i + 1, (28d)

‖[2gN+1; GN+1,N+1 − 1]‖ ≤ GN+1,N+1 + 1, (28e)[
G g
gT 1

]
� 0, (28f)

‖[2x; r− 1]‖ ≤ r + 1, (28g)

for all i, j ∈ N, i > j.

The mixed SD/SOCP problem in Equation (28) is referred to as “SD/SOCP-U”, which can be
solved by calling the MATLAB CVX package at a computational complexity of order O((N + K2)

3.5),
where K2 = 6.

In Algorithm 1, we also propose a hybrid ML-SD/SOCP method by iteratively estimating P0 and
calling the standard CVX package for solving Equation (28), where the maximum iteration number
Nmax can be determined empirically with aid of numerical results on the convergence.
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Algorithm 1 hybrid ML-SD/SOCP

1: Initialize the iteration index n← 0, and set the reference distance l0 = 1 m
2: find an initial estimate x̂ in the feasible region of Equation (28)
3: repeat

4: n← n + 1
5: compute l̂i ← ‖x̂− si‖ for all i ∈ N

6: Use x̂ to compute the ML estimate of P0, P̂0 as

P̂0 =
1
N

N

∑
i=1

[
Pi + 10γ log10 l̂i + α f

(
l̂i − l0

)]

7: compute η̂ ← 10
P̂0

10γ and λ̂i ← βi +
α f ln 10

10γ η̂ for all i ∈ N

8: solve Equation (19), and obtain an updated x̂
9: until the estimates {x̂, η̂} converge or n = Nmax

10: return x and P0 with P0 = 10γ log10 η

4. CRLB Analysis

For the target location x, the WLS estimator x̂ in either Equation (19) or Equation (28) is an
unbiased estimator, i.e., E(x̂) = x, as they are essentially based on Equation (9). Then, the covariance
matrix of x̂ is subject to the CRLB as VAR(x̂) � F−1, where F is the Fisher information matrix (FIM).

To evaluate the accuracy performance of the unbiased estimation, the RMSE is defined as

RMSE =

√√√√( 1
M

M

∑
i=1
‖x̂i − xi‖2

)
, (29)

where x̂i is the estimate of the randomly generated target location xi in the ith simulation, and M is the
number of independent simulation rounds.

Accordingly, we define the CRLB on RMSE by computing the root trace of F−1. As proved in the
Appendix A, the CRLBs on RMSE for both SD/SOCP methods are given, respectively, by

CRLBK =

√
trace

[(
GTQ−1G

)−1
]

, (30)

CRLBU =

√
trace

[(
HTQ−1H

)−1
]

, (31)

where G = ∂P̄(x)
∂x , H = (G, 1N)N×3, and

∂P̄i(x)
∂x

= −
(

10γ

ln 10‖x− si‖2 +
α f

‖x− si‖

)
(x− si)

T , (32)

which is derived from Equation (8).

5. Simulation Results

In this section, computer simulation results are provided to evaluate the performance of the
proposed mixed SD/SOCP methods, i.e., SD/SOCP-K and SD/SOCP-U. The RSS values were
generated according to Equation (4) under the underwater acoustic propagation model, where l0 = 1 m,
P0 = −40 dBm, and γ = 2, which is applicable to the scenario of underwater acoustic spherical
spreading. We assumed that the depth of the target node could be obtained through pressure sensors,
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and, therefore, only the x and y coordinates of target location were estimated, which reduced the
computational complexity of the proposed methods. The same hypothesis is also seen in [26]. We also
assumed that only one layer of SSP was considered in the simulations. Then, the anchor and target
nodes were randomly located within a square region of 100× 100 m2, and the correlation coefficient
was set to be ρ = 0.8. A total of Mc = 3000 Monte Carlo simulations were carried out. Here, target
location x was a random variable of Monte Carlo estimation. The estimation of random variables
x (target location) in each Monte Carlo simulation was independent of each other. For reader’s
convenience, the simulation parameters are listed in Table 1.

Table 1. The parameters for simulations.

Parameters l0 P0 γ ρ Mc

Value 1 m −40 dBm 2 0.8 3000

Note that SD/SOCP-K was simulated by directly calling the CVX package [25,27], whereas
SD/SOCP-U was simulated by using Algorithm 1. For comparison, simulation results on the SDP
method in [13] and the WLS methods (including WLS-K and WLS-U) in [14] are provided. For
convenience, the discussed estimators are listed in Table 2.

Table 2. Summary of the compared methods.

Method Description

SDP SDP method in [13]
WLS-K WLS-K method in [14] for known transmit power
WLS-U WLS-K method in [14] for unknown transmit power

SD/SOCP-K Proposed the new SD/SOCP-K method for known transmit power (Equation (19))
SD/SOCP-U Proposed the new SD/SOCP-K method for unknown transmit power (Equation (28))

CRLBk Lower limit on the variance of any unbiased estimators for known transmit power
CRLBU Lower limit on the variance of any unbiased estimators for unknown transmit power

In Figure 2, we present one possible network configuration and the estimation accuracy of the
target location in 2D (Figure 2a) and 3D (Figure 2b) for N = 10, σ = 4 dB, α f = 0.01 dB/m. The figure
shows that better estimation accuracy is achieved for target node.

−50 −40 −30 −20 −10 0 10 20 30 40
−50

−40

−30

−20

−10

0

10

20

30

40

50

B(m)

B
(m

)

 

 

anchor node
targer node
SD/SOCP−K
SD/SOCP−U

(a)

−50
−30

−10
10

30
50

−50
−30

−10
10

30
50

−50

−30

−10

10

30

50

 

B(m)B(m)
 

B
(m

)

anchor node
ture targer node
SD/SOCP−K
SD/SOCP−U

(b)

Figure 2. Example of a network configuration and estimation accuracy results for the proposed methods.
(a) Example of a 2D network configuration and estimation accuracy results for the proposed methods;
(b) Example of a 3D network configuration and estimation accuracy results for the proposed methods.
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Note that the acoustic signal attenuates dramatically in underwater acoustic channels,
which depends upon both transmission range and frequency. In addition, underwater acoustic
signal frequencies are available from tens of hertz to hundreds of kilohertz due to the severe
frequency-dependent attenuation [28–31]. In simulations, we chose several frequency components
for f within the range from 34 kHz to 454 kHz, and the associated absorption coefficient α f varies
from 0.01 dB/m to 0.1 dB/m by Equation (5). We considered four localization scenarios to evaluate the
performance of the proposed methods in underwater acoustic environment.

Figure 3 shows the simulation results on the effects of the noise standard derivation σ on the RMSE
for σ varying from 1 dB to 5 dB when P0 is known (Figure 3a) and unknown (Figure 3b), where the
number of anchor nodes is fixed at N = 10, and the absorption coefficient is fixed at α f = 0.01 dB/m.
By the simulation setups, we had u = −0.05 and v = 0.1151 for the approximations in Equations (11)
and (21), respectively. In these figures, it is naturally observed that the RMSE increased with the
noise level in all methods. It was also observed that both the proposed mixed SD/SOCP methods
yielded smaller RMSE values than the SDP method and WLS method. Furthermore, Figure 3 shows the
superior RMSE performance of the proposed methods SD/SOCP-K and SD/SOCP-U when σ is small,
while the gap between the SD/SOCP methods and WLS methods become smaller when σ is large.
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Figure 3. RMSE versus the noise standard deviation σ. (a) Simulation results for UWSNs localization
when P0 is known: RMSE versus the noise standard deviation σ with N = 10, and α f = 0.01 dB/m;
(b) Simulation results for UWSNs localization when P0 is unknown: RMSE versus the noise standard
deviation σ with N = 10, and α f = 0.01 dB/m.

Figure 4 shows the simulation results on the effects of the number of anchor nodes N on the
RMSE for 8 ≤ N ≤ 22, σ = 4 dB, and α f = 0.01 dB/m when P0 is known (Figure 4a) and unknown
(Figure 4b). In this case, it remained that u = −0.05 and v = 0.1151. It was observed that the RMSE
appears a decreasing function of N for both the proposed SD/SOCP methods and WLS methods.
In contrast, the RMSE of the SDP method approximately increased with N, and it was considerably
larger than that of the proposed SD/SOCP methods over the entire range of considered N values. The
main reason for this lies in adopting more approximations and replacing the `2 norm with the `1 to
solve the original localization problem of the SDP method. On the other hand, as N increased, the gap
between SD/SOCP and WLS becomes smaller, while the gap between the achieved RMSE and the
CRLB becomes larger. Figure 4 shows the superior RMSE performance of the proposed methods for all
chosen N.
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Figure 4. RMSE versus the number of anchor nodes N. (a) Simulation results for UWSNs localization
when P0 is known: RMSE versus the number of anchor nodes N with σ = 4 dB, and α f = 0.01 dB/m;
(b) Simulation results for UWSNs localization when P0 is unknown: RMSE versus the number of
anchor nodes N with σ = 4 dB, and α f = 0.01 dB/m.

Figure 5 shows the simulation results on the effects of the absorption coefficient α f on the RMSE
for α f varies from 0.01 dB/m to 0.1 dB/m when P0 is known (Figure 5a) and unknown (Figure 5b),
where σ = 4 dB, and N = 10. In this case, u ∈ [−0.05,−0.5], and v = [0.1151, 1.1513]. Similarly, both
SD/SOCP methods were superior to the SDP method and WLS method for all α f values. Meanwhile,
both SD/SOCP methods varied slightly as α f increased. The SDP method showed a trend of first
decline and then rise. The results show that the proposed methods have robust performance for α f
varying from 0.01 dB/m to 0.1 dB/m.
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Figure 5. RMSE versus the absorption coefficient α f . (a) Simulation results for UWSNs localization
when P0 is known: RMSE versus the absorption coefficient α f with σ = 4 dB, and N = 10;
(b) Simulation results for UWSNs localization when P0 is unknown: RMSE versus the absorption
coefficient α f with σ = 4 dB, and N = 10.

To further verify the effectiveness of the proposed methods, it was compared with other discussed
methods. We also considered the localization scenario of three-dimensional underwater acoustic
wireless sensor networks, where the anchor and target nodes were randomly located within a cube
region of 100 m×100 m×100 m. Figure 2b shows an example of a 3D network configuration and
estimation accuracy results for the proposed methods. Figure 6 shows the simulation results on
the effects of the noise standard derivation σ on the RMSE for σ varying from 1 dB to 5 dB in
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three-dimensional underwater acoustic wireless sensor networks, where the number of anchor
nodes is also fixed at N = 10, and the absorption coefficient was fixed at α f = 0.01 dB/m. By the
simulation setups, we had u = −0.05 and v = 0.1151 for the approximations in Equations (11) and (21),
respectively. As in Figure 3, in these figures, it can be seen that the proposed methods also showed
excellent performance in three-dimensional scenario.

1 1.5 2 2.5 3 3.5 4 4.5 5
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

σ(dB)

R
M

S
E

(m
)

 

 

SD/SOCP−K
SDP
WLS−K
CRLB

U

(a)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

σ(dB)
R

M
S

E
(m

)
 

 

SD/SOCP−U
WLS−U
CRLB

U

(b)

Figure 6. RMSE versus the noise standard deviation σ in 3D space. (a) Simulation results for UWSNs
localization when P0 is known: RMSE versus the noise standard deviation σ with N = 10, and
α f = 0.01 dB/m; (b) Simulation results for UWSNs localization when P0 is unknown: RMSE versus the
noise standard deviation σ with N = 10, and α f = 0.01 dB/m.

It may be concluded that, although both SD/SOCP-K and SD/SOCP-U are derived under the
assumptions of small values for both noise and absorption coefficient, the simulations showed that
excellent performance could still be achieved, even for high noise level and large absorption coefficient.

6. Conclusions

A mixed SD/SOCP approach has been proposed for the RSS-based target localization problem in
UWSNs with and without the knowledge on the target transmit power. In the case of known transmit
power, we treat the reference power as a constant and derive a novel non-convex WLS estimator
based on appropriate approximations. Then, the WLS estimation problem is transformed into a mixed
SD/SOCP for reaching efficiently an optimized solution. In the case of unknown transmit power,
we treat the reference power as an additional unknown parameter and propose a combined ML and
SD/SOCP iterative algorithm to jointly estimate both the reference power and the target location.
In this paper, we only consider a simplified model, and the depth is assumed to be known in advance.
Furthermore, Only simulation results are provided to verify the performance of the proposed methods.
We hope to extend the present work in a general model, and for the results to be verified by real data
in our future work.
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Appendix A

When the reference power P0 is known, the FIM can simply be derived from the conditional PDF
f (P|x) in Equation (7) as

FK = −E
(

∂2 ln f (P|x)
∂x∂xT

)
=

(
∂P̄(x)

∂x

)T

Q−1 ∂P̄(x)
∂x

. (A1)

However, when P0 is unknown, it is in fact an additional parameter to estimate. Let y =

[x; P0]. Then, P0 = bTy, and x = Ay, where b = (0, 0, 1)T , A = (I2, 0)2×3, and I2 is the identity
matrix of order 2. Accordingly, let P̄(y) = (P̄1(y), P̄2(y), . . . , P̄N(y))

T with N elements written from
Equation (8) as

P̄i(y) = bTy− 10γ log10
‖Ay− si‖

d0
− α f (‖Ay− si‖ − d0). (A2)

Therefore, the joint PDF of P conditioned on y can be formulated from Equation (7) as

f (P|y) = 1

(2π)
N
2 |Q| 12

e−
1
2 [P−P̄(y)]T Q−1[P−P̄(y)]. (A3)

As in Equation (A1), the associated FIM is derived as

FU = −E
(

∂2 ln f (P|y)
∂y∂yT

)
=

(
∂P̄(y)

∂y

)T

Q−1 ∂P̄(y)
∂y

, (A4)

while it holds that

∂P̄i(y)
∂y

=

[
∂P̄i(y)

∂x
;

∂P̄i(y)
∂P0

]
=

[
∂P̄i(x)

∂x
; 1
]

. (A5)
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